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Abstract: Northeast Brazil (NEB), particularly its semiarid region, represents an area highly suscepti-
ble to the impacts of climate change, including severe droughts, and intense anthropogenic activities.
These stresses may be accelerating environmental degradation and desertification of soil in NEB. The
main aim of this study was to gain geospatial insights into the biophysical parameters of surface
energy balance and actual evapotranspiration on a multi-temporal scale, aiming to detect and analyze
the spectral behavioral patterns of areas vulnerable to degradation processes, based on thematic
maps at the surface, for NEB and mainly the semiarid region of NEB from 2000 to 2019. Geospatial
data from 8-day MODIS sensor products were used, such as surface reflectance (Terra/MOD09A1
and Aqua/MYD09A1), surface temperature (Terra/MOD11A2 and Aqua/MYD11A2), and actual
evapotranspiration (Terra/MOD16A2 and Aqua/MYD16A2), version 6. Therefore, in this study,
pixel-to-pixel values were processed by calculating the average pixel statistics for each year. From
the reflectance product, digital processing of the surface albedo and spectral vegetation indices
was also carried out, using computational programming scripts and machine learning algorithms
developed via the Google Earth Engine (GEE) platform. The study also presents a seasonal analysis
of these components and their relationships over 20 years. Through vegetation indices and statistical
correlations, a new predictive model of actual evapotranspiration was developed. The quantitative
and spatiotemporal spectral patterns of the parameters were assessed through descriptive statistics,
measures of central tendency and dispersion, and statistical error analyses and correlation indices.
Thematic maps highlighted the pixel-to-pixel results, with patterns of high temperature distribution
mainly in the central and northeastern part of NEB and the semiarid region of NEB, highlighting
the formation of persistent heat islands over time. Meanwhile, in these areas, the maps of actual
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evapotranspiration showed a drastic reduction due to the lesser availability of energy. Over time, the
semiarid region of NEB presented areas with little and/or no vegetation cover, which were highly
well-defined between the years 2012 and 2019, confirming that these areas are extremely vulnerable
to degradation and desertification processes due to significant loss of vegetative and water resilience.
The components of energy balance were highly interconnected to climatological and environmental
conditions, showing the severe results of drought and accentuation of the water deficit in NEB,
presenting a greater condition of aridity in the semiarid region of NEB over time.

Keywords: climate variability; water deficit; severe drought; remote sensing; biophysical
parameters; evapotranspiration

1. Introduction

The changing conditions for semiarid and arid regions at global and regional levels
must be constantly monitored and updated due to the accelerated increase in these areas,
causing various imbalances and scarcity problems [1,2]. At a global level, the intensification
of extreme climate change events mainly affects rainfall rates, driving severe droughts. In
addition, the impacts caused by human activities also accelerate and lead to significant
changes [3–6], with emphasis for semiarid areas of Brazil, such as the Northeast Region
(NEB) and Brazilian Semiarid Region, where studies on the detection of vulnerabilities
related to environmental degradation processes and soil desertification, based on radiation
and energy balance components, help to understand the dynamics of these factors over
time [7–16].

Environmental stresses, such as the increase in desertified regions and degraded areas
within irrigated perimeters, are frequently observed in the context of the BSR [17–23].
These tensions are predominantly caused by anthropogenic and natural actions, resulting
in soil degradation and loss of agricultural land, especially in the BSR, which is inherently
sensitive to erosive processes due to its sparse vegetation and concentrated precipitation
regime [24–27]. Additionally, these phenomena impact the microclimate in various loca-
tions through biophysical parameters and energy flows [28]. In these areas, hydrological
processes undergo changes, such as alterations in water infiltration and storage capacity,
influencing vegetation development [29].

Specifically, for regions of NEB, besides being historical, droughts have been frequent,
providing extreme and highly dynamic climatic and hydrological conditions [13,14,30–34]. It is
noteworthy that NEB and its sub-regions are associated with various large-scale and complex
climatic phenomena, characterized by a set of meteorological phenomena and climatological
conditions that cause instability in rainfall [9,35–43]. Factors such as drought, the condition
of semiaridity, and pronounced water deficit are reflections of climatic variability (e.g., high
variability and lack of rain for most of the year), where the precipitation is generally sparse in
space and time, of high intensity and short duration [15,32,33,44–46].

NEB has an economy mainly based on agricultural activities, the service sector, indus-
try, and tourism, accounting for an average of 13.5% of Brazil’s gross domestic product
(GDP) between 2002 and 2017. This positions it as the third most participative region
among the larger regions in the country [47]. Nevertheless, a substantial portion of the
NEB area depends on and lacks the necessary conditions for meaningful and participatory
action planning, as well as effective water and soil management. This shortfall significantly
hinders its developmental potential, ultimately affecting the quality of life of the local pop-
ulation [16,34]. NEB has predominantly the Caatinga biome, located in the BSR, considered
the most populous semiarid region in the world. In addition to the effects of climate change,
anthropogenic pressures have been intensifying soil degradation and biodiversity loss over
time. In recent decades, the native vegetation of the Caatinga has been replaced mainly
by pasture areas, rainfed agriculture, and irrigated perimeters [25,34,48–50]. Therefore,
there is a need to expand, update, and define the patterns of its biophysical conditions for



Hydrology 2024, 11, 32 3 of 23

more efficient decision making, thus mitigating the effects of environmental changes and
socioeconomic impacts over time.

It is necessary to understand the processes of surface energy balance, as well as to
comprehend the spectral behavioral pattern of vegetation through biophysical parame-
ters and energy fluxes, such as vegetation indices, albedo and surface temperature, and
mainly evapotranspiration. These aspects are fundamental for adequate planning of water
and soil conservation projects [11,14,15,26,28,51]. In this regard, research focused on the
development and improvement of models of the evapotranspiration of native vegetation
and agricultural areas stands out [12,49,52–54]. It is essential for watershed management
and widely necessary for climatological, meteorological, and hydrological modeling, as
it has a direct influence on the hydrological cycle and water availability and is associated
with land cover and land use (LULC) conditions and patterns. Evapotranspiration is also
strongly linked to irrigated agriculture, being essential for the management and adequate
dimensioning of irrigation projects in a sector that demands and consumes high water
capacity. For beyond this planning, there are more effective and sustainable management
measures for water resources in arid and semiarid regions [11,23,50,54–57].

