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Abstract: This study employs a temporal fusion transformer (TFT) for predicting overflow from
sewer manholes during heavy rainfall events. The TFT utilised is capable of forecasting overflow
hydrographs at the manhole level and was tested on a sewer network with 975 manholes. As part
of the investigations, the TFT was compared to other deep learning architectures to evaluate its
predictive performance. In addition to precipitation measurements and forecasts, the issue of how
the additional consideration of measurements in the sewer network as model inputs impacts forecast
accuracy was investigated. A varying number of sensors and different measurement signals were
compared. The results indicate high performance for the TFT compared to other model architectures
like a long short-term memory (LSTM) network or a dual-stage attention-based recurrent neural
network (DA-RNN). Additionally, results suggest that considering a single measuring point at the
outlet of the sewer network instead of an entire measuring network yields better forecasts. One
possible explanation is the high correlation between measurements, which increases model and
training complexity without adding much value.

Keywords: deep learning; temporal fusion transformer; urban pluvial flooding; urban drainage
system; real-time flood forecasting; manhole overflow

1. Introduction

Heavy rainfall events lead to vast amounts of run-off, particularly in highly sealed
urban areas, resulting in overloaded sewer networks. According to the sixth report of
the Intergovernmental Panel on Climate Change (IPCC) [1], the number and intensity of
such events has increased in recent years and is highly likely to increase further due to
ongoing global warming. Past events such as the one in July 2021 in Western Europe [2]
or the one in September 2023 in Greece [3] have demonstrated the extent to which such
events can be particularly destructive. In Germany, the drainage system is designed for
flooding frequencies of up to 10 years [4]. However, it cannot transport the water volumes
of such extreme events out of the catchment without causing damage. This highlights the
importance of having accurate information on the extent of flooding induced by heavy
rainfall, enabling proactive and targeted action.

Hydrodynamic (HD) models have become the state of the art for simulating the run-off
behaviour of pluvial flash floods in urban areas. Usually, the flow behaviour in the sewer
network is calculated with a 1D model and the flood extent on the surface with a 2D model.
Coupled sewer network and surface modelling in a hydrodynamic 1D–2D simulation
model has been proven remarkably accurate [5]. Unfortunately, the high level of detail
leads to long calculation times of several hours or even days. In parallel to this, using the
currently available prediction models, convective heavy rainfall events triggering pluvial
flash floods can only be predicted with adequate accuracy with lead times of up to two
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hours [6–8]. Due to these facts, hydrodynamic calculation models are currently unsuitable
for real-time applications and thus limited to historical event simulation.

Various approaches have been explored in recent years to reduce the simulation time
for estimating flooding and enable forecasts. In addition to reducing the level of detail [9]
or simplifying the calculation approaches considered [10–12], the use of machine learning
(ML) methods [13], especially neural networks [14], has been investigated in particular. In
contrast to hydrodynamic calculation models, machine learning methods do not require
the physical laws to be described. Instead, they learn the physical relationships between
inputs and target variables using predefined examples during a training process.

The performance of machine learning methods has been demonstrated in various areas
of application in the field of flood simulation. Multiple studies have illustrated the efficiency
of neural networks for estimating flooded areas [15–19]. In addition, various studies have
been carried out in modelling urban drainage networks [20], including several on the
prediction of overflows. In this context, on the one hand, a distinction is made between
approaches generating forecasts for individual central points of the sewer system, such as
main structures or outlets [21–24]. On the other hand, other methods focus on generating
predictions down to the manhole level [25–29]. In [30], an integrated consideration of
overflow and flooding area predictions was also performed. In addition to precipitation
information, the developed model also considers a forecast of overflow from manholes as
an additional load to predict the flooded areas for the upcoming time steps.

In this study, a deep learning model was trained to predict the upcoming overflow
behaviour at the manhole level based on measurements and forecasts of precipitation, as
well as measurements in the pipes of the sewer network. Various deep learning models
were compared with one another. In addition, sensitivity analyses were carried out on the
influence of the resolution of the measurement network used and the measurement signal
taken into account. For this purpose, an artificial sensor network is used with simulated
hydrographs retrieved from various locations of the sewer network. On the one hand,
the investigations aim to provide the overflow hydrographs required as input data in real
time for the flooding area prediction model developed by Burrichter et al. [30]. On the
other hand, the quantity and quality of measurements in the sewer network, used as model
input, are examined. Based on the results, recommendations for the construction of a
sensor network can be derived. The main contributions of this study can be summarised
as follows.

1. Evaluation of a deep learning-based model capable of forecasting overflow hydro-
graphs at the manhole level. In contrast to other studies, the temporal fusion trans-
former [31] as a transformer-based network architecture is used. Transformers have
proven to be very efficient in processing sequences, and in the case of the temporal
fusion transformer, especially in the field of time series analysis and forecasting.

