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Abstract: Groundwater pollution is one of the main challenges in our society, especially in semi-arid
Mediterranean regions. This issue becomes especially critical in predominantly agricultural areas
that lack comprehensive knowledge about the characteristics and functioning of their aquifer system.
Vulnerability to groundwater pollution is defined as the sensitivity of the aquifer to being adversely
affected by an imposed pollution load. For the Guadalupe aquifer, various indicators including
water level depth, level variation, aquifer properties, soil composition, topography, impact on the
vadose zone, and hydraulic conductivity were evaluated to establish spatial vulnerability categories
ranging from very low to very high. Two pollution vulnerability scenarios (wet and dry) were studied.
The results were compared with the analysis of nitrate concentration and distribution (2001, 2020,
and 2021) from samples collected in the field. In the Calafia area, which predominantly relies on
viticulture, the primary recharge inputs were identified in areas with a high vulnerability to pollution.
Surprisingly, these vulnerable areas exhibited lower nitrate concentrations. This scenario underscores
the need for effective management measures to safeguard aquifers in agricultural regions.

Keywords: vulnerability assessment; aquifer; nitrate; GIS; DRASTIC; geostatistics; groundwater
management

1. Introduction

The forward-looking management and protection of groundwater resources and their
protection from pollution represents a significant challenge for our society [1]. In developing
countries, the rapid growth of population triggers urban expansion and the intensification
of agricultural practices, posing a substantial risk of water resource pollution [2]. The
quality and availability of water are inherently shaped by geographical, geological, and
climatological characteristics, consequently creating conditions of scarcity or abundance
of this vital resource [3]. Inadequate management of water resources, such as intensive
groundwater extraction, can surpass the natural recharge capacity in arid and semi-arid
areas [4], leading to the overexploitation of aquifers [5].

Aquifers are hydrogeological units that exhibit high vulnerability to pollution [6].
The chemical composition of groundwater can be influenced by both natural or anthro-
pogenic factors [7]. Natural factors encompass climate, interactions, and the residence
time of groundwater within the geological environment (dissolution of salts or minerals
during its flow). Anthropogenic factors directly stem from human activities, such as the
use of agrochemicals in agriculture (including fertilizers, herbicides, and pesticides) [8].
Agricultural irrigation exerts significant pressure, potentially leading to salinization and, in
some cases, groundwater pollution when irrigation water has poor quality [9].
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The quantity and quality of water are contingent upon land use in the areas responsible
for capturing, conveying, storing, supplying, and replenishing the water resource [10].
Water quality is primarily determined by the presence of dissolved or suspended materials,
substances, and organisms within it [11]. Water quality is not an absolute criterion; it
can be deemed adequate or inadequate depending on its intended use [12]. Therefore, it
is necessary to understand certain chemical characteristics that influence its quality and
potential applications. These include parameters such as dissolved oxygen, suspended
particles, dissolved salts, and the presence and concentration of toxic compounds, bacteria,
and other microorganisms. Consequently, comprehending the potential and behavior of key
pollutants from their source to the point of groundwater contact, along with understanding
the characteristics of the aquifer system, becomes imperative [13].

There are several standardized methods available to assess the vulnerability of aquifers
to pollution. Intrinsic vulnerability to pollution considers the physical properties of the
aquifer system (e.g., inherent geological, hydrological, and hydrogeological characteris-
tics) [14]. It is defined as the sensitivity of the aquifer to be adversely affected by an imposed
pollutant load [15]. On the other hand, specific vulnerability is defined as the vulnerability
of groundwater to particular pollutants, considering their properties, i.e., physical and
biogeochemical attenuation processes (e.g., nitrate concentration) [16]. Indirect methods
used to estimate the spatial vulnerability to pollution of an aquifer rely on indices, statistics,
and geological processes [17,18]. The most widely adopted method worldwide is DRAS-
TIC [19,20], which assesses vulnerability using seven parameters: depth to groundwater
(D), net recharge (R), aquifer medium (A), soil (S), topography (slope T), vadose zone
impact (I), and hydraulic conductivity (C). Each parameter has classes with a ranking value
and weight based on the importance of its characteristics, which can indicate varying levels
of vulnerability to aquifer pollution. These indirect methods consider the characteristics of
the aquifer environment and incorporate factors related to the characteristics of contami-
nant transport through unsaturated and saturated zones (e.g., morphological, hydrological,
edaphological, hydraulic conductivity, water table) [14].

In different countries, research has validated and modified the intrinsic vulnerability
methods (DRASTIC) [21]. For example, [22] assessed the vulnerability of an alluvial aquifer
in a semi-arid environment in Algeria, where they determined zones from very low to very
high vulnerability, mainly due to the urbanization of the area. They reclassified values
in only three classes, to adopt protection measures in the most vulnerable area, and to
have a tool for planning and water management [23]. In China [24], the DRASTIC method
was applied as a nitrate pollution prevention tool, where they optimized the parameters
by replacing them with quantitative information on aquifer thickness, nitrate attenuation
intensity, hydraulic resistance, and groundwater velocity, and obtained improved results
with a more uniform distribution of vulnerability classes in correlation to nitrate concen-
tration, in order to formulate groundwater protection plans [25,26] and estimate specific
vulnerabilities such as the risk of nitrate pollution [27,28]. In southern Mexico, ref. [29]
using DRASTIC and comparing with the spatial distribution of nitrate concentration, re-
searchers showed that there was no relationship between nitrate and vulnerability at the
site, recommending that more specific vulnerability methodologies had to be applied.