The parameters of albedo and surface temperature are crucial mainly because they are
associated with LULC. In other words, they can serve as sensitive indicators of the changes
in vegetation cover, as well as land use and occupation. These parameters are influenced
by alterations in the global, regional, and local climate, such as climate change events and
the effects of drought [21,58,59].

Studying LULC spatiotemporally is essential, and the use of geotechnologies associ-
ated with the Geographic Information System (GIS) represents significant advancements
in understanding the changing conditions in NEB. In this context, orbital remote sensing
techniques stand out as efficient tools for detecting spectral responses, capable of quanti-
fying and assessing climatic and environmental conditions. Overall, these technologies
provide effective support in earth sciences research applications. Remote sensing yields
results through products extracted from satellite data, such as those obtained from the
Moderate Resolution Imaging Spectroradiometer—MODIS [12,15,18,44,50,56,60–62]. For
example, the GEE platform of GIS operates with the applicability of cloud-based digital pro-
cessing, using algorithms, machine learning operations, and computational mathematical
modeling [63], offering effective applications at low operational cost [14].

With the need for further advancements in this regard, it is important to explore new
tools, methods, and practical technologies to meet demands such as the absence of large-
scale and over time environmental and hydrological data. The objective of this research
is to enhance the spatiotemporal monitoring of biophysical conditions in NEB through
the high applicability of GIS modeling and remote sensing climatic and environmental
products from the MODIS sensor, gaining geospatial insights into the biophysical param-
eters of surface energy balance and actual evapotranspiration on a multi-temporal scale,
aiming to detect and analyze mainly the spectral behavioral patterns of areas vulnerable
to environmental degradation processes in Northeast Brazil, with a focus on the semiarid
region of NEB, from 2000 to 2019.

2. Materials and Methods
2.1. Study Area Characterization

The study area encompasses the Northeast Region of Brazil (NEB), including the
territorial limits of the semiarid region within the Northeast Region. NEB is located in
geographic coordinates between parallels 1◦ S and 18◦ S latitude and between meridi-
ans 34◦ W and 48◦ W longitude, covering an approximate area of 1,551,992 km2, which
represents 18.24% of the national territory. The estimated population is 57,374,243 inhabi-
tants, according to the demographic census of 2020, making it the second most populous
region in Brazil [64]. The more specific region of this study, the semiarid region of NEB,
includes a total of 1171 municipalities, with an estimated population of approximately
26,378,043 inhabitants, and encompasses a total territorial extension of 1,006,778 km2,
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which is distributed across nine states of NEB-Brazil (Figure 1), including Alagoas—AL;
Bahia—BA; Ceará—CE; Maranhão—MA; Paraíba—PB; Pernambuco—PE; Piauí—PI; Rio
Grande do Norte—RN; and Sergipe—SE [65].

Hydrology 2024, 11, x FOR PEER REVIEW  4  of  25 
 

 

34° W  and  48° W  longitude,  covering  an  approximate  area  of  1,551,992  km2, which 

represents  18.24%  of  the  national  territory.  The  estimated  population  is  57,374,243 

inhabitants,  according  to  the demographic  census of  2020, making  it  the  second most 

populous region in Brazil [64]. The more specific region of this study, the semiarid region 

of  NEB,  includes  a  total  of  1171  municipalities,  with  an  estimated  population  of 

approximately  26,378,043  inhabitants,  and  encompasses  a  total  territorial  extension  of 

1,006,778 km², which is distributed across nine states of NEB‐Brazil (Figure 1), including 

Alagoas—AL; Bahia—BA; Ceará—CE; Maranhão—MA; Paraíba—PB; Pernambuco—PE; 

Piauí—PI; Rio Grande do Norte—RN; and Sergipe—SE [65]. 

 

Figure  1.  Spatial  location  of  the  study  area,  highlighting  the Northeast Region  of Brazil  (NEB) 

through the characteristics of altimetry, with an emphasis on the semiarid region of NEB. 

The map also highlights the elevation (in meters) of NEB using the Digital Elevation 

Model  (DEM)  derived  from  the  Shuttle  Radar  Topography Mission  (SRTM)  project, 

ranging from 0 to 1877 m, with the yellow and green color tones comprising areas of low 

and intermediate elevation, and the blue color scale highlighting the highest elevations in 

the Northeast  Region  (Figure  1).  The  SRTM  data  are  provided  by  the United  States 

Geological Survey (USGS) and the Brazilian National Institute for Space Research (INPE), 

Figure 1. Spatial location of the study area, highlighting the Northeast Region of Brazil (NEB) through
the characteristics of altimetry, with an emphasis on the semiarid region of NEB.

The map also highlights the elevation (in meters) of NEB using the Digital Elevation
Model (DEM) derived from the Shuttle Radar Topography Mission (SRTM) project, ranging
from 0 to 1877 m, with the yellow and green color tones comprising areas of low and
intermediate elevation, and the blue color scale highlighting the highest elevations in the
Northeast Region (Figure 1). The SRTM data are provided by the United States Geological
Survey (USGS) and the Brazilian National Institute for Space Research (INPE), featuring a
spatial resolution of 30 m. These data are georeferenced using the Geographic Coordinate
System, DATUM: WGS1984—in zones 23, 24, and 25 South.

NEB features an average annual air temperature ranging from 22 to 26 ◦C and an
annual total rainfall varying from 2500 mm on the east coast to values below 500 mm,
specifically in the regions between the states of Bahia and Pernambuco, precisely in the
central region of the BSR, as well as in the Cariri region of Paraíba and Seridó of the Rio
Grande do Norte [66,67].

It is worth noting that in NEB, ecosystems from different biomes are found, such as
the Amazon (7.35%), Atlantic Forest (10.05%), Cerrado (29.11%), and the predominance
of the Caatinga biome (53.49%), i.e., this vegetation cover occupies more than half of the
total area of NEB [68]. This ecosystem has the Brazilian Seasonally Dry Tropical Forest
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(Caatinga) as its predominant vegetation type, covering approximately 63.30% of the total
area [48,63,68].

2.2. Orbital Data from Terra and Aqua Satellites (MODIS Sensor)

The research was conducted using the multi-temporal series of orbital images from
the MODIS sensor aboard the Terra (MOD) and Aqua (MYD) satellites (https://modis.gsfc.
nasa.gov/—accessed on 2 January 2021). A minimum of 900 images from the MODIS sensor
were employed for each parameter, involving a space-temporal analysis over 20 years from
2000 to 2019. That is, for each year, between 40 and 46 images were digitally processed
for each biophysical parameter. The pixel-to-pixel digital processing of the multispectral
data products was based on the average pixel statistics. The utilized products had an 8-day
temporal resolution.