2. The influence of a spatially high-resolution sensor network as an additional input
variable on the accuracy of the prediction results is evaluated. This approach is
compared to a model considering only one sensor at the outlet of the sewer network
and a model without measurements in the sewer network.

3. The influence of the selected measurement signal on the prediction quality is tested.
Signals considered for which the performance of the trained models is evaluated are
discharge, water level, filling degree and filling level classes.

2. Methodology
2.1. Model Setup

The model structure shown in Figure 1 was used in this work to predict overflow from
sewer manholes. The machine learning model aimed to learn the relationship between the
overflow hydrographs at the manholes in the catchment area, as the target variable, and the
explanatory variables of precipitation information, predicted precipitation information and
measurements in the pipes of the sewer system. The precipitation information included
the precipitation intensity, the total accumulated precipitation and the elapsed time since
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the event’s start. As in similar studies [25,27,28,32], the overflow hydrographs and the
in-channel measurements were generated using an HD model. This approach was adopted
due to insufficient measurement data for the learning problem described. Accordingly,
the model functions as a surrogate to generate the results of an HD model of nearly
equivalent quality and in just a few seconds, so it is viable to be implemented in real-time
warning systems.
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Figure 1. Model setup with all considered inputs (left) and the predicted overflow hydrographs of
sewer manholes (right).

The developed model utilises multivariate time series and exclusively relies on exoge-
nous variables to describe target variables. After training, the model predicts the target
variables for a selected prediction horizon H using the recent D time steps of the explanatory
features. Only the predicted precipitation information is considered for the forecast horizon
H while being part of the inputs. Since the prediction horizon is set to H > 1, multiple time
steps are predicted. Ben Taieb et al. [33] describe various strategies for this application in
their work. The multi-input, multi-output (MIMO) strategy described there is also used
within this study. Using this strategy, prediction is made in multiple stages instead of
several single-stage predictions for each time step, as is usual with recursive or direct
prediction strategies. Accordingly, a prediction for the upcoming H values (Si,t+1,. . . Si,t+H)
is made for all manholes Si at each time t (see Figure 1). Although this restricts flexibility, as
the model has the same structure for each time step, it also offers advantages. On the one
hand, the stochastic dependencies between the individual time steps are retained compared
to the direct strategy. On the other hand, the prediction errors are not accumulated, as in
the recursive strategy [33]. The model setup is treated as a supervised learning problem,
as inputs and corresponding target variables are clearly defined. Furthermore, the model
predicts target variables as continuous values, making it a regression problem.

2.2. Temporal Fusion Transformer

A temporal fusion transformer (TFT) is a model architecture presented by Lim et al. [31],
which is based on the transformer architecture developed by Vaswani et al. [34]. A special
feature of transformers is the use of attention mechanisms. The core idea of attention
mechanisms is focusing on the most relevant features of the input data. This is achieved
by assigning weights to each input within an input sequence depending on its relevance
to the target sequence. Common mechanisms are, for example, the variants presented in
Bahdanau et al. [35] or Luong et al. [36], as well as the multi-head attention [34] used in the
transformer architecture.

TFTs are characterised by their flexibility concerning the input data to be taken into
account, which means that they can consider known inputs from past and future time
steps as well as static variables. This makes TFTs suitable for a wide range of problems.
The overall architecture and individual components of a TFT are shown in Figure 2. In
contrast to the transformer architecture developed by Vaswani et al. [34], the basis is an
encoder–decoder structure that uses recurrent long short-term memory (LSTM) layers
instead of multi-layer perceptron (MLP) layers. Combining the LSTM cell-based encoder–
decoder structure with the multi-head attention used in the original transformer enables
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TFTs to learn both long-term and short-term temporal dependencies. Another component
of the TFT architecture are gated residual network (GRN) blocks, which can be found at
various points in the overall architecture. These blocks allow unused components to be
skipped, which enables the network to adapt its depth and complexity to different tasks
and datasets. In addition, the TFT contains variable selection networks (VSN) blocks that
accept network inputs and identify the most important input variables while ignoring less
relevant inputs. For this purpose, weightings are calculated depending on the influence
of the input characteristics on the target variable, making the model interpretable to a
certain degree.
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Figure 2. Representation of the temporal fusion transformer architecture (left) and detailed view of
the gated residual network blocks and the variable selection network blocks (right) [31].

The TFT model introduced by Lim et al. [31] is trained with the quantile loss function
described in Wen et al. [37]. As a result, the prediction is made based on intervals that
specify the range of probable target values for a prediction time step. The intervals are
established by specifying the quantiles to be used during training and help to account for
model uncertainties during the forecasting process.