Indirect methods are sometimes complemented with site-measured hydrochemical
data to analyze and validate the specific vulnerability of groundwater to a pollutant,
depending on the level of accessibility of the information and the degree of analysis of the
investigation [30]. Aquifer vulnerability assessment studies classify zones from negligible to
very high pollution vulnerability, including sensitivity analysis and multivariate statistical
tests [13,31]. Higher vulnerability zones indicate a higher susceptibility to pollution and
pollutant infiltration that will negatively affect the aquifer. The outcomes produce aquifer
vulnerability maps validated with the concentration of nitrates. The spatial distribution
of nitrates reveals areas with high and low levels, which are subsequently correlated with
moderate, high, and very high vulnerability zones, respectively [32].
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Nitrates are naturally present in diverse ecosystems. Their presence in groundwater
is mainly associated with sediment consolidation processes and anthropogenic activities
such as agriculture and livestock farming [33,34]. The Mexican Official Standard NOM-
127-SSAI-2021 states that the maximum permissible levels of nitrate nitrogen in water for
human consumption are 11 mg L−1, or its equivalence to nitrates of 48.62 mg L−1 [35].
Exceeding the permissible concentration limit can have severe and long-term detrimental
effects on human health (e.g., methemoglobinemia in infants, congenital disabilities, health
effects in adults such as stomach and liver damage, and can lead to cancer), depending
on the exposure time [36–39]. Consequently, it is crucial to monitor concentration levels
closely to prevent the consumption of contaminated water or, ideally, to take remedial
measures at high concentration levels. Assessing the vulnerability of an aquifer to pollution
is essential to develop strategies for management, remediation, and preventive actions in
groundwater use.

Our study site in northwestern Mexico is the wine-producing Guadalupe Valley
(GV). Here, the Guadalupe aquifer (GA) serves as the primary water source for the GV
agricultural region and its surrounding areas. The GV is under tremendous pressure from
land use change and emerging tourism, which generates a high demand for water resources
and changes in its ecosystem balance. The (GA) has a contribution to natural recharge
by surface runoff of ca. 40% [40] and approximately 10% of the volume of water used
for agricultural irrigation returns to the aquifer through percolation [41]. These return
flows from irrigation may significantly contribute to pollution of the aquifer, specially by
fertilizers like nitrate, which is highly mobile in solution. Therefore, the objective of this
study is to use the DRASTIC method to identify areas within the GA that are particularly
vulnerable to pollution. The analysis considered two temporal scenarios spanning the
period 2008 to 2017. The first scenario represented a period of higher rainfall (April 2011),
while the second scenario represented a period of lower rainfall (December 2016). These
periods were selected as they corresponded to the highest and lowest water availability in
the GA, respectively, as indicated by the depth of groundwater. In the first scenario, the
groundwater level approaches the natural ground level, while in the second scenario, there
is a lower saturated zone thickness. By comparing these two scenarios it was possible to
identify spatial variations in the vulnerability of the GA. Such analysis was accomplished
by integrating the parameters of the DRASTIC method and the results were assessed in
terms of the spatial concentration of nitrate in the aquifer.

2. Materials and Methods
2.1. Study Area

The GA is located 18 km north of Ensenada in the northwestern region of Baja Califor-
nia, Mexico (Figure 1), between parallels 32◦0′ and 32◦8′ N latitude and meridians 116◦28′

and 116◦45′ W longitude, 115 km south of the USA border. It is a geologic formation in an
intermontane valley (GV) close to the Pacific Ocean, covering an area of ~80 km2 [42].

Geologically, the GA is an unconfined heterogeneous aquifer formed by two tectonic
grabens, which resulted from normal faults, filled by unconsolidated Quaternary sediments
(gravels, sands, clay lenses, and silts) [43]. The geology and geomorphology are described
in [44]. The Calafia graben (located in northeast GV) has a maximum depth of 350 m, and
the Porvenir graben (located in southwest GV) reaches a maximum depth of 100 m [11].
In total, the potential storage capacity of the GA is ~340 hm3 [45]. Surface runoff, seepage
from ephemeral Arroyo Guadalupe runoff, is the primary main source of GA’s recharge,
followed by vertical recharge associated with faults and fractures on the flanks of the valley,
and percolation of agricultural irrigation [46]. Previous studies mention that recharge
occurs mainly in the winter season, with events more significant than 50 mm/month,
indicating that soil depth and lack of vegetation cover play a critical role in recharge. GA
has a total recharge of 18.8 hm3 yr−1 [42]. Land use in GV is mainly agricultural [40]. Vine
and olive crops are the most representative and suitable for development in the semi-arid
Mediterranean climate of the region [47].
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Figure 1. Location of the study area and well samples for nitrate concentrations in three different
years (2001, 2020, and 2021).