All images were processed digitally in an automated manner in a cloud computing
environment using the GEE platform (https://earthengine.google.com/—accessed on 4
January 2021) [63]. GEE features a library with sets of geospatial, climatic, and environmen-
tal datasets, standing out for its multiple functions of mathematical analyses, computational
modeling, and machine learning operations through specific algorithms to determine, for
example, the biophysical parameters of surface energy balance [14,15,61,62], which was the
main objective of this research. With that, a methodological script in Python programming
language was developed in the GEE, applicable for determining parameters such as albedo
and surface temperature, vegetation indices, and actual evapotranspiration.

However, it is noteworthy that correction/calibration factors and multiplicative factors
related to each multispectral band of the main products used are applied for effective use of
the images from the MODIS sensor. The surface reflectance product (Terra/MOD09A1 and
Aqua/MYD09A1 version 6, available at: https://modis.gsfc.nasa.gov/data/dataprod/
mod09.php—accessed on 2 January 2021) provide an estimate of the surface spectral
reflectance of multispectral bands 1 to 7, which are corrected for atmospheric conditions
through the removal of gases and aerosols (Table 1). It possesses a validated dataset
with high accuracy and precision for detecting and quantifying conditions of climate and
environmental changes on a planetary scale. The reflectance product is composed of pixel-
to-pixel values referring to an 8-day period. Among these 8 days, a reference base value is
chosen for each multispectral band, i.e., the value containing the best spectral observation,
significantly related to the best conditions of atmospheric correction, without the presence
of clouds and their shadows [69]. The multispectral bands of the reflectance product
presented in Table 1 were used to calculate the surface albedo and spectral vegetation
indices, aiming to obtain a set of biophysical surface indicators for NEB between 2000
and 2019.

Table 1. Characteristics of the surface reflectance product from the MODIS sensor.

MODIS Sensor Product

Surface Reflectance—Terra (MOD09A1) and Aqua (MYD09A1)—Version 6

Multispectral Band Temporal Resolution Spatial Resolution Radiometric Resolution Processing Level Multiplier Factor

r1
(0.620–0.670 µm)

8 days 500 m 16 bits L3 0.0001

r2
(0.841–0.876 µm)

r3
(0.459–0.479 µm)

r4
(0.545–0.565 µm)

r5
(1.230–1.250 µm)

r6
(1.628–1.652 µm)

r7
(2.105–2.155 µm)

Source: adapted from Vermote et al. [69] and NASA/MODIS [70].

https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://earthengine.google.com/
https://modis.gsfc.nasa.gov/data/dataprod/mod09.php
https://modis.gsfc.nasa.gov/data/dataprod/mod09.php
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Surface albedo was estimated from the multispectral bands of the MODIS sensor
product, surface reflectance. To determine the albedo, weight coefficients for each band are
necessary. These numerical values are determined based on solar radiation at the surface,
specifically for use in operational energy balance applications. It is important to note that
the weight coefficient is obtained by the ratio between the specific solar constant of the
given multispectral band and the sum of all bands of the reflectance product (Table 1). It
is worth noting that the values are calibrated for different types of LULC, which are in
turn associated with each of the multispectral bands of reflectance with good agreement,
according to Equation (1) [71,72]:

αsup= 0.215 × r1 +0.215 × r2 +0.242 × r3 +0.129 × r4 +0.101 × r5 +0.062 × r6 – 0.036 × r7 (1)

where αsup—surface albedo; numerical values—calibrated weight coefficients related to
the multispectral bands of the MODIS surface reflectance product [72]; r1, r2, r3, r4, r5, r6,
and r7 correspond to the multispectral bands of the reflectance product (Table 1).

Normalized Difference Vegetation Index (NDVI) was estimated by the ratio of the
difference in the multispectral bands of near-infrared (rb IV) and red (rb VM) reflectance, and
their sum, according to Equation (2) [15,73,74]:

NDVI =
rb IV –rb VM
rb IV + rb VM

(2)

where rb IV and rb VM correspond to the multispectral bands of the reflectance r2 (0.841–
0.876 µm) and r1 (0.620–0.670 µm), respectively (Table 1).

Enhanced Vegetation Index (EVI) was estimated from the multispectral bands of near-infrared
reflectance (rb IV), red band (rb VM), and blue band (rb B), according to Equation (3) [74,75]:

EVI = G
(r b IV − rb VM)

(rb IV + C1 × r b VM – C2 × rb B +L)
(3)

where rb IV, rb VM, and rb B correspond to the multispectral bands of the reflectance r2
(0.841–0.876 µm), r1 (0.620–0.670 µm), and r3 (0.459–0.479 µm) (Table 1), respectively; G—
gain factor, with a value of 2.5 [74]; C1 and C2—coefficients of the aerosol resistance term,
which uses the blue band to correct aerosol influences in the red band. According to
Huete et al. [74], the value of 6 is assigned to C1, and the value of 7.5 is assigned to C2;
L—adjustment factor for soil conditions, which can vary between 0 and 1 [74,75]. Thus,
following the recommendation of various studies conducted in NEB and the BSR, the value
of L for this application was 0.5, due to the semiarid conditions in NEB [14,49,51,61]. The
numerical values aim to stabilize atmospheric variations, minimizing the residual effects
and impacts of aerosols in the study area.

Soil Adjusted Vegetation Index (SAVI) was estimated following the same pattern as
the determination of NDVI, and especially based on the adjustment factor (L) to the effects
and soil conditions of the study area, as mentioned earlier in the main highlights of EVI,
according to Equation (4) [11,26,49,51,61,73,76,77]:

SAVI =
(1 + L) × (r b IV– rb VM)

(L + r b IV + rb VM)
(4)

Leaf Area Index (LAI, m2 m−2) was estimated based on the SAVI itself, according to
Equation (5) [49,51,71,76]:

IAF = −
ln
(

0.69 – SAVI
0.59

)
0.91

(5)

where numerical values represent calibration constants of the equation.
For the estimation of the biophysical parameter of surface temperature, correction/

calibration factors as well as multiplicative and additional compensation factors are also ap-
plied, referring to the MODIS sensor product, land surface temperature (Terra/MOD11A2
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and Aqua/MYD11A2 version 6, available at: https://modis.gsfc.nasa.gov/data/dataprod/
mod11.php—accessed on 2 January 2021). This product provides an average estimate of
surface temperature and emissivity, composed of pixel-to-pixel values averaged over an
8-day period. Surface temperature is estimated using the emissivities of MODIS bands 31
and 32 (Table 2). Emissivities are estimated through mathematical modeling based on
LULC type [78].

