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Abstract: The vadose zone acts as a natural buffer against groundwater contamination, and thus,
its attenuation capacity (AC) directly affects groundwater vulnerability to pollutants. A regression
model from the previous study predicting the overall AC of soils against diesel was further expanded
to the GIS-based overlay-index model. Among the six physicochemical parameters used in the
regression model, saturation degree (SD) is notably susceptible to climatological and meteorological
events. To accommodate the lack of soil SD historical data, a series of infiltration simulations were
separately conducted using Phydrus code with moving boundary conditions (i.e., rainfall records).
The temporal variation of SD and the resulting AC under transient conditions are captured by
building a space–time cube using a temporal raster across the study area within the designated time
frame (1997–2022). The emerging hot spot analysis (EHSA) tool, based on the Getis–Ord Gi* and
Mann–Kendall statistics, is applied to further identify any existing pattern associated with both SD
and AC in both space and time simultaneously. Under stationary conditions, AC decreases along
depth and is relatively lower near water bodies. Similarly, AC cold spot trends also show up near
water bodies under transient conditions. The result captures not only the trends across time but
also shows the exact location where the changes happen. The proposed framework provides an
efficient tool to look for locations that have a persistently low or a gradually decreasing ability to
attenuate diesel over time, indicating the need for stricter management regulations from a long-term
perspective.

Keywords: attenuation capacity; emerging hot spot analysis; GIS; groundwater vulnerability; overlay-
index model

1. Introduction

Despite the numerous efforts [1–3] that have been taken to address the fate of various
contaminants in the vadose zone, it is still inadequate to achieve a better understanding
of natural attenuation therein due to the non-stationary nature. Process-based models
(e.g., HYDRUS) are available for estimating the contaminant migration to the groundwater
through a vadose zone, which solves Richard’s equation to estimate the water flow under
unsaturated conditions with accompanying contaminant transport [4]. However, it is diffi-
cult to extend their application to a large scale due to the heterogeneity in the subsurface
properties and the computational cost. On the other hand, the GIS-based spatial model is
suitable for large-scale estimation and has been often used for groundwater vulnerability
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assessment. One of the most widely used models, DRASTIC [5] employs seven hydrogeo-
logical properties as the input parameters to assess the intrinsic groundwater vulnerability.
Unfortunately, however, it failed to include the natural attenuation of contaminants in
a vadose zone [6–8]. A previous study by Woo et al. (2022) addressed the effect of soil
physicochemical properties on the overall attenuation capacity (AC) of a vadose zone soil
against diesel, a type of refined petroleum product [9]. They found that six parameters
consisting of two chemical properties and four physical properties, including soil moisture,
play an essential role in soil’s natural AC against diesel. Based on multiple linear regression
analyses, an empirical relationship between the soil properties and the diesel AC of a
vadose zone was suggested. Among those factors, however, the soil moisture is susceptible
to temporally varying climatological and meteorological events.

The first few centimeters of surface soils have been reported to be affected mostly by
climate change due to the complex interaction between the atmosphere and lithosphere
near the ground surface, especially in relation to soil moisture [10–13]. The previous studies
also mentioned the seasonal effects of meteorological events on the soil. Moreover, climate
change should affect meteorological phenomena and alter global precipitation patterns,
and thus, assessing its effect on AC along with the potential SD shifts might give a new
understanding of the groundwater vulnerability to the contamination. However, soil SD
data are not readily available. One way to obtain the SD is to simulate the soil water content
on the basis of the climatological and meteorological data and calculate the SD on the basis
of the soil properties. In this study, the spatiotemporal distribution of diesel AC in the city
of South Korea (Namyangju city) was estimated with a focus on the variation of SD upon
meteorological and climatological events.

