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Abstract: Water velocity and discharge are essential parameters for monitoring water resources
sustainably. Datasets acquired from Unoccupied Aerial Systems (UAS) allow for river monitoring at
high spatial and temporal resolution, and may be the only alternative in areas that are difficult to
access. Image or video-based methods for river flow monitoring have become very popular since
they are not time-consuming or expensive in contrast to traditional methods. This study presents a
non-contact methodology to estimate streamflow based on data collected from UAS. Both surface
velocity and river geometry are measured directly in field conditions via the UAS while streamflow
is estimated with a new technique. Specifically, surface velocity is estimated by using image-based
velocimetry software while river bathymetry is measured with a floating sonar, tethered like a
pendulum to the UAV. Traditional field measurements were collected along the same cross-section of
the Aggitis River in Greece in order to assess the accuracy of the remotely sensed velocities, depths,
and discharges. Overall, the new technique is very promising for providing accurate UAV-based
streamflow results compared to the field data.

Keywords: hydrologic monitoring; image-based velocimetry; river; sonar; surface velocity;
streamflow; unmanned aerial vehicle; water depth; water discharge; water level

1. Introduction

Water velocity and streamflow (or water discharge) are fundamental parameters uti-
lized to describe the hydrologic regime characteristics; thus, are necessary parameters
for sustainable water resources management plans, flood warning systems, conservation
and protection structures, implementation of nature-based solutions, etc., [1–3]. Various
hydraulic structures are used to estimate the streamflow by measuring the water level
e.g., depth water scale or stilling wells [4], flumes either Venturi or Parshall [5], and
bubblers based on the pressure (in psi) [6]. A common field method is the velocity me-
ter. The river cross-section is typically divided into subsections (see Figure 1). In each
subsection, the water depth and average flow velocity are measured to obtain the wa-
ter discharge [7,8]. Another commonly used traditional flow monitoring method is the
establishment of a rating curve between the water level and the streamflow in order to
indirectly estimate the discharge by real-time water level measurement measures [9]. It
is important to note, that the river’s cross sections (depth and width, area) may change
over time due to vegetation growth and river-bed erosion and deposition and this implies
the need for additional time and effort for the frequent monitoring to be accurate [10].
This is why in many cases streamflow measurements are taken at a stable cross-section
(e.g., under a bridge or culvert). These approaches demand specialized personnel and
also are time-consuming. In addition, the flow measurements in flood events are diffi-
cult (typically impossible) as there is considerable risk for the operator in high water dis-
charges [11,12]. In such extreme events, they are not enough data points for the rating curve
approach; so consequently, the curve cannot be extrapolated [13]. Other typical methods,
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including Acoustic Doppler Current Profiler (ADCP) [14,15], Acoustic Doppler Velocimeter
(ADV) [16,17], high-frequency Doppler radars [18,19], and remote sensing observations
via satellite or airborne images [20,21], have been widely applied. These methods also
require expensive equipment, laboratory work, and highly expert personnel. Furthermore,
hydrologic and hydraulic modeling is another method that can provide hydrographs but
requires long-term observed field datasets for their proper calibration and validation of the
models [22,23].
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Figure 1. Diagram of channel cross section with subsections. The most common method used by the
USGS for measuring velocity is with a current meter. However, a variety of advanced equipment
can also be used to sense stage and measure streamflow. In the simplest method, a current meter
turns with the flow of the river or stream. The current meter is used to measure water velocity at
predetermined points (subsections) along a marked line, suspended cableway, or bridge across a
river or stream. The depth of the water is also measured at each point. These velocity and depth
measurements are used to compute the total volume of water flowing past the line during a specific
interval of time. Usually, a river or stream will be measured at 25 to 30 regularly spaced locations
across the river or stream. Source: USGS Public Domain.