Table 2. Characteristics of the surface temperature product from the MODIS sensor.

MODIS Sensor Product

Suface Temperature—Terra (MOD11A2) and Aqua (MYD11A2)—Version 6

Layer Temporal Resolution Spatial Resolution Radiometric
Resolution Processing Level Multiplier/Additional

Factor

LST_Day_1 km

8 days 1000 m

16 bits

L3

0.02
/0.0

Local time of day

8 bits

0.1
/0.0

Band 31 emissivity 0.002
/0.49

Band 32 emissivity 0.002
/0.49

Source: adapted from NASA/MODIS [70].

For the estimation of evapotranspiration, a multiplicative factor was also applied, refer-
ring to the MODIS sensor product, actual evapotranspiration (ET–MODIS) (Terra/MOD16A2
and Aqua/MYD16A2, version 6, available at: https://modis.gsfc.nasa.gov/data/dataprod/
mod16.php—accessed on 3 January 2021). It is noteworthy that the algorithm used for
collecting ET–MODIS data is based on the Penman–Monteith equation [79], incorporating
daily meteorological reanalysis data and vegetation property dynamics, such as albedo
and land cover, from the MODIS remote sensing data products. The ET–MODIS product
provides the accumulated pixel-to-pixel over the 8-day period (Table 3) [52,53,78,80,81].

Table 3. Characteristics of the actual evapotranspiration product from the MODIS sensor.

MODIS Sensor Product

Actual Evapotranspiration (ET–MODIS)—Terra (MOD16A2) and Aqua (MYD16A2)—Version 6

Layer Temporal
Resolution Spatial Resolution Radiometric

Resolution Processing Level Multiplier Factor

ET–MODIS 8 days 500 m 16 bits L4 0.1

Source: adapted from NASA/MODIS [70].

2.3. Statistical Analysis of Data

The quantitative pixel-to-pixel results of the annual thematic maps of the land surface
temperature (Tsup) and actual evapotranspiration, both for the ET–MODIS product and
the ET–Predictive estimate, were subjected to analyses of error and correlation indices as
well as descriptive statistics, as the following measures of central tendency and dispersion
were included: average (Av.), minimum (min.), maximum (max.), standard deviation (SD),
and coefficient of variation (CV, %). Additionally, the spatial variability of the thematic
surface maps was observed based on the CV, following the classification criteria of Warrick
and Nielsen [82]: low variability (CV < 12%), moderate variability (CV 12–60%), and high
variability (CV > 60%).

For generating new thematic maps of evapotranspiration through the vegetation
indices, predictive variables that influence and show a good correlation with the ET–
MODIS product were observed. The aim was to establish a model that characterizes actual
evapotranspiration through orbital remote sensing in a practical and efficient manner,
specifically based on the spectral patterns of the region’s vegetation cover. For model

https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
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adjustment, analysis of variance (ANOVA) was used, where a 99% confidence interval
(p < 0.01) was adopted for the suitability of the predictive variables and the statistical model,
validated by the coefficient of determination (R2).

Statistical analyses were conducted using R software, version 3.6.1 [83]. The main sta-
tistical values were extracted through internal digital processing generated by GEE. Quan-
titative data were also tabulated using Microsoft Excel 2016 64-Bit Edition® spreadsheets,
included in the Microsoft Office Professional Plus 2016® package, version 16.0.4266.1001.

3. Results and Discussion
3.1. Thematic Maps to Surface (Tsup and ET–MODIS)

Annual change patterns in NEB and its semiarid region were highlighted by the
quantitative and spatiotemporal variability of surface thematic maps, demonstrating, in
essence, the severe effects of drought, as well as aspects of vegetation resilience over time, in
the period of 20 years. Figure 2 presents the spatiotemporal distribution of the biophysical
parameter of surface temperature (Tsup) from 2000 to 2019. The Tsup values, in general,
ranged from 20.49 to 46.41 ◦C. The pixel-to-pixel results highlighted high Tsup values,
particularly over the semiarid region of NEB. It is worth noting that the semiarid region
of Brazil is affected by high climatic variability and consequently presents low and/or
no vegetation cover for most of the year [21]. Vorovencii [84] noted that the reduction of
vegetation cover on dry surfaces directly affects the surface temperature and air humidity,
potentially influencing the circulation of air masses and local rainfall patterns.

In certain areas of NEB, based on insights from the thematic temperature maps, it
was possible to observe the formation of heat islands over time (a microclimate no longer
exists), with pixels of hues in the red range. These high temperature ranges, between 35.24
and 46.41 ◦C, are probably areas where vegetation dynamics were impacted by the effects
of prolonged drought, which affected the resilience conditions of vegetation cover over
time. These regions present semiarid conditions with areas of degraded soil. More recently,
a study detected arid conditions in these regions of NEB. Barbosa [13] studied drought
and its characteristics over several days in Northeast South America using satellite data
from 2004 to 2022, discovering that drought and rainy cycles had considerable impacts on
the vegetation dynamics, with a trend of increasing temperatures mainly in the central
region of NEB due to the high level of land degradation, presenting in these regions the
occurrence of arid areas, i.e., areas where the vegetation no longer responds to the climatic
factors. Feng and Fu [1] analyzed the expansion of global drylands based on climate model
simulations from 1948 to 2100 and highlighted that there will be a greater expansion of
semiarid and arid lands on the continents, which will consequently increase the population
affected by water scarcity and soil degradation.

Bezerra et al. [85] observed that, in addition to rainfall patterns, temperature spatial-
ization occurs analogously to the distribution of local vegetation cover, also correlating
with the seasonality of meteorological variables such as air temperature and incident global
solar radiation.

Areas covered by water bodies, dense vegetation cover, and higher altitudes exhibited
lower Tsup values, as expected, appearing in the maps with pixels in the blue range, between
20.49 and 27.35 ◦C, specifically in the northwest, south, south-central, and southeast regions
of NEB (Figure 2).