Four hydrological seasons have been identified in the region: a winter wet season
(WS; January–March), a dry season (DS; June–September), and two transitional seasons of
WS-DS (April–May) and DS-WS (October–November) [48]. Mean annual precipitation is
298 mm, and most precipitation events occur during WS, with some sporadic precipitation
events the rest of the year. Historically, the main interannual precipitation contribution
originates during WS (77%), with February and January being the wettest months. The
DS season contributes only 2% of the precipitation, and the remaining 21% occurs in the
transitional seasons. The mean annual temperature is ~17.9 ◦C, and the WS temperature
is ~13.4 ◦C, during DS it is ~23.1 ◦C, and in the transition months it ranges between
~15–20 ◦C. Historically, August has been the warmest month, with an average of 24.7 ◦C.
The only source of recharge of the GA is precipitation and in turn, the GA is the only
direct source of water supply to meet the region’s water demands. The average annual
recharge is 18.8 hm3 yr−1 (calculated from 2010 to 2013), and the volume of groundwater
extraction amounts to 37.1 hm3 yr−1, generating a deficit of −18.4 hm3 yr−1 [42] as it is an
overexploited aquifer.

2.2. DRASTIC Method

The DRASTIC method employs a numerical ranking system, assigning relative weights
to assess an aquifer’s intrinsic vulnerability to pollution [19]. This method was developed
by the United States Environmental Protection Agency (USEPA). The method traditionally
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considers and weighs seven parameters in assessing vulnerability to groundwater pollution
(Table 1).

Table 1. Description of the DRASTIC method parameters (modified from [19]).

Parameter Description

D
(Depth to Water Table)

The depth to water table indicates the thickness of the unsaturated zone, which is the length
through which water travels by infiltration transporting the pollutant until it reaches the
saturated zone of the aquifer [49]. The saturated zone is dynamic in unconfined aquifers,
fluctuating with the seasons, extractions, and water availability. The deeper the groundwater
level, the greater the probability of natural attenuation.

R
(Recharge)

Recharge indicates the amount of water that infiltrates from the soil surface to the water table,
increases the saturated thickness, and is the main transport of potential contaminants [18].

A
(Aquifer Media)

The aquifer media represents the lithology and structure of consolidated or unconsolidated
sediments, in particular, the capacity of the porous and/or fractured medium to retain and
transport water. A is considered a potential pathway for contaminant transport depending on
its porosity (primary or secondary) [31]. Overall, the larger the size of the sediment or the
more fractures it has, the higher the permeability, the lower the contaminant attenuation
capacity, and the higher the probability of pollution.

S
(Soil)

Soil type represents the uppermost layer of the aquifer, characterized by biological activity
and exposure to erosion, where its thickness and texture are significant for attenuation,
biodegradation, sorption, and volatilization processes.
The S parameter impacts the amount of water that infiltrates into the soil, and its texture
modulates the vertical movement of a pollutant to be transported by water through the space
between the particles (depending on the size) in the vadose zone [50].
Anthropogenic practices on the land surface such as agricultural applications, can be a
potential source of pollution.

T
(Topography)

In this context, topography represents the slope and controls of surface and subsurface runoff
velocity. In the case of a potential pollutant, the effect may be accumulation; for example, in
agricultural areas with a lower slope percentage, nitrate concentration may accumulate due to
the intensive use of fertilizers [50].

I
(Impact of the Vadose Zone)

The impact on the vadose zone corresponds to the site above the water table, controlling the
length and time travel of water towards the saturated zone, thus influencing the available
time for pollutant transport attenuation processes [51].

C
(Hydraulic Conductivity)

Hydraulic conductivity measures the speed with which water can pass through the porous or
fractured medium of the aquifer [31]. Specifically, it measures the movement of water flowing
through a porous medium.
This parameter is controlled by the amount and interconnectedness of voids within the
aquifer as a consequence of intergranular porosity and fracturing.

The application of the DRASTIC method assumes the following: (a) the contami-
nant is introduced from the soil surface, (b) the contaminant reaches the water table by
precipitation/infiltration processes, and (c) the contaminant has the same mobility as water.

2.3. Sampling and Measurements

Two temporal scenarios, one with higher and one with lower water availability (WS
and DS), were analyzed to identify the degree of vulnerability of the aquifer to pollution.
The parameters of depth to groundwater level (D) and recharge (R) vary in both scenarios,
while aquifer media (A), soil (S), topography (T), impact on the vadose zone (I), and
hydraulic conductivity (C) parameters are constant in both scenarios.