Another problem is capturing the changes in SD and AC over time and space. Tempo-
ral changes are usually compared with snapshots between time snaps, e.g., forest cover-
age [14]. While comparing different periods can be useful, it may not capture the nuances
of changes that occur between those periods. These in-between trends may not be fully
captured by the comparison. It also cannot show where the areas are experiencing more or
less changes over time. The emerging hot spot analysis (EHSA) tool in ArcGIS, developed
by ESRI, provided a robust statistical assessment that simultaneously gives back the spatial
and temporal hot and cold spot trend [15]. Even though EHSA has been applied in disease
outbreaks [16,17], accident occurrence [18], flooding and drought [19–21], forest loss [22],
and conservation monitoring [23,24], its application in soil vulnerability especially on va-
dose zone AC has not been recorded. Therefore, incorporating EHSA into the vulnerability
study will provide a new way to assess and understand the dynamics of soil SD, AC, or
other general vulnerability assessments.

The SD profile was obtained from the numerical simulation with moving boundary
conditions, and subsequently, EHSA was performed to capture the temporal trends of both
SD and AC within the designated time frame (1997–2022). However, we would like to
note that the results we are presenting in this paper are solely for illustrative purposes
regarding how incorporating temporal data with EHSA can enhance our understanding of
environmental vulnerability.

2. Materials and Methods
2.1. Empirical Equation for Diesel Attenuation Capacity

Woo et al. (2022) developed an empirical relationship for determining the diesel
attenuation capacity of a vadose zone with several soil properties [9]. Through laboratory
experimentation and regression analysis, six parameters were identified as key factors
affecting the attenuation capacity of a vadose zone to degrade diesel contamination therein.
These parameters include soil organic matter content (OM), total phosphorus (TP), coeffi-
cient of uniformity (Cu), van Genuchten’s n parameter (n), soil saturation degree (SD), and
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the soil particle size at which 30% of the material is finer (D30). The vadose zone attenuation
capacity in this study was calculated using the equation below:

AC = OMR + 2.70TPR − 0.82D30R + 0.93CuR + 0.82nR − 0.56SDR (1)

where the subscript R represents the rated value based on min–max data normalization
followed by an evenly spaced binning of the data (Table 1). The OM in the soil is a
significant factor that determines the biodegradation of organic contaminants such as
diesel, which primarily consists of hydrophobic materials that can retain them as well;
microbial growth and reproduction use those contaminants as a source of carbon and
energy, leading to biodegradation of diesel in the soil [25]. Soils with higher OM have
a greater capacity to retain and break down diesel. In addition, phosphorus is a crucial
nutrient for microbial growth in soil, alongside carbon and nitrogen. Microorganisms use
phosphorus to synthesize cellular components, such as nucleic acids [26].

Table 1. Parameter rating classification ranges.

Start End Rating

0.5 1.5 1

1.5 2.5 2

2.5 3.5 3

3.5 4.5 4

4.5 5.5 5

Soil grading is determined by the coefficient of uniformity (Cu), which is the ratio of
D60 to D10. A higher Cu means that the soil is better graded, with a more even composition
of particles of different sizes. A uniform soil sample has particles with similar dimensions,
resulting in a surface area that may be larger or smaller depending on the governing particle
size. D30, which represents the size of soil particles at which 30% of the soil (by weight) is
finer than that size, supports the effect of soil particle size distribution on the overall AC.
Soil with coarse particles and poor grading has a higher D30 value, which is closer to or
within the range of sandy soil. Lower Cu paired with higher D30 indicates bigger pore sizes,
which could promote the volatilization of diesel components. Bigger pores also provide less
surface area for attachment and higher mobility for microbes to access substrates, electron
donors/acceptors, and nutrients. D30 can therefore provide additional information about
pore size and soil uniformity in the area under study.

A min–max data normalization was applied, as shown in Equation (2), and the nor-
malized data were classified into five rating classes with equal intervals (Table 1). The
minimum and maximum values used for each parameter were the global minimum and
maximum values across the 100 cm soil depth at the area of interest considered in this
study. The min–max values of each parameter can be found in the Supplementary Materials
(Table S1).