3. Case Study
3.1. Study Area and Monitoring Network

The study area is located in the south of the city of Gelsenkirchen and covers an
area of 3.1 km². The area is mainly urban and is drained by a combined sewer system.
In the north-west of the area, there is a pumping station to which the area drains. This
station then transports the collected waste water to a collector and then to a waste-water
treatment plant.

A coupled hydrodynamic 1D–2D simulation model was created in MIKE+ software
(release 2021, update 1) [38] to calculate the overflow characteristics. The municipal
drainage company of Gelsenkirchen provided the sewer network model, comprising
975 manholes and 982 sewers in the investigated area. A grid-based computational mesh
with 2 m × 2 m resolution was created for the study area to model the run-off behaviour
on the terrain surface. The sewer network model and the surface model were coupled
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bidirectionally via the manholes so that flows of water from the ground surface into the
sewer system and vice versa were recognised. Run-off from roof areas, public traffic areas
and paved private areas with increased pollution is assigned to the sewer network model.
For the other ground surfaces, run-off is generated directly on the cells of the surface model.
This approach has proven to be the most accurate during model calibration.

As part of the KIWaSuS research project [39], in which the presented study was realised,
a low-cost sensor network for measurements in the drainage system was planned. The aim
was to provide an additional data source for the prediction model. In order to analyse the
added value of a monitoring network compared to a single measurement at the area outlet
or no measurement at all, an artificial monitoring network of 20 sensors was assumed in
this study (see Figure 3). When selecting the locations, it was ensured that they covered
the area as representatively as possible and that waste water from multiple pipes flowed
to these points. At the shown sensor locations, the simulation results were retained for
subsequent use as additional model input during the training process.
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3.2. Data Generation and Preprocessing

The data used in this study were obtained following the procedures outlined in
Burrichter et al. [30]. As model input, 258 heavy rainfall events were utilised, 105 of which
were design rainfall events and 153 natural rainfall events. The design rainfall events were
used to sufficiently consider extreme events with long return periods, while the natural
rainfall events aimed to represent real event characteristics accurately. The distribution
of events based on their return periods is illustrated in Figure 4. For every rainfall event
considered, overflow hydrographs were calculated by the hydrodynamic 1D–2D simulation
model of the study area. In addition, flow and waste-water level measurements were
extracted from the HD model at sewer pipes where a sensor was located, in order to
be used in the following training procedure. For the simulation of each flooding event,
precipitation was assumed to be spatially uniform, and a period of time of 120 min was
considered after the end of the corresponding rainfall event. This was done in order to
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account for processes after the end of the precipitation event, such as recession in the
flooding situation, which should also be forecast accurately.
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Figure 4. Distribution of events in the dataset. (a) The maximum return time T distribution for
all 153 natural rainfall events. (b) A schematic representation of the design rainfall events, with
the selected durations, model rainfall types, and return periods/scenarios. For scenarios S 1.5 and
S 4.0, the number indicates the increase factor by which the values of the 100-year design rains were
multiplied [30].

Due to the different input feature value ranges, the generated dataset was first stan-
dardised. This step was done in Python using the StandardScaler function from the
scikit-learn package [40], which subtracts the mean value from the value to be standard-
ised and divides the result by the standard deviation. The mean value and the standard
deviation were estimated on the training dataset and then used to standardise the training,
validation, and test datasets. A sliding-window approach was utilised to generate the
necessary pairs P for training, which consist of inputs and corresponding target variables.
A pair is generated for each time step t of an event. For this purpose, the input windows
for the last D time steps are set to the interval [t−D+1,. . ., t], while target variable windows
for the following H time steps comprise the interval [t+1,. . ., tH]. For events consisting of
n time steps, the first training pair was formed at time t = D and the last training pair at
time tn-H. With a fixed step size of 1, this led to m = n – (D + H) training examples. The
moving-window approach used to generate the training pairs is shown in Figure 5 and was
applied to all events in the dataset.