Hydrogeological, geological, soil texture, and topographical data were used to clas-
sify the parameters. Parameters were calculated from databases and thematic maps and
transformed in integer value raster format with a 5 m spatial resolution in ArcGIS 10.8 and
QGIS 3.24.2 [52,53]. Then, the results were classified following the DRASTIC method to
create pollution vulnerability thematic maps.
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Parameters

The analysis used groundwater level depth data from 52 wells for the wet scenario
(April 2011) and 49 wells for the dry scenario (December 2016). The monitoring wells are
distributed along the GA surface, from southwest to northeast (Figure 1).

In this research, for a semi-arid Mediterranean environment, the recharge parameter
was represented by the variation in groundwater levels observed in the monitoring wells
under both scenarios (April 2010, wet and November 2009, dry). The groundwater level
measurements provide insights into the recharge process in the GA.

The aquifer media parameter was derived through georeferencing the “Francisco
Zarco I11-D82” Baja California 1:50,000 geological map [54]. Lithology was digitized and
classified based on the geological formation types within the study area.

The soil parameter was obtained during field visits from 31 soil samples (0–15 cm
depth) collected systematically along the GV. We calculated the relative sand and silt–
clay content in the laboratory (soil and sediment laboratory) following the granulometric
analysis method and defined the soil texture. The topography parameter was derived from
a 5 m resolution LiDAR Digital INEGI Elevation Model (DEM) and the slope calculation
in QGIS 3.24.2. We define the impact on the unsaturated zone parameter from a 1:50,000
geology map from the Mexican Geological Service (SGM). The hydraulic conductivity
parameter was represented following the results of [55]. However, qualitative modifications
were applied to the data to identify distinct zones on the aquifer surface, e.g., to differentiate
the Calafia zone from the Porvenir zone.

Different interpolation methods (Kriging/Cokriging, Inverse Distance Weighting)
were tested, but the “Empirical Bayesian Kriging” proved to be the most accurate to gener-
ate the prediction maps of the depth to groundwater and recharge from the monitoring
sites (wells) and soil parameter from relative sand content in field sites. A logarithmic trans-
formation and a circular smoothed neighborhood type with a factor of 0.5 were applied.

Cross-validation was applied to the prediction maps resulting from modeling in the
ArcGIS 10.8 program. The root means square error (RMSE) was calculated to assess the
quality of the interpolations [56] as follows:

RMSE =

√
∑n

i = 1 (Pi − Oi)2

n
(1)

where RMSE is the root mean squared error, Pi is the predicted value, Oi is the observed
value, and n is the sample size.

2.4. Application of the DRASTIC Vulnerability Index (DVI)

To model the DVI of the GA, the weighted indices of each parameter were superim-
posed using the spatial analysis tool “weighted sum” available in ArcMap, and Equation (2)
was applied. The numerical ranking factor (Rj) in each parameter varies according to the
specific characteristics of the study area. Rj is based on the ratio of impact, significance,
and potential pollution to an aquifer and is represented by values ranging from 1 (least
vulnerable) to 10 (most vulnerable). Each parameter is assigned a relative weight (Wj)
to calculate the DRASTIC vulnerability index (DVI), whose values range from 1 (least
significant) to 5 (most significant), as shown in Table 2 [19].

The following equation calculates the DVI using map algebra in ArcGis 10.8 (for all
parameters).

DVI =
7

∑
j=1

(Wj ∗ Rj) (2)

Typically, the DRASTIC results range from 23 (minimum) to 230 (maximum)
(Table 3) [19].
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Table 2. Weighting parameter and relative weight of the DRASTIC vulnerability index.

Parameter DRASTIC Weight

D 5
R 4
A 3
S 2
T 1
I 5
C 3

Table 3. Aquifer pollution vulnerability classes according to the DRASTIC method, following the
World Bank Guide to Methodological Proposals for Groundwater Protection [14].

Class Rating Definition

Very low 23–64 Presence of confining layers where vertical flow
(percolation) is negligible.

Low 65–105

Vulnerable only to conservative pollutants (not
commonly affected by chemical reactions in natural
processes) when discharged or leached continuously
over long periods.

Moderate 106–146 Vulnerable to some contaminants only when
continuously discharged or leached.

High 147–187
Vulnerable to many pollutants (except those that are
strongly absorbed or easily transformed) in numerous
pollution scenarios.

Very high 188–230 Vulnerable to most pollutants with rapid impact in
many pollution scenarios.

2.5. Nitrate Analysis NO−
3

Groundwater samples were collected from 27 wells in 2001, 33 in 2020, and 28 in
2021. Water samples were filtered with 0.45-micron filters, collected in polyethylene
bottles, and stored at 4 ◦C until anion concentration analysis was carried out using the
Ion Chromatography System-Dionex Aquion (Thermo Scientific) with the software tool
Chromeleon Console 7.2.9, by ion chromatography with chemical suppression [57].

Concentration of nitrate NO−
3 was analyzed with Geographic Information Systems

for the graphic representation and construction of spatial distribution maps and temporal
behavior.

Finally, the independent parameter of nitrates was validated as a potential pollution
factor in the aquifer, depending on the concentrations in the study area, giving a high and
very high vulnerability assessment to data exceeding the permissible limits (11 mg L−1)
for human consumption of the Mexican Official Standard NOM-127-SSA1-2021 [35]. Grain
size analyses of 29 soil samples was carried out by means of a laser particle distribution
analyzer HORIBA LA910.