Xi =

(
X − Xmin

Xmax − Xmin

)
× 5 + 0.5 (2)

All these processes were performed in R studio [16], and the outputs are temporal
SD and AC raster files with a spatial resolution of 100 m × 100 m. These raster files
were then used as inputs in ArcGIS [27] for building space–time cubes and running EHSA
(Section 2.3).

2.2. Parameter Estimation and Ratings

This study used publicly available data for the parameter estimation and ratings.
The Korean Rural Development Administration (RDA) provides soil maps as vector and
gridded data, which include information on soil series, soil texture, parent materials, and
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more. The laboratory test data sheets, which show the soil physicochemical characteristics,
like sand, silt, clay (SSC) distribution, soil organic carbon (SOC), bulk density, water content,
and pH, are also provided. Table 2 summarizes the data used to create thematic layers in
this study.

Table 2. Thematic layers used for attenuation capacity analyses.

Thematic Layers Layer Information Types Publisher (Source)

Soil Series Map South Korea RDA Database
(upon request) Vector

Korea RDA
(http://soil.rda.go.kr/

(accessed on 9 June 2022))

Organic Matter Content Estimated from Soil Organic
Carbon Content Tabular

Total Phosphorous Estimated from Soil Organic
Carbon Content Tabular

Particle Size Distribution South Korea RDA Database Tabular

van Genuchten’s n Estimated from Particle Size
Distribution Tabular

Saturation Degree Simulated using Phydrus Tabular -

Soil organic matter (OM) content was calculated by multiplying soil organic carbon
(SOC) content and the van Bemmelen factor (Equation (3)) [28]. This conversion assumes
that 58% of OM is in the form of SOC [28,29].

OM = 1.724 × SOC (3)

Total phosphorus in the soil was estimated on the basis of the relationship between TP
and SOC described by Hou et al. (2018) for natural terrestrial ecosystems [30].

In the laboratory test data sheet published by Korea RDA, the particle size distribution
of soil is divided into sand, silt, and clay. Sand is classified again as very fine, fine, medium,
coarse, and very coarse. Silt and clay are divided again as fine and coarse. These subgroups
are presented as the percent fraction of a particle size range. The particle size defining
10%, 30%, and 60% finer soil particles in a particle size distribution curve is represented as
D10, D30, and D60, respectively. Since the data range is a continuous scale from finest to
coarsest, interpolation is used to find the values of D10, D30, and D60. D30 is used directly
in the attenuation capacity model, while D10 and D60 are part of uniformity estimation.
The uniformity coefficient is a measure representing how well the soil is graded and can be
obtained by the ratio of D60 to D10 (Equation (4)).

Cu =
D60

D10
(4)

Rosetta is a software that adopts a hierarchical pedotransfer function (PTF), which
allows the estimation of water retention parameters, including van Genuchten’s (VG’s)
n [31–33]. HYDRUS-1D (Ver. 4.20) is a popular numerical simulator used in the field of
soil physics that incorporated a simplified version of Rosetta in its module [34]. This study
used Rosetta PTF in HYDRUS-1D to estimate the VG’s n on the basis of the sand, silt,
and clay content for each soil series. The usage of only SSC distribution for n estimation
was mainly due to data limitations regarding bulk density and water content (soil field
moisture), which were not available for the entire soil series.

2.3. Estimation of Temporal Changes in Soil Moisture and Resulting AC

In order to capture the temporal variation of the attenuation capacity according to
the saturation degree, an infiltration simulation was conducted to obtain water content
profiles using a Python-based HYDRUS-1D module, Phydrus [35], under moving boundary

http://soil.rda.go.kr/
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conditions. Historical meteorological data in the model city for 26 years (1997–2022) were
obtained from the KMA (Korea Meteorological Administration) (Figure S1). The input
data for the simulation included precipitation, atmospheric temperature, and soil profile
(lithology and thickness). The outputs were the daily water content data at ten different
depths (each 10 cm intervals along 100 cm depth) for the 46-soil series considered in the
study (Figure S2). SD can be calculated from soil water contents as follows (Equation (5)):

SD =
θ − θr

θs − θr
(5)

where θ represents water content and θr and θs are the residual and saturated water
contents, respectively. Upon the completion of the SD series, the temporal AC was then
calculated using Equation (1), and raster files were built using R based on the SD data that
were prepared. In this study, we focus on seasonal trends; thus the output raster is the
averaged seasonal value of AC and SD for each year during the period 1997–2022.