In the present analysis, a window size of one hour was used for both the past time
steps D and the prediction horizon H when generating the training pairs. With the temporal
resolution of five minutes considered, this equates to 12 time steps in each case. Although
the model can handle longer prediction horizons, investigations have shown that available
precipitation forecasts are then often subject to greater uncertainties [41]. Even if one hour
is not enough time to implement all necessary response actions, the forecast can be used
to warn the population via apps, control digital warning signs at the entry of flooded
underpasses, or adjust routes of rescue forces to avoid crossing through flooded areas. The
subsequent splitting of the dataset into training, validation, and test datasets was carried
out event-wise. Out of the 258 events, samples of 26 events were retained for testing, all
from the station closest to the study area. The data pairs of the remaining events were used
for training (90%, 209 events) and validation (10%, 23 events).
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3.3. Experiments
3.3.1. Comparison with Different Deep Learning Models

Different deep learning models were used as benchmarks to assess the performance
of the TFT. These included (i) a convolutional neural network (CNN), (ii) a long short-
term memory (LSTM) network, (iii) a sequence-to-sequence (Seq2Seq) model and (iv) a
dual-stage attention-based recurrent neural network (DA-RNN). Additionally, (v) a naïve
approach was used as a benchmark, which assumed the absence of manhole overflow for
each forecast time step. This approach was used to examine whether the prediction models
considered can create any benefit at all. The individual architectures are briefly described
below, with relevant sources referenced for detailed information. The investigations aimed
to determine whether the highly complex TFT architecture outperforms other common
deep learning models as well as the naïve forecast. The TFT was implemented in PyTorch
Forecasting [42], while the other models were implemented in PyTorch [43]. Other machine
learning methods, such as the random forest algorithm or linear regression, were also
tested using scikit-learn [40]. However, the computation times of the latter were extremely
high due to the lack of GPU support and the large number of time series considered, even
if parallel computing on multiple CPU cores were used. Therefore, these methods were not
further considered in this study.
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• CNN: Convolutional neural networks are a network architecture developed signifi-
cantly through the work of Le Cun et al. [44], which has proven to be highly effective
in image recognition. In addition to processing 2D data such as images, CNNs can
also process 1D datasets such as time series. CNNs focus on recognising relevant
structures in input data, and are therefore able to localise short-term dependencies
and local patterns. In the present use case, the patterns extracted from the input time
series are then used to generate the overflow forecast for the upcoming time steps
with a fully connected feed-forward layer.

• LSTM Network: Models using the LSTM cells developed by Hochreiter and Schmidhu-
ber [45] are widely used in the field of time series analysis. They are a type of recurrent
neural network (RNN), but have additional modifications that make it possible to
learn long-term dependencies in sequences, which makes them well-suited for the
prediction of time series. Like the CNN model, the LSTM model used here has a fully
connected feed-forward layer as an output layer to generate a multi-step prediction.

• Seq2Seq: The Seq2Seq model presented by Sutskever et al. [46] represents a network
architecture for processing sequential data that also includes recurrent layers. In
contrast to the LSTM model described before, the recurrent layers are arranged in
an encoder–decoder structure. The encoder processes the inputs and generates a
context vector, while the decoder produces an output sequence based on this vector.
Furthermore, Seq2Seq models can provide predictions for several time steps without
requiring additional feed-forward layers. LSTM cells are also used as recurrent layers
in the Seq2Seq model used in this work.

• DA-RNN: A DA-RNN comprises a Seq2Seq model supplemented with a two-stage
attention mechanism [47]. These attention mechanisms are placed before and after
the encoder, and similarly to the TFT, are used to consider all time steps of the input
sequences and to weight them depending on their influence on the prediction result.

The most important hyperparameters used to build and train the model architectures
are listed in Table 1. Model parameters were determined after preliminary investigations
or default parameters of the above-mentioned original literature were adopted. For the
generation of the training dataset, the batch size was set to 16. In addition, the number of
epochs for the training was set to 100 for all models. If there were no improvement in the
validation error for 20 epochs, the training was interrupted to avoid overfitting.

Table 1. Summary of the hyperparameters considered for the individual model setups.

Model Parameter Value

CNN

n Conv. Layers/Filter per layer 2/128
Kernel size/Stride/Padding 3/1/Same

Activation function ReLU
Loss function Mean squared error

Optimisation algorithm ADAM [44]
Learning rate 0.0002

Recurrent Models
LSTM/Seq2Seq/DA-RNN

n LSTM layers/Units per Layer 2/128
Loss function Mean squared error

Optimisation algorithm ADAM [44]
Learning rate 0.0002

TFT

n LSTM layers 2
Hidden size/Hidden cont. size 128/128

Attention head size 2
Loss function Quantile Loss

Quantiles 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98
Optimisation algorithm Ranger [48]

Learning rate 0.02
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3.3.2. Analyses with Measurements in the Sewer Network

In addition to different deep learning models, the influence of the measurements
considered in the sewer network was analysed. For this purpose, the spatial resolution
and the signal used in the measurement network were varied. Concerning the spatial
resolution, the measurement network shown in Figure 3 consisting of 20 sensors was
initially considered as (i) a variant. This variant was compared to (ii) another variant
that only considers measurements at the area outlet and with (iii) a variant that does not
include any measurements in the sewer network. These three variants were compared to
determine how the number of measuring locations impacts the forecast quality. At this
point, it should be noted that with the chosen approach, the water level and flow rate at
all measuring points are calculated based on a precipitation load using a clearly defined
calculation method implemented in the hydrodynamic modelling software (Mike+ 2021,
update 1) used. Therefore, the calculated “measured values” correlate strongly, and it
was necessary to examine whether additional sensors generate added value or negatively
impact the results.