The samples collected in the field and processed in the laboratory were helpful for
the optimization of the research, which aims to obtain a point spatial distribution and
concentration in the GA.

3. Results and Discussion

The study’s findings present two distinct hydrological scenarios (wet and dry) char-
acterized by differences in groundwater depth and groundwater level. The groundwater
depth in the wet scenario ranges from 0.8 to 33.9 m (Figure 2a) and in the dry scenario,
groundwater depth varies from 4.4 to 57.3 m (Figure 2b). The groundwater level variation
is influenced by various factors such as precipitation, surface runoff, and irrigation water
return. The groundwater level variation in the wet scenario ranges from 0.7 to 30.0 m
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(Figure 2c) and in the dry scenario, from 0 to 5.0 m (Figure 2d). The results of the granulo-
metric analysis revealed that the study site is dominated by sandy soils up to a depth of
30 cm. Approximately 76% of the surface has medium sands and 24% coarse sands located
in the El Porvenir zone (Figure 2e). According to Kurczyn-Robledo [58], flat slopes slow
down the runoff in the study area. The flat slopes range from 0 to 6% (Figure 2f) and cover
66% of the area, leading to infiltration and possible pollutants transport toward the aquifer.
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variation in dry scenario, (e) = soil texture, (f) = slope, (g) = hydraulic conductivity, (h) = lithology.

In the study area (Figure 2g), low hydraulic conductivity is observed between the
intersection of the zones (Calafia and El Porvenir) and to the south of the aquifer, repre-
senting 34.5%. Moderate conductivity extends over a large part of the center of El Porvenir
with 40.5%, high hydraulic conductivity is located in the Calafia zone with 11.5% of the
total study area, and finally, very high hydraulic conductivity is located in the course of the
Guadalupe stream representing 13.5%.

According to [19], the lithology influences the infiltration and transport of potential
contaminants from the surface to the saturated zone of the aquifer. In the study site, low
permeable rocks cover 38% of the study area and are formed by granodiorite, andesite,
diorite, and dacite, located towards the southwest and at the aquifer boundaries; the
remaining area is covered by sands and silts constituting the permeable material [48],
therefore, 62% of the surface is susceptible to the infiltration of contaminants (Figure 2h).

3.1. Vulnerability Ranking

In terms of area coverage, the depth to groundwater level (D) was classified into
seven rankings: (1) <30.5 m; (2) 23–30.5 m; (3) 15.3–22.9 m; (5) 9.2–15.2 m; (7) 4.7–9.1 m;
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(9) 1.6–4.6 m; (10) 0–1.5 m (Table 4), covering about 1%, 6%, 5%, 16%, 34%, 37%, and 1%,
respectively, of the total study area in the wet scenario (Figure 3a).

Table 4. Numerical ranking factors (Rj) for each parameter used to calculate the DRASTIC vulnerabil-
ity index (DVI) [23].

Depth to Water Table (D) Recharge–Water Level Variation (R) Aquifer Media (A) Soil (S)

Range (m) Rj Range (m) Rj Type Rj Texture Rj

0–1.5 10 0–5 1 Granodiorite—Tonalite 3 Middle sands 9
1.6–4.6 9 5.1–10 3 Greenstone 3 Coarse sands 10
4.7–9.1 7 10.1–17 6 Dacite—Rhyodacite 3
9.2–15.2 5 17.1–25 8 Andesite 4
15.3–22.9 3 >25 9 Sand—Silt 8
23–30.5 2 Alluvium 9
>30.5 1

Topography (T) Impact of the Vadose Zone (I) Hydraulic Conductivity (C)

Range (%) Rj Type Rj Category Rj
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On the other hand, in the dry scenario, D was classified into six rankings: (1) <30.5 m;
(2) 23–30.5 m; (3) 15.3–22.9 m; (5) 9.2–15.2 m; (7) 4.7–9.1 m; (9) and 1.6–4.6 m (Table 4),
covering about 12%, 3%, 18%, 31%, 35%, and 1%, respectively, of the total study area in the
dry scenario (Figure 4a).
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The level of variation (R) was classified into five rankings: (1) 0–5 m; (3) 5.1–10 m;
(6) 10.1–17 m; (8) 17.1–25 m; (9) 4.7–9.1 m; (9) >25 m (Table 4), covering about 61%, 27%,
8%, 3%, and 1%, respectively, of the total study area in the wet scenario (Figure 3a) and
100% for ranking (1) in the dry scenario (Figure 4a).

The following parameters in both scenarios have the same categories, as they are con-
stant over time. The aquifer environment (A) was classified into four rankings:
(3) Granodiorite—Tonalite, Greenstone, and Dacite—Rhyodacite; (4) Andesite; (8) Sand—Silt;
(9) Alluvium (Table 4), covering about 30%, 1%, 56%, and 13%, respectively, of the total
study area (Figures 3c and 4c).