2.4. Emerging Hot Spot Analysis

The process started with building space–time cubes (STCs), 3D visualizations of a
geographical phenomenon. The horizontal plane of the cube represents the spatial context
of the data (longitude and latitude), while the vertical axis represents time [17]. Each data
point is treated as a bin and contains the attenuation capacity information for an exact
location at a specific time. A z-score, p-value, and hot spot classification calculated on the
basis of the Getis–Ord Gi* statistics will be added to each bin, which is then reanalyzed
using Mann–Kendall statistics, which has been widely used in temporal trend analysis
within hydrologic and climatological studies [36–40]. The outputs are the hot/cold spot
trend over space and time. Within the context of this study, a hot spot is where an area
has a significantly higher SD and AC compared to its surroundings, and vice versa for the
cold spot. The spatial resolution applied in this study is 100 m × 100 m combined with
various temporal resolutions. In addition to the AC, we also performed space–time pattern
mining (STPM) for SD for further comparison and analysis. Figure 1 illustrates the overall
workflow in this study.
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The site can be categorized into 17 patterns, namely persistent hot/cold spot, new
hot/cold spot, consecutive hot/cold spot, intensifying hot/cold spot, diminishing hot/cold
spot, sporadic hot/cold spot, oscillating hot/cold spot, historical hot/cold spot, and no
pattern detected [17,19–21].
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3. Results and Discussion
3.1. Soil Water Content Simulation and Saturation Degree Estimation

Several data collected from Korea RDA and KMA were prepared as inputs (precipi-
tation, soil properties, soil profile, etc.) for the infiltration simulation using Phydrus. The
output of the simulation is daily water content for the whole simulation period at ten
different depths (10–100 cm in 10 cm increments). These data were used to calculate daily
soil SD, which was then used to calculate temporal AC. It has to be noted that Phydrus
also has its limitations in applying the HYDRUS-1D standard code. One notable setback is
that Phydrus cannot handle the meteorological model yet; therefore, the simulation will
only be influenced by precipitation and will disregard the effects of temperature and/or
radiation. In addition, the HYDRUS-1D standard code itself does not support freezing and
thawing processes, which should affect the water flow simulation results in late fall (as
temperature drops), winter, and early spring (as temperature rises and induces thawing).
For these reasons, as well as the previous reports on the different effects of meteorological
events and climate change according to seasons, only the long-term trend of SD and AC in
summers will be discussed.

3.2. SD and AC Distribution under the Stationary Conditions

Before conducting the temporal analysis, the equation for AC estimation (Equation (1))
was validated with the AC calculated from the six parameters of a random area of soil
within the study area (text S1). Vulnerability studies are usually performed as a static
parameter and ignore the fact that some stressors might constantly change over time.
Originally, the AC estimation by Woo et al. (2022) is also designed to assess vadose zone
vulnerability without considering the possible changes in AC due to SD changes as a
parameter sensitive to meteorological dynamics [9]. By applying Equation (1) as it is in a
GIS environment using a static one-value SD, the resulting spatial distributions at 10 cm,
50 cm, and 100 cm are presented in Figure 2.
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(c) 100 cm.