Compared to expensive high-precision measuring devices that can measure flow with
high accuracy, low-cost sensors usually rely on other less precise measurement quantities.
In the case of the KIWaSuS project, a sensor that converts acoustic measurement signals
into filling classes is being developed [49]. This means that a robust and cost-effective
measurement method is used, but at the same time, it only allows for lower measurement
precision. To test the extent to which the lower measurement precision affects the prediction
capacity, (i) discharge and (ii) water level measurements, as well as measurements of (iii)
filling degree, were compared with the approach of (iv) filling classes. Discharge and water
level measurements were taken from the HD model directly at the sensor locations for the
simulated events. The filling degree was calculated from the water level and indicates the
filling percentage at the sensor locations. Based on the filling degree, the filling classes were
determined by Equation (1), as follows:

f(x) =



1, x < 25 %
2, 25 % ≤ x < 50 %
3, 50 % ≤ x < 75 %
4, 75 % ≤ x < 100 %
5, x ≥ 100 %

(1)

3.4. Performance Evaluation

The predicted (ML model) and simulated (HD model) overflow hydrographs are
compared to evaluate the overflow prediction. This calculation is performed for the
selected forecast horizon of 60 min (12 time steps) for each forecast starting point in the test
dataset. When choosing the metrics for evaluating the quality of the model, the focus was
placed on the subsequent application, the integration of the overflow prediction as input to
the flood area prediction model developed by Burrichter et al. [30]. For this reason, it is
essential that the overflow volume is as accurate as possible and that the peak overlaps in
terms of magnitude and time step of occurrence, in order to represent the resulting flood
areas at the ground surface correctly.

The volume error (VE), the peak error (PE) and the peak time error (PTE) are used as
performance criteria. In contrast to the usual practice in water management (e.g., DWA-M
165 [50]), the calculation of the volume error and the peak error are not based on relative
errors, but on absolute errors. This is intended to emphasise the error of large overflow
volumes, which significantly impact the resulting flooding situation.
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The absolute volume error is calculated by comparing the deviation of the accumulated
overflow volume between two time series:

VE =
n

∑
i=1

yNN
i − yHD

i (2)

Here, n denotes the number of time steps compared and yi represents the respec-
tive values of the individual time steps determined with the neural network NN or the
hydrodynamic model HD.

The peak error compares the maximum value of two overflow hydrographs, but
provides no information regarding the temporal overlapping. For this purpose, the time
error of the maximum value was also considered. Both criteria can be calculated using the
following equations:

PE = yNN
peak − yHD

peak (3)

PTE = yNN
t,peak − yHD

t,peak (4)

where ypeak and yt,peak indicate the peak value and the time of peak occurrence in the
overflow hydrographs calculated with the neural network or the hydrodynamic model.

4. Results
4.1. Evaluation of the Analyses Performed

In the present study, models were created for all the possible combinations of network
architectures, number of sensors, and measurement signals listed in Section 3.3 and their
performance was compared. The performance metrics were determined for all samples
of the 26 test events at all manholes. Table 2 summarises the mean value of every metric
for all models. Only the forecast results for samples and manholes where the overflow
volume for the forecast horizon is >500 litres in either the HD or ML model are included
in the calculation. The aim is to include only relevant overflow events in the assessment.
In the case of the TFT, the metrics were calculated using the error for the 0.5 quantile,
which corresponds to the mean absolute error. It should be noted that the naïve approach
provides the same result in all variants, as no overflow is ever predicted. In addition,
the results for the variants without measuring stations do not vary among the measuring
signals considered, as no measurements were considered as input. Based on the table, the
following conclusions can be drawn with regard to the individual analyses.

• Comparison of model architectures: The comparison of the different model architec-
tures shows that the naïve approach, as well as the CNN and LSTM, deliver signifi-
cantly worse forecasts than the other model architectures. In some cases, CNN and
LSTM even show worse results than the naïve approach. Even if the TFT does not
perform best across all the considered variants, a TFT model achieves the best overall
result for each metric. However, the results for the Seq2Seq model and the TFT are
usually close to each other.