Soil texture (S) was classified into only two rankings: (9) Middle sands and (10) Coarse
sands (Table 4), covering about 76% and 24%, respectively, of the total study area
(Figures 3d and 4d).

Topography (T) was classified into five rankings by percentage: (10) 0–2%; (9) 2–6%;
(5) 6–12%; (3) 12–18%; (1) >18% (Table 4), covering about 33%, 38%, 8%, 10%, and 11%,
respectively, of the total study area (Figure 3a).
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The impact in the vadose zone (I) was classified into three rankings: (4) Granodiorite—
Tonalite, Diorite, and Dacite—Rhyodacite; (6) Andesite; (8) Sand—Silt and Alluvium
(Table 4) covering about 31%, 56%, and 13%, respectively, of the total study area
(Figures 3f and 4f).

Hydraulic conductivity (C) was classified into four rankings: (4) low; (6) moderate;
(8) high; and (10) very high (Table 4), covering about 34%, 41%, 12%, and 13%, respectively,
of the total study area (Figures 3g and 4g).

The DRASTIC method was applied to create seven maps for wet and dry scenarios
(Figures 3 and 4) with rankings of each parameter of Table 4.

3.2. Vulnerability to Pollution of the Guadalupe Aquifer, Application of the DRASTIC Method

Figures 5 and 6 show the vulnerability level maps of the GA aquifer using the DRAS-
TIC method. The vulnerability level scores in the wet scenario, obtained from the model,
showed a unimodal distribution from 82 to a maximum of 202 and those in the dry scenario
from a minimum of 69 to 176. The ranges in these scenarios go from 69–105 (low), 106–146
(moderate), 147–187 (high), and 188–202 (very high). The area corresponding to each
vulnerability class is shown in Table 5.
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Table 5. Area under vulnerability to groundwater pollution in the Guadalupe Aquifer. DVI results in
the wet and dry scenarios.

Class Number Vulnerability DRASTIC Index
Value

Dry Scenario
Area (%)

Wet Scenario
Area (%)

1 Low 65–105 19 3

2 Moderate 106–146 72 72

3 High 147–187 9 24

4 Very high 188–230 0 1

3.2.1. Wet Scenario

In the wet scenario (Figure 5), the predominant vulnerability zones are classified
as moderate according to the resulting map, representing 72% of the GA area (yellow).
The depth and water level variation were important parameters for the application of the
method, as they are dynamic over time. The results show a range of very high and high
vulnerability (red and orange) in the northeastern Calafia area due to the greater water
level depth. Likewise, vulnerability is high along the stream bed, considering that this is
where the significant accumulation of water and higher hydraulic conductivities are found
compared to the rest of the area. It should also be considered that important wells for water
extraction for agricultural irrigation are located near these areas’ streams. The green areas
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represent a low vulnerability; mainly due to the type of semi-permeable to impermeable
geological material (granodiorite, tonalite, or diorite), they are located at the extremes of
the study area.

3.2.2. Dry Scenario

According to the resulting map (Figure 6), only three vulnerability classes are shown,
explained by the fact that the unsaturated zone is quite thick. The low vulnerability category
(19%) is mainly distributed in the south of the aquifer (green color) and in the extreme
zones of the GA, where the geological material of granodiorite and diorite is found and is
absent in the central area of the “El Porvenir and Calafia” zone. However, more than half of
the study area (72%) is classified as moderately vulnerable (yellow color); this category is
distributed along the aquifer but predominates most of the center of “El Porvenir”, except
some areas of the stream. In “Calafia” the moderate category covers the whole center of the
zone. The highest indices are calculated for some parts of the center following the course
of the stream to the south, which are therefore considered to be of high vulnerability (9%,
orange color) due to very permeable areas of coarse sands, high hydraulic conductivity,
and smaller level depths (maximum of 5.8 m for the El Porvenir area) concerning the
other areas.

3.3. Nitrate Concentration (NO−
3 )

In a pollution vulnerability model, analyzing its results with a parameter representing
a potential pollutant is essential. In the present study, groundwater nitrate concentration
data from different sites for the years 2001, 2020, and 2021 were used to validate the
vulnerability of the aquifer based on the application of the DRASTIC method. Table 6
shows the descriptive statistics of the nitrate concentration results.

Table 6. Nitrate concentration (NO−
3 ) in the Guadalupe Aquifer.