Note that the AC maps show distinct patterns through the depth. In general, the
topsoil showed higher AC than the one from the subsoils. In addition, ACs near water
bodies were relatively low due to the uneven distribution of constituting parameters; OM
and TP tend to have lower ratings near water bodies, while SD is higher. As both OM and
TP have the highest weight in AC estimation, the lower value of these parameters results
in a lower AC. In addition to that, SD has a negative effect on AC, and thus, a higher rating
in SD will further decrease the resulting AC (Figure S3).
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3.3. SD and AC Variation under Transient Conditions

As aforementioned, SD is a parameter that is constantly changing, which might also
affect the overall AC in Namyangju. These changes can be assessed by comparing the
SD and AC between time snaps, e.g., 1997 vs. 2022, January vs. June, etc. This kind
of comparison is able to present the difference between time snaps, yet it is unable to
incorporate the changes happening in between the time snaps and thus might yield a less
accurate trend happening over time. By incorporating EHSA into the vulnerability analysis,
such problems can be addressed. The end result of applying EHSA is that the overall
relative trend of SD and AC in both space and time is obtained. Instead of comparing
between time snaps (e.g., 1997 vs. 2022), EHSA considers the whole time period (e.g.,
1997–2022) and reports back the trend happening over the time period.

The EHSA results of both SD and AC at 10 cm, 50 cm, and 100 cm are presented
in Figure 3. A visual comparison between images in Figure 3 shows that at a depth of
100 cm, there seems to be a larger number of areas corresponding to persistent SD trends,
especially for the cold spots. Contrary to the depth of 100 cm, the 50 cm depth has the
least persistent SD trends. At both 10 cm and 50 cm, the pattern of SD is dominated by
oscillating trends. However, EHSA results for AC show a more prominent persistent trend
at 50 cm, while the 100 cm depth is dominated by oscillating and sporadic trends. Cold
spots also seem to consistently show up near water bodies (southern part of Jinjeop-eup,
eastern part of Toegyewon-myeon, and western part of Jingeon-eup), the western part of
Namyangju (Byeollae-dong), and Sudong-myeon. Table 3 provides data on the percent
area of each trend pattern at each depth for both SD and AC (based on Figure 3). Around
16% correspond to both persistent cold and hot spots at a 100 cm depth, while only ±10%
and ±3% correspond to the persistent trends at the 10 and 50 cm depths, respectively. This
result agrees with the general knowledge that water content is less transient at a deeper
level. It is also shown that around 63% of the area at 10 cm and 62% of the area at 50 cm
show transient oscillating and sporadic trends compared to only ±50% at 100 cm. However,
it has to be highlighted that fewer areas with transient trends and a domination of persistent
trends should be expected at a deeper level. The domination of resulting transient patterns
most probably corresponds to the varying soil porosity along the depth.

Furthermore, we can investigate the effect of temporal changes of SD on AC in the
summer season by comparing the overlapping areas of the same trend between SD and AC
(Figure 3). The expected ideal relationship between SD and AC is a negative one, where
the cold spot area in SD will return to a hot spot area in AC. Based on the overlapping area
presented in Figure 4, only around 6%, 3%, and 13% of the areas return the ideal opposite
relationship between SD and AC at depth of 10, 50, and 100 cm, respectively.
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Figure 3. Emerging hot spot analysis results for summer (a1–a3) saturation degree (SD) and (b1–b3)
attenuation capacity (AC) in Namyangju at (a1,b1) 10 cm, (a2,b2) 50 cm, and (a3,b3) 100 cm.

Table 3. Area (%) of emerging hot spot (HS) and cold spot (CS) trends of saturation degree and
attenuation capacity in summer at each depth.