Nowadays, image-based techniques have proved to be a popular and reliable non-
intrusive method to measure hydrological parameters for river monitoring [24]. These
methods allow easy, low-cost, and real-time measurements at any flow conditions and at
high spatial resolution [25]. Image-based velocimetry is an optical method that computes
surface water velocity maps from videos (or extracted time frames) recorded by a cam-
era [26]. Surface tracers are detected and tracked in order to measure the distances and
time; thus, directly calculating the surface velocity vectors [27]. Applications with different
image-based velocimetry (IV) methodologies (different approaches/formulas) have been
exploited by researchers worldwide. Among the various image-based methods [28–31],
there are two different approaches that have been widely accepted in monitoring the ve-
locity of natural rivers: (a) the large-scale particle image velocimetry (LSPIV) and (b) the
large-scale particle tracking velocimetry (LSPTV). Both techniques were originally devel-
oped for laboratory experiments under controlled conditions as particle image velocimetry
(PIV) and particle tracking velocimetry (PTV) techniques [32]. Their further implementation
in natural conditions has led to the addition of the term “large-scale”.

These image-based techniques use the frames captured by a video, in order to analyze
the movement of floating tracers on the water surface and in this way estimate the surface
velocity of the fluid. LSPIV adopts the Eulerian approach and estimates the velocity at
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image sub-regions, while LSPTV uses the Lagrangian approach to reconstruct the trajectory
of individual particles transiting in the field of view [33]. Both techniques (LSPIV and
LSPTV) have rapidly evolved due to the new generation of optical sensors, digital cameras,
and methodologies as well as the decrease in their cost that has made them affordable to a
wider audience [34,35]. Finally, specialized cameras (e.g., thermal imaging or night vision)
have been used to eliminate the disadvantage of image recording during the night [36,37].

The establishment of ground control points (GCPs), or ground reference points (GRPs),
as benchmarks is a necessary step in oblique imagery [38]. This step is required in order
to ortho-rectify the images when the camera is positioned at an oblique angle in contrast
to the water surface [39]. This technique induces the error of the perspective distortion
which is the direct result of the camera placement in relation to an object. Objects which are
closer to the camera always appear larger than those further away. In these cases, image
correction and ortho-rectification are required, especially when the imaging device cannot
be oriented rectangularly on the water surface or when the camera lens produces extremely
distorted images, as is the case with fish-eye lenses [40]. Generally, at least 4 GCPs are
acquired for image calibration and ortho-rectification, thus the area must be accessible to
human operators [41]. The images are ortho-rectified using the GCPs and are assigned in
real metric dimensions. Proper image correction, often recorded at an oblique angle, is
one of the biggest challenges, but recently very promising results have been achieved [42].
Tauro et al. (2014) performed experiments by using laser pointers on permanent gauges
to estimate true distances in the image domain and to avoid the usage of GCPs [43].
Le Coz et al. (2010) used a mobile LSPIV system which consisted of a digital video
camera (Canon MV750i) set on a mobile telescopic mast whose height could be set from
2 to 10 m [44]. The camera was remotely controlled from the ground, in order to adjust
view angles. For each test, 10 GCPs (white and red 40 cm by 40 cm square targets) were
positioned along both banks of the river.