Cunha et al. [67] explored the application of the Vegetation Supply Water Index (VSWI),
which combines the NDVI and surface temperature data from the MODIS sensor, to develop
a methodology for drought monitoring. Their results indicated the severity of a drought
event during the years 2012 and 2013, in which approximately 85% of the BSR was affected
by water deficit conditions. Similarly, Gutiérrez et al. [86], in their study of drought events
in Brazil, highlighted the intense severity of this event in 2012 and 2013. These years were
characterized by significant water deficits, impacting the water availability in reservoirs
in the semiarid regions of the state of Ceará. This led to almost total losses in rainfed
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agriculture, particularly in corn and bean crops, resulting in various local and regional
socioeconomic conflicts.
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Figure 2. Spatiotemporal distribution of surface temperature (Tsup, ◦C) in Northeast Brazil (NEB)
and semiarid region of NEB from 2000 to 2019.
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The study by Marengo and Bernasconi [30] focused on the current state and future
projections of climate change factors such as aridity and drought conditions in NEB and
its semiarid region. Utilizing aridity indices from Budyko and the United Nations, the
authors projected a temperature increase of 2 ◦C for NEB between the years of 2010 and
2040. And specifically for the semiarid region, the authors predicted a temperature increase
ranging between 2 and 4 ◦C from 2041 to 2070. Analyzing the entire of NEB, the projections
indicated an increase above 4 ◦C between 2071 and 2100. A reduction in rainfall was also
anticipated, influencing the accentuation of the water deficit over time. In conclusion, the
authors inferred that short-, medium-, and long-term projections suggest an expansion of
areas with semiarid and arid conditions until 2100.

Marengo et al. [33], in updating climate projections for NEB until 2100, highlighted that
conditions of high water deficit reach between 49 and 54% of the region, with the likelihood
of warming of at least 4 ◦C. More specifically, the authors also provided projection responses
regarding the vegetation of the Caatinga biome, indicating a replacement by vegetation
typical of arid conditions. In this context, using data derived from satellites, Santos et al. [87]
underscored the quantification of changes and trends in the forest cover of the BSR from
2000 to 2018, observing a total loss of 60,769.39 km2.

In light of these highlighted conditions, based on the patterns of LULC changes in the
present study, the spatiotemporal distribution of the actual evapotranspiration (ET–MODIS)
for NEB and its semiarid region was also observed between 2001 and 2019. It is worth
noting that, unlike the surface temperature product, which started in the year 2000, the
ET–MODIS product began its imaging from the year 2001. The pixel-to-pixel values of the
thematic maps represent the average pixel statistics for each year, estimated based on the
8-day ET–MODIS product, ranging from 0.10 to 62.04 mm 8-day−1 (Figure 3).

The lowest values of ET–MODIS, ranging from 0.10 to 10.96 mm 8-day−1, were
detected in the semiarid regions of NEB (Figure 3), i.e., in areas affected by LULC changes
due to rainfall variability and drought conditions, especially in the thematic maps from
2012 to 2019. The study by Oliveira et al. [12] showed that these values can be explained
by high rainfall variability and low water availability in the region. Therefore, these areas
exhibit low vegetation cover and/or non-vegetated areas, favoring a lower availability of
energy to be partitioned in evapotranspiration processes [15,54]. The highest values of
ET–MODIS, ranging from 33.50 to 62.04 mm 8-day−1, were over biome transition regions,
especially to the northwest and southeast of NEB (Figure 3). These areas have higher
vegetation cover densities and are marked by rainfall indices and humidity conditions
from the Amazon and the coast, respectively, associated with large atmospheric systems
and moisture availability from the Atlantic Ocean [12,15,43].

The geospatial products provided insights into the semiarid and arid conditions in dif-
ferent areas of NEB, with an alert regarding changes in LULC: for example, the replacement
of native vegetation, mainly of the Caatinga biome, coupled with the degradation of agri-
cultural areas. These changes alter the partitioning of surface energy balance, significantly
reducing the process of evapotranspiration [11,54,88]. In this context, it is important to
highlight the extensive agricultural and livestock practices, particularly in semiarid regions,
which may contribute to the expansion of degraded areas, thus accelerating desertifica-
tion processes [14,15,21]. As observed by Mariano et al. [10], land degradation in NEB
significantly reduces evapotranspiration, corroborating the findings of the present study.
These conditions cause imbalances in the ecosystem, significantly impairing surface energy
balance processes. Consequently, there is a heightened concern regarding the escalation of
desertification levels in the region and/or increases in areas that have become desertified.

Particularly regarding the Caatinga vegetation, which is predominant in NEB and
unique of the BSR, Oliveira et al. [12] emphasized that these areas are not only sensitive
and prone to desertification but also the combination of anthropogenic activities and the
region’s climatic conditions (severe drought) can lead to irreversible impacts, thus affecting
the regional climate and the relationship between energy and water availability.
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Figure 3. Spatiotemporal distribution of actual evapotranspiration (ET–MODIS) in Northeast Brazil
(NEB) and semiarid region of NEB from 2001 and 2019.
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3.2. Regression Model (ET–Predictive)

As it is intimately associated with the conditions and patterns of LULC, a multiple
regression model was established, statistically followed by the best relationships between
ET–MODIS and the vegetation spectral indices of the MODIS sensor. In other words, the
predictive variables used as input data were NDVI and EVI, and the ET–Predictive model
was established as the response, thus generating new annual thematic maps of actual
evapotranspiration for NEB, according to Equation (6):

ET–Predictive = –14.80 – (25.2 × NDVI) + (139.2 × EVI) (6)

Table 4 shows the analysis of variance (ANOVA) for the multiple regression model.
The regression, in turn, exhibited a 99% significance level, with a p-value less than 0.01.

Table 4. Analysis of variance (ANOVA) of the regression model established for ET–Predictive.

Fonte 1 DF 2 SS 3 AS F Value p-Value

Regression 2 269.438 134.719 269.84 0.000
NDVI 1 1.207 1.207 2.42 0.129
EVI 1 28.850 28.850 57.79 0.000

Error 35 17.474 0.499 - -

Total 37 286.912 - - -
1 DF—Degrees of freedom; 2 SS—Sum of squares; 3 AS—Average square.

Therefore, it is highlighted that validation of the model successfully passed the descrip-
tive measure of quality of fit through the coefficient of determination (R2), which showed
a value of R2 = 93.91%. Therefore, in the case of failures and absence of data from the
ET–MODIS product, the current model has the potential to replace the MODIS sensor for
NEB regions, especially for estimates of ET–Predictive in the BSR. Given the applicability
of the regression equation (Equation (6)), the spatiotemporal distribution of the new annual
thematic maps of ET–Predictive by NDVI and EVI are presented in Figure 4.