• Comparison of the number of sensors: A larger number of sensors does not have
a positive influence on the results, as the variants with 20 sensors tended to achieve
poorer results. The variants with one sensor and no sensor, on the other hand, are
close to each other in most cases. The best overall results for all three metrics were
achieved for a variant with one sensor.

• Comparison of measurement signals: No clear tendency towards one variable can
be recognised for the measurement signals considered. In the variants with one
station, only the results for the water level stand out negatively for the two best model
architectures—Seq2Seq and TFT. The lowest volume error and the lowest peak time
error were achieved when measuring the filling degree. The lowest peak error was
obtained by the approach with five filling classes.
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Table 2. Evaluation result for all models and variants (the best result for each variant and metric is
highlighted in bold, and the best overall result for each metric is additionally underlined).

Model
20 Stations 1 Station No Station

VE
[L]

PE
[L/s]

PTE
[min]

VE
[L]

PE
[L/s]

PTE
[min]

VE
[L]

PE
[L/s]

PTE
[min]

Discharge

Naïve Zero 138.65 199.30 27.50 138.65 199.30 27.50 138.65 199.30 27.50
CNN 235.58 148.54 20.32 228.65 169.03 25.51 208.87 152.20 20.70
LSTM 147.61 179.65 10.55 174.80 246.92 7.84 169.46 181.34 7.84

Seq2Seq 90.73 85.41 7.13 49.07 83.81 5.96 50.51 74.04 6.12
DA-RNN 133.41 154.09 5.08 85.79 99.92 6.11 96.08 112.13 8.01

TFT 92.84 136.83 15.82 44.25 79.77 2.53 61.13 91.45 4.04

Water depth

Naïve Zero 138.65 199.30 27.50 138.65 199.30 27.50 138.65 199.30 27.50
CNN 200.96 137.53 22.10 259.23 154.80 22.07 208.87 152.20 20.70
LSTM 157.30 170.15 8.20 137.15 178.62 9.29 169.46 181.34 7.84

Seq2Seq 77.10 76.65 5.18 89.24 96.58 4.03 50.51 74.04 6.12
DA-RNN 101.18 117.02 4.52 62.94 84.53 7.34 96.08 112.13 8.01

TFT 62.05 101.91 2.12 57.76 101.35 2.64 61.13 91.45 4.04

Filling degree

Naïve Zero 138.65 199.30 27.50 138.65 199.30 27.50 138.65 199.30 27.50
CNN 225.52 160.67 19.54 270.09 168.48 26.15 208.87 152.20 20.70
LSTM 147.70 168.95 10.29 157.77 184.91 7.36 169.46 181.34 7.84

Seq2Seq 97.99 98.01 9.56 43.39 90.01 2.16 50.51 74.04 6.12
DA-RNN 80.77 100.03 4.58 108.75 103.39 8.65 96.08 112.13 8.01

TFT 43.19 78.49 3.10 36.93 77.42 2.07 61.13 91.45 4.04

Filling class (5 classes)

Naïve Zero 138.65 199.30 27.50 138.65 199.30 27.50 138.65 199.30 27.50
CNN 271.46 171.68 19.61 300.05 178.35 25.37 208.87 152.20 20.70
LSTM 151.27 170.61 10.43 160.64 176.63 6.67 169.46 181.34 7.84

Seq2Seq 78.38 91.00 10.31 59.15 78.35 4.08 50.51 74.04 6.12
DA-RNN 102.93 126.97 7.80 65.84 93.26 5.05 96.08 112.13 8.01