Recently, the implementation of image-based monitoring by utilizing unoccupied
(or unmanned) aerial systems (UASs) has increased [45–48]. The acronym “IV-UAV” was
proposed to describe the image-based methodology and distinguish it from those applied
through other means (not UAVs) [49]. IV-UAV has been proved as an efficient and power-
ful technique for measuring river surface velocities worldwide [50–52]. There are many
advantages they offer in contrast to other relevant techniques for natural river monitoring.
For instance, image-based methods work well in the case of shallow flows to reconstruct
rating curves and estimate discharge in riverine systems, enabling flow field measure-
ments rather than point-wise estimations, the instrumentation is of low-cost in contrast to
other practices and the streamflow monitoring/recording is a fully remote procedure to
avoid dangerous conditions through water contact [53–55]. Additionally, in some cases
(e.g., inaccessible areas), the IV-UAV method may be the only realistically available for
streamflow measurements. The UAVs, which contain a GPS/GNSS system, greatly in-
creased the flexibility of the camera location and imaging height. Tauro et al. (2016)
experimented with a system of lasers equipped on a tetra copter UAV which enabled
remote photometric calibration without the need for time-consuming and expensive field
campaigns for GRPs acquisition [56]. If tilt and lens distortion effects on resultant veloc-
ities are small, time-consuming control-point surveys may not be required [57]. This is
achievable, since the cameras which are mounted on UAV platforms can be maintained
in a vertical position due to their GPS/GNSS system, intensive rectification of imagery
due to image distortion and tilt is not always required [58]. A perpendicular or nearly
perpendicular orientation of the optical axes of these instruments in relation to the water
surface (when the plane of view of the UAV’s camera is parallel and flat to the XY plane),
means that the ortho-rectification of images is not required as the drone x, y position is
equal to the x, y position of the center of the image. [59–61]. The motorized gimbal on the
UAS ensures that the camera is nearly orthogonal to the ground surface once the gimbal
has been calibrated in reference to a flat surface. The concern arises when wind velocity
is increased, and the hovering position cannot be stable (or even difficult to fly) and the
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application should be avoided. During rapid UAS movement or high winds, the camera
may briefly tilt to a minor degree, but within fractions of a second, the gimbal returns
the camera to an orthogonal perspective [62]. Additionally, this error is minimized when
flying on a “tripod” mode which promotes stable and slow UAV hovering. An alternative
way is to extract the video frames which do not present any distortion (part of the video
which is stable). In other cases, if the distortion is visible and must be removed, there are
many free or commercial software that can be used to minimize the induced errors because
of the lens distortion [63]. In general, lens distortion can be grouped into automatic or
library-based and manual-based distortion removal. As the name entails, the automatic
distortion removal does not require great input from the user and is relied on the distortion
removal on a library of known lens profiles [64]. Finally, the method employs parameters
and settings that require an expert background in image/video analysis (e.g., interrogation
area size, and cross-correlation parameters). These parameters are related to the specific
field conditions (e.g., height of flight, seeding density, tracers’ dimension, frame rate) and
may not be easily identifiable [65].

Limited research has been conducted to combine the IV-UAV method with a floating
sonar for water level/depth measurements in order to estimate the streamflow. This study
is an attempt to fill in this scientific gap. Sonar (Sound Navigation and Ranging), LiDAR
(Light Detection and Ranging), multimedia stereo-photogrammetry, and spectrally derived
bathymetry (SDB) have proved very suitable for bathymetric mapping [66]. Sonars can
reach large depth penetration while optical remote sensing methods are most suitable for
shallow waters [67]. Recently, Lin et al. (2022) applied the LSPIV method on shallow waters
(circulated flume) while the two-dimensional bathymetry in laboratory conditions was
estimated from the depth-averaged velocity and the continuity equation with the leapfrog
scheme in a predefined grid under the constraints of Courant–Friedrichs–Lewy (CFL) [68].
Various UAV-based systems (with sonars or not) have been developed for nearshore or
marine bathymetry monitoring [69,70]. Sanjou et al. (2022) utilized recently a drone-type
float with a Global Positioning System (GPS) receiver in order to detect the time-series of
self-position with a centimeter-order accuracy. In addition, an attached ultrasonic sensor
enabled the measurement of the local water depth [71]. By integrating data acquired by
unmanned surface vehicles (USVs) and UAVs a uniform bathymetric surface of a shore-
line was created [72]. A combination of sensors on an aerial drone, floating drone, and
underwater drone were utilized for bathymetric monitoring of reservoirs [73]. UAVs in
combination with ADCP and GPS were applied for river bathymetry modelling based
on optical remote sensing [74]. Bandini et al. [10] performed novel research by attaching
a commercially available fishing sonar (Deeper Smart Sonar Pro+), via a winch mecha-
nism, to a DJI Spreading Wings S9000 hexa-copter [75]. Finally, Ruffel et al. (2021) also
used a lightweight sonar device tethered to a UAV to easily measure the water depth
by applying river scanning [76]. This study follows the concept of the previous work of
Bandini [77] by combining (a) the IV-UAV method for surface velocity estimation and
(b) a UAV-tethered sonar for river depth estimation to eventually estimate the river dis-
charge. This combination should increase the accuracy of discharge measurements by
capturing in great detail the channel form, and estimating stream velocity, cost-effectively
and non-intrusively.