The maps of ET–Predictive by NDVI and EVI highlighted a spectral behavioral pattern
sensitive to the conditions of green vegetation and denser areas, i.e., meaning that these high
values are in NEB transition areas. There was a well-defined transition zone between the
backlands and mid-north of NEB, with average pixel values between 50.01 and 84.00 mm
8-day−1 (Figure 4). This sensitivity pattern was a striking condition of the spectral monitor-
ing of NDVI [15].

Contrary to what was shown in the thematic maps of ET–MODIS (Figure 3), areas
located to the northwest of NEB highlighted intermediate ET–Predictive values, i.e., this
could be a strong indication of deforested areas (Figure 4). Considering that ET–Predictive
was highly sensitive to high values, a pattern of overestimation was shown compared
to ET–MODIS.

ET–Predictive was particularly sensitive in weighting its values over the semiarid
region of NEB, especially during the period from 2012 to 2019 (Figure 4). This spectral
behavioral pattern was notably observed in the spectral monitoring of EVI, which also
stands out for its sensitivity in denser areas. However, the index was effective in stabilizing
atmospheric variations through standardized numerical values for the study area (semiarid
region), thus minimizing the effects of soil and residual impacts of aerosols, and conse-
quently being extremely effective in capturing the spectral reality of estimates for semiarid
regions [14,74].

It is noteworthy that the model enabled estimating the thematic map for the year 2000,
which was absent in the ET–MODIS product. The areas of water bodies were characterized
by the model as having a value of zero. Therefore, the pixels were displayed in the maps
with a red hue, like areas of exposed soil and other impermeable areas throughout NEB.
The model was based on the spectral conditions of vegetation, specifically estimating
ET–Predictive values of the leaf canopy.
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Figure 4. Spatiotemporal distribution of predictive actual evapotranspiration (ET–Predictive) in
Northeast Brazil (NEB) and semiarid region of NEB from 2000 to 2019.

Figure 5 also highlights the temporal analysis concerning the average statistics of ET–
Predictive and ET–MODIS in relation to rainfall between 2000 and 2019. The rainfall data
were derived from the precipitation products of the satellites Tropical Rainfall Measuring
Mission (TRMM) and Global Precipitation Measurement (GPM), which were made available
in the study by Silva et al. [15].
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Figure 5. Time series of the average pixels throughout the year for ET–Predictive, ET–MODIS (8-day
MODIS sensor products), and average values of total annual rainfall in Northeast Brazil (NEB) from
2000 to 2019.

Therefore, in comparison, it is highlighted that the ET–Predictive model showed a
condition of overestimation compared to the ET–MODIS product; however, it displayed
relatively close percentage values, at 8.28%. The average values of the time series confirmed
a similar spectral behavioral pattern over time. Notably, the period from 2012 to 2019 stands
out for presenting the most significant drop in these values for both evapotranspiration
products, when the parameters were mainly impacted by high variability and low annual
rainfall indices in NEB (Figure 5).

Inferences can be made regarding the best fit of the evapotranspiration product values
in relation to rainfall. For example, the years 2000, 2002, 2004, 2005, 2006, 2008, 2009, and
2011 showed a better correlation with the ET–Predictive product. Although the majority of
the years in the spatiotemporal analysis (2001, 2003, 2007, 2010, 2012, 2013, 2014, 2015, 2016,
2017, 2018, and 2019) showed a better correlation with the ET–MODIS product (Figure 5).
In any case, the results indicate that rainfall is the main driver of the spectral behavior of
evapotranspiration [10,12].

Silva et al. [15], also studying biophysical indices from the MODIS sensor in the
semiarid region of NEB, emphasized that the period from 2012 to 2019 was the most
impacted in the spatiotemporal analysis from 2000 to 2019. The authors observed through
NDVI and water indices (MNDWI and NDWI) that the resilience of vegetation cover and
water bodies was affected by the intensity and duration of severe drought during this
period, leading to an increase in environmental degradation processes in the region. Costa
et al. [32], studying extreme climate indices between 1961 and 2014 in NEB, highlighted a
reduction in total annual rainfall and a decrease in the frequency of rainy days in the region.
In addition, emphasizing the most critical period of this study (from 2012 to 2019), Cunha
et al. [45] also pointed out that, in a study on extreme drought events in Brazil based on
meteorology and remote sensing, the period from 2011 to 2019 was the most severe drought
event in the last 60 years, with NEB being one of the most affected regions. Marengo
et al. [34] reported areas affected by drought in NEB from 2000 to 2020, where the results
showed great intensity between 2012 and 2018, highlighting more specifically that, in 2012,
around 60% of the semiarid region of NEB was affected by severe and exceptional drought.

3.3. Quantitative and Spatiotemporal Variability in NEB

Table 5 provides the statistical values for the annual quantitative and spatiotemporal
variability of the parameters Tsup, ET–MODIS, and ET–Predictive, in NEB between 2000
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and 2019. Tsup highlighted average values between 31.01 and 34.07 ◦C, ET–MODIS ranged
from 15.91 to 23.78 mm 8-day−1, while ET–Predictive was between 21.42 and 25.75 mm
8-day−1.

The pixel-to-pixel results of the thematic maps of ET–MODIS exhibited patterns of
spatiotemporal behavior with moderate variability, with CV values ranging from 31.96 to
54.49%. In contrast, Tsup showed patterns of spatiotemporal behavior with low variability,
with CV values between 7.54 and 9.54% (Table 5). Previous studies have confirmed spectral
characteristics for evapotranspiration with moderate variability using other satellites [54],
while Tsup also displayed these characteristics of low variability [21,61]. On the other
hand, the pixel-to-pixel results of the thematic maps of ET–Predictive showed patterns
of spatiotemporal behavior with high variability, with CV values around 100% (Table 5),
following the criteria of Warrick and Nielsen [82]. This behavior was mainly due to
interpreting the characteristics of the vegetation indices, which typically exhibit CV values
ranging from moderate to high variability [11,14,51,61].