Year Number of Samples Concentration NO−
3 (mg L−1)

Min Max Mean Standard Deviation

2001 [44] 27 0.44 115.13 26.56 26.29
2020 33 0.25 131.19 19.90 30.82
2021 28 0.08 128.95 30.74 34.76

At some points of the groundwater samples from wells, the spatial distribution of
nitrate concentrations exceeds the values recommended by the Mexican Official Standard
for water for human consumption NOM-127-SSA1-2021. Concentrations reach maximum
values of up to 131.19 mg L−1. NO−

3 ).
A spatial distribution analysis was carried out, where nitrate concentrations were

classified in categories using the traffic light technique. The criteria used for the creation
of categories were empirically based on the nitrate concentration thresholds established
by the permissible limits for drinking water by the NOM-127-SSA1-2021, half of this limit,
and the minimum detected in the samples analyzed. Table 7 shows the different categories:
good—green from 0.44 to 24.31 mg L−1 (indicates a state of equilibrium and compliance
with the permissible limits established by the standard), regular—yellow from 24.32 to
48.62 mg L−1 (complies with the maximum permissible limits), bad—orange from 48.63 to
97.24 mg L−1 (exceeds the quality indicators for human use and consumption) and very
bad—red from 97.25 to 131.19 mg L−1 (exceeds the permissible limits, in a critical state).

The observed high nitrate concentrations in specific sampled sites are likely attributed
to the infiltration of water combined with fertilizers from the agricultural areas and their
expansion in the Guadalupe Valley and probably also urban wastewaters near the settle-
ments. Further assessment wit nitrogen stable isotopes would be required to further assess
the sources of nitrate.

Areas of high and very high vulnerability indicate groundwater contamination and
could be further worsened by agrochemicals as it is an important agricultural area. Ni-
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trates naturally occur at very low concentrations in groundwater, but an increasing trend
indicates pollution.

Table 7. Nitrate concentration categories according to NOM-127-SSA1-2021 [35].

Color Categories Min Max
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To compare the groundwater system’s pollution state with the vulnerability zones,
we used the concentration of nitrate (NO−

3 ). After overlaying the concentrations with the
vulnerability map for 2001 (Figure 7), only two sites with a “very bad” concentration (red)
are present, i.e., exceeding the permissible limits for water for human use and consumption,
according to NOM-127-SSA1-2021. These sites are located in the center of the El Porvenir
area, where the most predominant activity is agriculture and where, according to the aquifer
contamination vulnerability analysis, it is of moderate vulnerability, bordering the high
vulnerability zone. For the same year, there are ten sites with “fair” nitrate concentrations
(yellow); six in the Calafia area and four in El Porvenir, where three coincide with high
vulnerability zones. Fifteen of them are in the “good” (green) category, and eleven are
located in the Calafia zone, in moderate and high vulnerability areas.
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The distribution and concentration of nitrate in 2020 (Figure 8) show in the center
and southwest of the aquifer, the concentrations of two sites in the “very bad” category
(red), which indicate very high nitrate concentration levels; and one of them is located in
the southwest zone of the Guadalupe stream with a high vulnerability type, and the other
is located between the urban zone and the stream, in the center of the El Porvenir zone,
falling in a moderate vulnerability type. This year there are no nitrate concentrations in the
“bad” category (orange) and seven sites in the regular category (yellow); of these seven,
five are in areas of high vulnerability to pollution, following the course of the stream, and
two fall into moderate vulnerability. The remaining twenty-four samples correspond to
the good category; three of them fall in zones of very high vulnerability to the northeast
of the Calafia zone, twelve samples fall on or near high vulnerability zones, and the rest
randomly fall in moderate vulnerability zones.
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For 2021 (Figure 9), the four categories assigned to nitrate concentration were detected.
Three samples are in the “very bad” category (red); the first is located in the center, between
the stream and the urban area, in an area of moderate vulnerability, and the other two are
located southwest of the stream in an area of high vulnerability, coinciding with some of
them changing negatively in category over time, starting in the area of El Porvenir, until
the end of the stream channel shown in the map, exceeding the permissible limits and
coinciding with a high vulnerability to pollution of the aquifer. Three samples in the “bad”
concentration category (orange) are in or very close to the stream’s course, with a moderate
vulnerability type and one in high vulnerability. On the other hand, seven samples were
found in the “regular” category (yellow); five fall into moderate vulnerability zones and two
are in high vulnerability. Finally, the remaining 15 nitrate concentration samples that are in
the “good” (green) category, which is equivalent to an acceptable nitrate concentration for
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the site, are distributed along the course of the stream, located between the moderate and
high vulnerability zones, and two samples at the limits of very high vulnerability.
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The resulting groundwater vulnerability zones were verified using the AUC (area
under the curve) [59] based on nitrate concentration data for the year 2021. Figure 10
shows the estimated AUC validation curve for the DRASTIC vulnerability map. The AUC
values were 0.597 on the vulnerability category scale. The highest values of the AUC
curve demonstrated that the method applied to predict the moderate category vulnerability
of aquifers has an acceptable fit to the results. However, this is not the case for high-
vulnerability areas. According to information published by [11], water flow direction in the
GA has a general direction from NE to NW, with a focused N-S direction in the Porvenir
zone regions caused by a steep decrease in water table levels due to intense pumping. In this
specific site, categories of moderate and high vulnerability to contamination were observed
(on the course of the Guadalupe stream), as well as high levels of nitrate concentration.
Furthermore, a land use and vegetation map of the GV (Figure 11) shows that there is now
evident correlation between land use and nitrate concentrations for the same year, as well
as the regional distribution of nitrate concentrations for the same year. A much higher
resolution of water samples is required to fully assess factors influencing the distribution
of nitrate concentrations.
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Figure 11. Land use and vegetation in the Guadalupe Valley with nitrate concentrations in 2021.
Prepared by the authors with Google Earth Engine, based on [60].