2. Materials and Methods
2.1. The Study Site

Aggitis Basin is located in the prefecture of Eastern Macedonia in Northern Greece.
The study site was a reach of Aggitis River (Figure 2). Aggitis (or Angitis) River is the
main water course that contributes to the Strymonas River that finally discharges to the
Strymonikos Gulf in the North Aegean Sea [78]. The Aggitis basin is surrounded by the
Menoikio Mountain at the west, Falakro Mountain at the east, and from the Ori Lekanis and
Paggeo Mountains at the southeast and southwest borders of the basin, respectively [79].
The hydrographic network is mainly characterized as a dendritic while in some areas it
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can be characterized as a more complex network form [80]. These areas are located in the
southern part of Mount Menoikio where due to the gorge of “Stena Petras” close to Alistrati
caves, the network shows a hybrid dendritic and parallel form. The same form of the
hydrographic network appears in branches of the Falakro Mountain, probably due to the
large slopes (>45◦) and the lithological formations in the area. In the whole floodplain area
of the Aggitis Basin, there is an extensive surface drainage/irrigation network including
the drainage ditch of the Tenagi Philippon [81]. Flood events are a frequent phenomenon in
the Aggitis Basin [82], especially in the area of Tenagi-Philippoi, but also in the floodplains
of the local torrents which are the dominant water course type in the area. The specifically
studied cross-section is located near Simvoli Village; the name “simvoli” (in Greek) means
“confluence” (Figure 3) to describe the conjunction of Aggitis River with Agia Barbara
stream and Xiropotamos stream (the last is the irrigation channel of Tenagi Philippon and
the Doxato stream). In the confluence location, a dam with movable gates was constructed
in 1930 in order to regulate the flow when extreme events occur and for irrigation purposes.
The highest flow of Aggitis that was measured (at the exit from the gorge of the same name)
is 100 m3/s (28-2-1931). Jackson estimated the maximum flow of Aggitis, at the point of
entry into the gorge of the same name (Simvoli dam) equaled 1040 m3/s, for the basin’s
area of 1630 km2 [83].
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2.2. The Innovative Method
2.2.1. The Hardware