Furthermore, it is noteworthy that, according to the Pearson correlation analysis,
the ET–MODIS maps showed an excellent negative linear relationship with Tsup, with
a value of −0.9. Therefore, the temporal variability and characterization of quantitative
results for Tsup, ET–MODIS, and ET–Predictive in NEB are an essential part of climate
and environmental monitoring. This is crucial for planning actions and decision making,
especially for assessing the environmental impacts in the region, interpreted through
changes in LULC conditions, which can result in degraded and desertified areas.

Table 5. Statistical values of the annual quantitative and spatiotemporal variability of the Tsup,
ET–MODIS, and ET–Predictive parameters for NEB between 2000 and 2019.

Year
Tsup (◦C) ET–MODIS (mm 8-day−1) ET–Predictive (mm 8-day−1)

Min. Max. Av. SD CV (%) Min. Max. Av. SD CV (%) Min. Max. Av. SD CV (%)

2000 20.72 43.28 31.51 2.89 9.17 - - - - - 0.00 81.00 24.25 24.48 100.95
2001 21.40 43.35 32.50 3.10 9.54 0.80 56.91 17.73 8.07 45.52 0.00 82.04 23.49 23.88 101.66
2002 21.69 41.82 32.04 2.87 8.96 0.58 58.38 18.46 8.33 45.27 0.00 81.97 24.35 24.53 100.74
2003 21.73 41.46 32.45 2.80 8.63 0.70 62.04 19.28 8.74 45.33 0.00 82.00 23.52 23.91 101.66
2004 20.57 43.66 31.60 2.71 8.57 0.30 59.10 20.82 7.79 37.41 0.00 82.99 24.93 25.04 100.44
2005 21.40 42.16 32.02 2.81 8.77 0.20 59.60 20.54 7.53 36.66 0.00 84.99 25.22 25.41 100.75
2006 21.27 40.60 31.31 2.72 8.69 0.45 58.32 21.62 7.78 35.98 0.00 84.03 25.69 25.79 100.39
2007 21.46 42.19 32.50 2.96 9.11 0.10 57.03 18.04 8.28 45.90 0.00 83.00 24.01 24.19 100.75
2008 21.77 41.76 31.96 2.54 7.95 0.30 57.21 20.36 7.62 37.43 0.00 79.95 24.61 24.67 100.24
2009 21.36 42.56 31.15 2.35 7.54 0.20 61.29 23.78 7.60 31.96 0.00 82.82 25.75 25.70 99.81
2010 21.61 42.13 32.19 2.75 8.54 0.10 58.60 21.08 7.91 37.52 0.00 82.02 25.58 25.63 100.20
2011 20.53 42.86 31.01 2.50 8.06 0.80 59.54 22.95 7.82 34.07 0.00 83.00 25.73 25.84 100.43
2012 21.61 44.03 33.71 3.18 9.43 0.10 59.86 15.91 8.67 54.49 0.00 81.99 21.42 22.45 104.81
2013 21.39 43.78 33.21 3.11 9.36 0.20 59.78 18.79 9.09 48.38 0.00 82.01 22.59 23.64 104.65
2014 20.50 43.49 32.55 2.99 9.18 0.20 58.19 19.76 8.35 42.26 0.00 80.98 23.47 23.98 102.17
2015 22.38 44.86 34.07 3.07 9.01 0.53 58.21 17.30 8.30 47.98 0.00 81.00 22.47 23.08 102.71
2016 21.88 44.12 33.74 3.01 8.92 0.60 57.70 17.62 8.04 45.63 0.00 81.93 22.23 22.86 102.83
2017 21.08 45.28 33.07 3.07 9.28 0.10 58.92 18.34 8.80 47.98 0.00 81.96 22.33 23.29 104.30
2018 20.85 42.17 32.30 2.83 8.76 0.80 57.24 19.90 8.58 43.11 0.00 83.84 23.67 24.30 102.66
2019 22.23 46.41 32.66 2.75 8.42 0.57 60.55 19.74 8.67 43.92 0.00 81.95 24.51 24.79 101.14

Average (Av.); minimum (min.); maximum (max.); standard deviation (SD); coefficient of variation (CV).

From the perspective of vegetation cover, the minimum Tsup values were mainly
found over preserved and transitional areas, such as in the Amazon, Atlantic Forest, and
Cerrado biomes, while the highest values were mainly found over the vegetation cover
of the Caatinga biome. In this ecosystem, minimum values near zero were observed for
ET–MODIS and ET–Predictive, that is, over the semiarid regions of NEB that have high
climatic variability and pronounced water deficit (Table 5).

It is worth noting that pixels with minimum values of zero detected by ET–Predictive
were in open water bodies and exposed soil areas. Regarding the maximum values, which
were around 80 mm 8-day−1, it is noteworthy that they occurred in isolated pixels in all
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years. The main maximum ET–Predictive values were between 50 and 75 mm 8-day−1

(Table 5).
Figure 6 also highlights the temporal analysis concerning the average statistics of

ET–Predictive and ET–MODIS in relation to surface temperature (Tsup) (8-day MODIS
sensor products) between 2000 and 2019. It is worth noting that the graph presents the
annual behavioral pattern depending on the average values of both parameters, as shown
in the previous table (Table 5). In this sense, as already highlighted in some results of this
study, it was confirmed that the period between 2012 and 2019 stands out for presenting
a pattern of critical change for the region. The insights into high temperatures and low
evapotranspiration rates identified the impact on vegetation dynamics. The geospatial
products provided insights into significantly changing conditions in different areas of NEB.
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3.4. Seasonality of Biophysical Parameters and ET–MODIS in NEB

The Figure 7 shows the seasonality of surface biophysical parameters, such as albedo
and surface temperature, ET–MODIS, and vegetation indices (i.e., NDVI, EVI, SAVI, and
LAI) for NEB from 2001 to 2019. The reference values are the monthly average pixels during
the spatiotemporal analysis.

In the seasonal analysis, the surface albedo differed from the other parameters, not
showing a satisfactory adjustment throughout the months of the spatiotemporal analysis.
However, Mariano et al. [10] emphasized that albedo is a significant part of the surface
energy balance, being one of the main stimulators of the evapotranspiration process in the
partitioning of sensible and latent heat fluxes.

The Caatinga vegetation, predominant in NEB, is known to have a high resilience,
meaning that this ecosystem promotes an immediate formation of vegetation biomass and
an increase in leaf canopy in direct response to rainfall events [21,44,51]. In this sense,
exclusively in the Caatinga biome regions, rainfall leads to a rapid return of the components
of energy balance, which may have directly affected the seasonal albedo values.