4. Limitations and Recommendations

Despite its advantages as an integrated approach to assess groundwater vulnerability
across multiple layers, the DRASTIC method has challenges. A significant limitation
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emerges when essential data for aquifer assessment, such as precise aquifer lithology and
vertical hydraulic conductivity, are unavailable. Information is necessary to ensure the
accuracy of the DRASTIC assessment. Another consideration is the method’s reliance
on assigned weights and numerical values for each indicator, introducing subjectivity
into the results. The method’s applicability is context-dependent, demanding a nuanced
understanding of site-specific characteristics, particularly the primary activities in the area
that could influence the aquifer. In our specific case, a key constraint lies in the availability
of up-to-date hydrogeological data. Emphasizing these limitations underscores the need
for continuous efforts to enhance data quality and availability in the GA. Furthermore, the
transport of contaminants, like nitrate, can be influenced by microbial activity, geochemical
reactions, and/or subsurface heterogeneity, and their possible sources such as fertilizers,
wastewater, or manure need to be assessed in more detail. All these biases and gaps
in information need to be considered in order to increase the reliability on vulnerability
methods used for management purposes. Future research should focus on monitoring and
mitigating sources of nitrate pollution and exploring additional parameters to improve the
accuracy of vulnerability assessments. In potentially vulnerable locations, preventive and
management measures must be taken in the aquifer through restrictions on groundwater
abstraction and moderation of agrochemical use in predominantly agricultural regions. It is
also essential to closely monitor groundwater quality (on a higher resolution) and variation
to generate detailed information for further studies in the AG.

5. Conclusions

The resulting DRASTIC map of vulnerability to groundwater pollution of the study
area for two scenarios (wet and dry) revealed that there are different zones of vulnerability.
depending mainly on the depth of groundwater level and the variation of groundwater
level from one season to another, also obtaining a significant variation in the values of the
index when the zones have different geological, sedimentological, slope, and conductivity
characteristics. Specifically, the pollution vulnerability map in the wet scenario revealed
that alluvial areas with shallow depths (where groundwater is closer to the land surface)
have the highest vulnerability indices. In contrast, areas with steeper slopes, less porosity,
or shallower permeable material and deeper depths have the lowest vulnerability indices.

With the application of the DRASTIC method, “very high” vulnerabilities were found
in the northwest area of Calafia with dimensionless values from 188 to 202. According
to the method, the maximum possible value would be 230. Although the maximum
value of 230 was not reached in any scenario, a worse scenario (more areas of “very high”
vulnerability) could still occur if groundwater levels were to increase, resulting in a lower
thickness in the vadose zone. The results indicate varying degrees of vulnerability in
the Guadalupe Valley aquifer. High vulnerability zones were identified in areas with
shallow groundwater depth, permeable soils, and high nitrate concentrations. These
zones coincide with regions of intense agricultural activity, suggesting a direct relationship
between anthropogenic practices and aquifer contamination. In contrast, low-vulnerability
areas were characterized by deep groundwater levels, impermeable soils, and minimal
nitrate concentrations. According to the method and the results of the vulnerability map,
the determining indicators to indicate possible areas prone to contamination are the depth
level and the geology in the vadose zone.

In the Calafia zone, to the northeast of the aquifer, zones of “very high” vulnerability
to pollution were found; however, high concentrations of nitrates were not found because it
is one of the leading recharge zones with greater level variation, which allows the available
water to serve for the diffusion and dilution of contaminants by a greater flow velocity, as
it has high hydraulic conductivity and short residence times. The zones with very high
vulnerability have a shallower depth (0.8 to 4.6 m), shallow slopes (0 to 6%), and alluvial
material to the northeast of the aquifer.

The vulnerability maps of the GA provide information on the areas susceptible to
pollution, considering the scenarios (wet and dry), which coincide mostly in the areas of
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high and very high vulnerability, with a tendency to increase in areas of vulnerability. As
for water quality, which was compared taking into account the concentration of nitrate, its
behavior is increasing over time, significantly increasing in areas of high and moderate vul-
nerability, which indicates the presence of pollutants of anthropogenic origin. The site with
the highest nitrate concentrations for the years 2020 and 2021 (131.19 and 128.95 mg L−1,
respectively) is located in the center of the aquifer, very close to the stream, where there are
maximum water table depths of 9 m and minimal level variation, in the porous medium
there is alluvium, medium to coarse sands and silt, and topographic slopes of 0 to 6%
predominate. These characteristics indicate a site prone to high infiltration of pollutants
and long residence times.

Integrating the DRASTIC method with nitrate analysis provided a local understanding
of the aquifer’s vulnerability to pollution. The results can be relevant inputs for land-use
planning, groundwater management strategies, and the implementation of preventive
measures to safeguard the water resources of the Guadalupe Valley.
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