TFT 86.68 125.77 4.90 44.25 73.72 2.71 61.13 91.45 4.04

Since the selected measurement signal has only a minor effect on the prediction
quality, only models with filling classes as input were considered for further analyses. This
is because this measurand is the least precise of those tested, so it is more likely to be
captured with low-cost sensors. In addition, the variant with one station was considered
in the subsequent sections, as the best overall result was obtained with this variant. The
model performance of the three best models—Seq2Seq, DA-RNN, and TFT—for the variant
with filling classes at one measuring station was analysed in more detail. For this purpose,
the violin plot shown in Figure 6 was created for the individual metrics and models. The
plot relies on the same metric values used for calculating the mean values in Table 2. Based
on the violin plot, the scattering and density of the results are visualised. This clearly shows
the better performance of the TFT, which has the least scatter for all metrics and where the
highest density of the metrics is close to the optimum in each case. Unlike the Seq2Seq and
DA-RNN models, large outliers occur only in the peak time error for the TFT. These appear
in the case of long, uniform overflow events, which somewhat weaken their relevance in
the overall result analysis. The TFT slightly underestimates the volume and peak value
compared to the other models. However, as only forecasts of extreme events with more
than 500 litres of overflow volume were taken into account, these deviations are tolerable.
Since the results for other measurement signals are similar, no additional visualisation
is provided.
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In the next step, the influence of each individual input signal on the forecast results
of the TFT was analysed. In particular, the aim was to investigate why the variant with
20 measuring stations led to poorer results in the analyses performed. Due to the VSN
blocks described in Section 2.2, it was possible to determine the influence of the individual
input features on the result generation for the TFT. Figure 7 shows the importance of the
different input features for the encoder and the decoder on the forecast generation. The
variants with 1 and 20 measuring stations are illustrated, considering the filling classes
as measuring signals. At this point, it should be noted that the encoder receives features
of the past time steps and the decoder features of the upcoming time steps as input. As
expected, both models show the high relevance of the precipitation forecast, which is used
as input for the decoder. In the case of the encoder, it can be seen that while most of the
features influence the forecast results in the variant with 1 station, only a few features are
relevant in the approach with 20 stations. One reason for this could be the high correlation
between the individual filling class measurements with one another, but also with the fallen
precipitation. As a result, the added value of the many measurements is low and leads to
unnecessary complexity of the model. Since the training dataset used comprises fewer than
10,000 pairs, it can be categorised as relatively small for training deep learning models. Due
to the combination of both above-mentioned facts, the capacity of the model to learn the
essential features and their underlying patterns is compromised.
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4.2. Forecast for a Historical Heavy Rainfall Event

The TFT model for the variant with one station and filling classes as measurement
signal was tested for the final evaluation using two historical heavy rainfall events. The
events occurred on 3 July 2009 and 3 July 2010 in the study area and had maximum return
periods Tmax of >200 and >1000 years, respectively. It should be noted that the values of the
return periods were determined by extrapolation based on applicable extreme precipitation
statistics for this study area. Figure 8 shows precipitation forecasts and the predicted
overflow hydrographs at six manholes in the catchment area. The following conclusions
can be drawn from the figure.

1. In some cases, the 0.5 quantile matches the simulated target value very well, but
there are also significant deviations in other cases. In addition, the uncertainty range
between the 0.02 and 0.98 quantiles increases with larger deviations.

2. Longer overflow events can be predicted with high accuracy, while short peaks can
result in extreme deviations of >100% at the maximum value and of the resulting
overflow volume. This is particularly illustrated in the forecast hydrographs for the
event of 3 July 2009. While the longer overflow period at nodes 68079092 and 68079045
is forecast with a high degree of accuracy, the hydrograph for the short peak at node
69079015 deviates significantly.

3. In this figure, there is no recognisable tendency of the model to consistently under-
or overestimate overflow hydrographs at the manholes shown. This finding can also
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be confirmed after analyses of other manholes in the catchment area, which are not
shown here.
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5. Discussion

The results show the good performance of the TFT compared to the benchmark models.
In particular, the scatter of the results is significantly lower, and there are no extreme
overestimations compared to the benchmark models. The forecasts of the final model
show good agreement with the simulation results in some cases. However, considerable
deviations still occur in some cases, particularly during short flooding events. One reason
for this is that the prediction of extreme values occurring over short periods is generally
a challenging task. The same problem has been identified in similar studies [27,29]. As
a possible solution, Palmitessa et al. [29] did not estimate the overflow directly. Instead,
they used a network architecture that first calculates the inflows and outflows of a node,
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with which the overflow is then calculated using a mass balance included as an additional
layer. In addition, it should be noted that in the present work, the models used perfect
precipitation measurements and forecasts, as well as simulated filling measurements in the
drainage system as input. In operational use, these data are subject to uncertainties, which
have an additional effect on the prediction results. Accordingly, further investigations with
real measurements and forecasts are required to evaluate the impact of these uncertainties
on the forecast results. In addition, the overflow prediction should serve as an input for
the model developed by Burrichter et al. [30] to predict flooded areas. Thus, a coupled
evaluation should also be conducted to determine whether the developed overflow model
provides added value.

The reason for the development of the overflow forecasting model described was
its integration into an early warning system. Due to the problem that the uncertainties
in precipitation forecasts for heavy rainfall events increase substantially after just one or
two hours [41,51], the forecast horizon was set to one hour. Short calculation times are
an essential requirement for the overflow prediction model to make the best use of this
forecast horizon. All models considered in the investigations met this requirement and
delivered forecast results within a few seconds. This means that all models, including the
TFT, are suitable for real-time operation in inference mode. Nevertheless, at this point, it
should be noted that transformer models such as the presented TFT generally have high
computational requirements. Although this does not restrict its application for the task
proposed, the training on a GPU (NVIDIA RTX 2080 Ti) for 100 epochs lasted 18 h for the
TFT compared to a training duration of a few minutes for the other models. Returning
to the point regarding suitability for real-time operation and especially when expanding
the TFT model to larger areas, it is possible, therefore, that more computing power and
consequently higher costs are required to enable low-delay forecast generation.