The results of Tsup and ET–MODIS highlighted spectral behavioral patterns with an
inversely proportional relationship, with ET–MODIS conditioned to the spectral behavior
of vegetation cover, according to NDVI, EVI, SAVI, and LAI (Figure 7). In this sense, the
seasonal analysis also confirmed the interaction of ET–MODIS patterns with the spectral
conditions of NDVI, EVI, SAVI, and LAI, highlighting a spectral behavior with a pro-
portional relationship throughout the months in the temporal series. In turn, Tsup also
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confirmed a spectral behavioral pattern with an inversely proportional relationship as a
function of NDVI, EVI, SAVI, and LAI (Figure 7).
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The vegetation indices showed similar spectral behavioral patterns throughout the
months, jointly exhibiting the dynamics of increased spectral conditions of vegetation
biomass between January and June. Meanwhile, between July and December, the spectral
conditions of biomass underwent a significant decline, considering the entire NEB (Figure 7).
Bezerra et al. [62] analyzed the seasonality of biophysical parameters in the NEB state of
Pernambuco in extreme precipitation years, and comparing the analyzed years 2004 and
2012, they observed an average reduction of 14% in NDVI, EVI, and SAVI during the critical
period from September to December, as well as an increase in albedo (4%) and surface
temperature (3%). However, the authors emphasized the importance of precipitation for
vegetation dynamics in the region.

It is worth noting that NEB, and especially the BSR, exhibits notable seasonal variabil-
ity of rainfall, with wet and dry periods modulated by atmospheric and oceanic patterns.
One of the main mechanisms inducing rainfall, for example in the north, east, and south-
central sub-regions of NEB, is the seasonal latitudinal displacement of the Intertropical
Convergence Zone (ITCZ) over the Tropical Atlantic. Thus, the peak of the rainy season
in the northern sub-region, occurring from February to May, is modulated by the anoma-
lously warm North Atlantic, which favors an anomalous northward latitudinal position of
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the ITCZ, resulting in lower precipitation over the region. Meanwhile, the anomalously
cold Tropical Atlantic favors an anomalous southward position of the ITCZ, leading to
increased precipitation from March to April. The rainiest period in the eastern sub-region
is between April and July, associated with increased sea breeze circulation and the influ-
ence of eastward waves from May to August. The south-central sub-region experiences
higher precipitation volumes from November to February, associated with frontal and pre-
frontal systems. It is also noteworthy that systems such as Upper-Level Cyclonic Vortices
(ULCVs) bring rains for NEB from September to April, i.e., during spring, summer, and
autumn [9,30,35,38–40,43,66].

However, considering that the NEB region is more than half occupied by a semiarid
environment, predominated by the Caatinga biome (53.49%), the research by Maia et al. [89]
on the influence of climatic seasonality in the BSR is noteworthy. The authors emphasized
that the analysis of vegetation cover is complex due to the interannual variability of rainfall,
warning that patterns of environmental change at the surface are not solely related to
anthropogenic degrading activities considering that the dynamics of land cover conditions
can also be the result of climatic factors, such as changes in rainfall, as well as local
topographical conditions and physiological characteristics of the vegetation.

4. Conclusions

The analyses in this study aimed to detect and examine the response patterns of
vulnerability to degradation and desertification processes based on MODIS sensor products
over 20 years (2000 to 2019), gaining insights into the spatiotemporal patterns of surface
energy balance components for NEB, especially in its semiarid region. The study mainly
carried out pixel-to-pixel characterization of the rates of the 8-day surface temperature
and actual evapotranspiration products from the MODIS sensor. These parameters were
analyzed both annually and seasonally. Additionally, the seasonality of vegetation indices
(NDVI, EVI, SAVI, and LAI) and surface albedo, estimated through the 8-day surface
reflectance product of MODIS, was characterized for the period from 2000 to 2019. It is
noteworthy that through the vegetation indices NDVI and EVI, a new model for estimating
actual evapotranspiration was generated, based in the spectral conditions of the vegetation,
i.e., for leaf canopy conditions of NEB and its semiarid regions.

Conditions of LULC changes significantly boosted the surface temperature, with
thematic maps highlighting a pattern of high values distributed mainly in the central
and northwest parts of NEB and the semiarid region of NEB. This pattern revealed the
formation of heat islands. Meanwhile, actual evapotranspiration (ET–MODIS) showed
significant reductions in these regions. The vegetation in these specific areas did not exhibit
resilience due to the climatic components. These insights present conditions of significant
change in different areas of NEB.

The pixel-to-pixel results indicated that areas with little and/or no vegetation cover
favored a lower existence of available energy to be mainly distributed in processes of
evapotranspiration by vegetation and agricultural crops. This condition was highly well-
defined in the semiarid regions of NEB. In other words, due to a combination of factors, such
as pressures from anthropogenic activities and local climatic conditions (severe droughts),
these areas are extremely vulnerable to degradation and desertification processes.

The ET–Predictive model via NDVI and EVI also detected a pattern of spectral behavior
over time, with degrading effects in the semiarid region of NEB. Even ET–Predictive showed
high sensitivity to the green conditions of vegetation cover and was influenced by the
maximum values of the spatiotemporal analysis, confirming that the semiarid region of
NEB has lost significant resilience in the sense of degraded vegetation health and water
loss. The model’s insights demonstrate changing conditions in vegetation dynamics.

These components of energy balance are highly interconnected with climatological
conditions and are also a function of the hydrological and environmental conditions, with
the spectral patterns of vegetation variability being the result of the impact of pronounced
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water deficit conditions in NEB regions, and mainly greater aridity conditions in the
semiarid region of NEB.

Therefore, in the absence of data and minimal conditions for climate and environ-
mental monitoring in NEB regions, it is recommended to use and apply the predictive
model of actual evapotranspiration (ET–Predictive) established in this study, both from
other satellites/sensors and for study areas at the local and regional scale.

Despite the overestimations observed in the results of the products used in this study,
the potential for large-scale and long-term climate and environmental monitoring by the
MODIS sensor is noteworthy. The increased levels of mapping and geospatial diagnosis
through remote sensing techniques and satellite imagery are widely varied and provide
effective support for constant applications in earth sciences research throughout the world,
mainly due to a more accessible cost/benefit ratio. This is crucial for adjustments in plan-
ning actions and in managing decision making in a rapid, effective, and more sustainable
manner regarding water and natural resources.
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