Pattern
Saturation Degree Attenuation Capacity

10 cm 50 cm 100 cm 10 cm 50 cm 100 cm

Oscillating CS 27.94 29.42 17.74 3.90
Sporadic CS 7.20 4.73 12.07 2.87 3.02 4.22

Diminishing CS 7.06 0.004 5.28
Persistent CS 1.81 9.62 18.25 32.09 7.13

Intensifying CS 7.52 4.42 0.50
Intensifying HS 37.55 19.17 12.10

Persistent HS 8.90 3.37 6.80 11.61 27.51 1.03
Diminishing HS 0.03

Sporadic HS 2.90 3.68 7.40 0.64 1.35 32.28
Oscillating HS 25.24 23.75 12.73 20.49

The ideal relationship here is when a persistent cold spot in SD returns as a persistent
hot spot in AC or an intensifying hot spot in SD returns as an intensifying cold spot in AC,
and so forth for the other trends. Despite that, the generally negative correlation between
SD and AC still pertains to the overall cold spot and hot spot groups with 46%, 39%, and
42% area (at 10, 50, and 100 cm respectively), showing an overall trend where cold spot
SD comes back as hot spot AC and vice versa. In addition, it is also shown that there is
about 17% of the area at each depth level that denies the relationship between SD and AC.
Although further investigation of the underlying reason for such trends is out of the scope
of this study, it is most likely due to the other five governing factors in AC quantification
overpowering the effect of SD in the final results.

In general, by incorporating both water flow simulation and EHSA, more insight into
vadose zone vulnerability dynamics can be observed. If only a static or single value of SD
is used as an input in the attenuation capacity of the vadose zone against diesel, a spatial
distribution of areas with a relatively higher or lower AC might give some information and
insight into where contamination mitigation and treatment strategies or stricter policies
regarding diesel might be needed. Adding EHSA to such vulnerability studies provides
an extra urgency factor, which helps in prioritizing areas with notable diminishing hot
spots and/or intensifying cold spot trends, as both indicate a worsening vulnerability (to
diesel) status over the period of study. EHSA will also help in determining which areas
are improving (noted by an intensifying hot spot and diminishing cold spot), which areas
require monitoring over time due to a persistent cold spot trend, and which areas are
relatively more resilient to diesel contamination (persistent hot spot).
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4. Conclusions

This study applied an empirical model describing soil AC against diesel within a GIS
environment. Six governing parameters, notably SOM, TP, D30, Cu, n, and SD, were used
to determine the spatial distribution of AC in Namyangju. Since SD is highly sensitive
to meteorological and climatological changes, the temporal changes (and trends) of both
SD and the resulting AC could be captured by incorporating EHSA into the designated
time frame (1997–2022). For this purpose, infiltration simulation using Phydrus was
performed to obtain simulated historical soil water content subsequently used in SD and
AC estimations over time. By applying EHSA, the trends of SD and AC over space and
time could be effectively identified. Areas with intensifying cold spots and diminishing hot
spots that correspond to the decreasing AC might need stricter policies regarding diesel
contamination prevention and mitigation strategies (e.g., areas near water bodies). On the
other hand, areas with intensifying hot spots and diminishing cold spots that correspond
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to the increasing AC might not need a policy that is as strict. The overlapping analysis
between SD and AC revealed that the inherent negative correlation between SD and AC
still pertains to the overall cold spot and hot spot groups with a small exception (ca. 17%)
in which the SD and AC are proportional to each other, presumably due to the uneven
distribution of the other five governing factors. Another limitation in this study is the
difficulty of model calibration due to the fact that the AC is not directly measurable from the
field. Due to this limitation, we focused more on proposing the conceptual framework in a
way that incorporates EHSA in vulnerability studies to statistically analyze the vulnerability
trend in space and time simultaneously and continuously.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/hydrology11020019/s1, Figure S1: Daily precipitation (mm)
record in Namyangju from 1997–2022; Figure S2: 46 soil series in the studied area; Figure S3: Rated
static parameter spatial distribution maps (a) OM, (b) TP, (c) D30, (d) Cu, (e) n in Namyangju at
(1) 10 cm, (2) 50 cm, (3) 100 cm; Figure S4: left) Sampling point (red dot), right) Sampling process;
Figure S5. The sampling point (red dot) shown in the AC map and the corresponding AC value
generated from public data; Table S1: Minimum and maximum values for parameters and the
attenuation capacity before normalization; Table S2: Parameter rating, weight, and AC of field
sample; Text S1.
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