The poor performance of the models with a measurement network of 20 stations
was somewhat unexpected. One assumption is that the high spatial sensor density does
not provide any added value in this application due to the high correlation between the
measurements. However, it should be noted that this could only be proven in the evaluation
with perfect precipitation measurements and forecasts and with no restrictions in the sewer
network, for example, due to clogged inlets. As in the real world, such conditions are
unlikely, it is therefore expected that considering many sensors and the associated swarm
intelligence can result in advantages. Another way to generate added value through the
measurement network is to integrate the measurements to correct the model results, as
described by Zhu et al. [28]. Processing the sensor measurements as a spatially structured
graph sequence instead of an unordered time series may offer further optimisation potential.
For example, in the field of traffic forecasting, the combination of transformers with graph
neural networks has proven to be very effective [52,53].

A major limitation of the presented approach is the missing generalisability. Due to
the absence of system information about the sewer network, the trained model cannot
be transferred to other areas. This also means that as soon as changes are made to the
network, a new training dataset has to be generated and the model has to be retrained.
These changes can be structural changes to the system, the allocation of new areas to the
sewer network, or a change in the settings on the controls of central structures. To a certain
extent, the resulting uncertainties can be tolerated, but at a certain point, new training is
unavoidable. To solve this problem, one approach could be using physically guided [29] or
physically informed [54] neural networks.

In addition to the selected ML method, the quality of the results largely depends on
the data available for the model training. On the one hand, the quality depends on the hy-
drodynamic model’s accuracy, which provides target variables for the training process. On
the other hand, in operational usage, the input variables should be as accurate as possible.
Various approaches for refining existing measurement networks, such as the integration
of low-cost precipitation sensors [55], can be helpful in this context. While overflows at
central structures of the drainage system are sometimes monitored, it is currently not eco-



Hydrology 2024, 11, 41 16 of 19

nomically feasible to measure overflows down to manhole level. Accordingly, no suitable
measurement data are available as a target variable for model training. Nevertheless, the
chosen approach of training machine learning methods using hydrodynamic calculation
results offers the possibility of providing a capable real-time prediction model. Additional
measurements at manholes that are particularly prone to flooding would therefore be
highly desirable to improve the quality of the prediction model beyond that of the HD
model by using transfer learning techniques. In addition, measurements of overflow from
sewer manholes would be helpful to validate the results of the prediction model.

6. Conclusions

In the present study, an overflow prediction model was developed that forecasts the
overflow at 975 manholes in the study area considered. As input, the model uses the
measured and forecast precipitation as well as measurements in the sewer network. It was
shown that the best results could be achieved with a temporal fusion transformer model.
The final model generates forecasts within seconds and is suitable for implementation
in early warning systems. A measuring network of 20 sensors in the sewer considered
as an additional input variable did not prove to be useful for the application described.
In contrast, better results could be achieved by considering only one measuring station
at the outlet of the sewer network. With the different measurement signals taken into
account, it was shown that the chosen signal only slightly impacts the results. Accordingly,
measurement signals with lower quality, such as the filling classes, can also be used.

However, various limitations of the model were also identified during the inves-
tigations, and research questions remain unanswered. The following can therefore be
emphasised as essential future research needs.

1. The optimisation of the final model with regard to the forecast of overflow hydro-
graphs with short peaks. On the one hand, this can be achieved by considering further
input features or a larger training dataset. On the other hand, testing with other
network architectures, such as graph neural networks or different types of trans-
former models, could be helpful. In addition, further optimisation to improve the
accuracy of the final model could be attempted with the implementation of systematic
hyperparameter tuning.

2. Investigations on the coupled assessment of real measurement networks and the
forecast models for precipitation, overflow and flooded areas. The first step is to
evaluate the performance of the coupled forecasting system itself. In addition, it
is also necessary to test alternatives for ensuring that the uncertainties of the in-
dividual components in the forecasting process are adequately taken into account
and visualised.

3. Establishing the model’s scalability for broad application at urban-area level is also
necessary. One possibility for this could be the use of physically informed or physi-
cally guided neural networks, which, if set up appropriately, allow transferability to
other areas.
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9. René, J.-R.; Djordjević, S.; Butler, D.; Mark, O.; Henonin, J.; Eisum, N.; Madsen, H. A real-time pluvial flood forecasting system for
Castries, St. Lucia. J. Flood Risk Manag. 2015, 11, 269–283. [CrossRef]

10. Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional
flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [CrossRef]
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