In this research, the DJI Phantom 4 Pro (Figure 4) hovered at 20 m over the selected
location and captured a short video (30 s) in the “tripod flight mode” of the surface water
flow. Liu et al. (2021), proved that there are slight differences during low flow conditions
and at relatively low heights (e.g., 10–20 m) [84]. In their study, the flight height was
adequate to capture the natural surface tracers (bubbles) and to include the riverbanks
in the studied frame in order to measure the GCPs [84]. The drone hovered by using its
remote controller, able to fly away (the signal range is close to 7 km) from the pilot; but for
the needs of this study and for safety rules, the pilot was in close range to the UAV platform
(Figure 5). The UAV camera was set to perpendicular orientation in relation to the water
surface to avoid ortho-rectification. The photos’ resolution was 1920 × 1080, while the
shooting speed of the images was 30 frames per second (fps). The specifications of the drone
are depicted in Table 1 [85]. Bathymetry measurements were performed at a second similar
flight, by coupling this time a tethered sonar (the Deeper Smart Sonar PRO), specifically, by
tying the spherical tool likewise with a fish hook (see Figures 4 and 5b). Bathymetry sonars
always need to be positioned in contact with the water surface. The specific device is a
versatile and powerful sonar scans to a depth of 80 meters, using its secure Wi-Fi connection
to send detailed information directly to your smartphone or tablet [86]. It is used mainly
for fishing, as it marks the fish, locates underwater structures and elements, and maps
the terrains of the waterbody from a kayak/boat [87]. Recently, it was utilized in order to
estimate the volume of lakes and reservoirs based on aquatic drone surveys [88]. The results
obtained through the described UAV-Sonar-based methodology were further validated
(a) by traditional cross-section survey (field measurements applying a tape measure and
streamflow measurement via a propeller streamflow meter; (see Figure 6a,b) and (b) by
the measurements recorded by an installed telemetric hydrological station RSS-2-300 WL
(Geolux Ltd. Zagreb, Croatia) able to measure the surface velocity and water depth at the
current location. In addition, an installed water-level meter at the dam was used to validate
the bathymetric measurements (Figure 7a). Finally, the GCPs for geo-rectification were
measured by the GPS-GNSS antenna RTK “RUIDE NOVA R6” (GPS, GLONASS, BeiDou,
Galileo, SBAS) (SOUTH Group, Ruide Surveying Instrument Co., Ltd., Guangzhou, China)
(see Figure 7b).
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Table 1. The specifications of DJI Phantom 4 Pro based on its official website (https://www.dji.com,
accessed on 15 July 2022).

Drone Specifications (Aircraft and Camera) for the DJI Phantom 4 Pro

Weight: 1388 g
Diagonal size (no propellers): 350 mm

Max flight time: 30′

Max speed (sport/A mode/P mode): 72 km/h/58 km/h/50 km/h
Satellite positioning: GPS/GLONASS (both)

Hover accuracy range: Vertical ± 0.1 m and Horizontal ± 0.3 m
Battery capacity: 5870 mAh LiPo 4S 15.2V

Supported SD Cards Micro SD ≤ 128GB
Camera Sensor:
Effective pixels:

1” CMOS
20 million

Lens (FOV): FOV 84◦ 8.8 mm/24 mm (35 mm format equivalent)
ISO range Photo: 100–3200 (Auto) & 100–12,800 (Manual)

Still Photography Modes Single Shot, Burst Shooting, Interval,
Auto Exposure Bracketing

Photo Format: JPEG, DNG (RAW), JPEG + DNG
Video Format: MP4/MOV (AVC/H.264; HEVC/H.265)

Image size: (4:3) 4864 × 3648 & (16:9) 5472 × 3078
Gimbal Stabilization: 3-axis (pitch, roll, yaw)

Shutter Speed 8–1/2000s (mechanical) & 8–1/8000s (electronically)
Remote controller Operating Frequency: 2.400–2.483 GHz and 5.725–5.825 GHz

Operating Temperature Range 32◦ to 104◦F (0◦ to 40◦C)
Remote controller Battery 6000 mAh LiPo 2S

Mobile Device Holder 5.5′, 1920 × 1080, Android system (Tablets and smart
phones), 4 GB RAM + 16 GB ROM

https://www.dji.com
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2.2.2. The Software

The software used in this study is recorded in Table 2. The UAV was controlled from its
official smartphone application DJI GO 4. The images from the UAV and the terrestrial fixed
station were stabilized for the IV-UAV analysis. A good example of automatic distortion
removal is the commercial software PTLens; one of the most-used tools because it provides a
graphical Windows interface, a vast camera/lens database, good accuracy, and a reasonable
price [89]. Hugin is a panorama stitcher, graphical user interface (GUI) for Panorama tools,
and like other GUI front-ends, included a range of advanced features e.g., lens distortion
correction [90]. In this study firstly, the captured video was pre-processed for the reduction
of various undesired errors such as lens distortion and shaking of the camera (shift, rotation,
and focus). PTLens and Hugin software were utilized to remove lens distortion while
tilt (if appeared) was removed by using the “Deshaker Toolbox.” The Deshaker toolbox
was written by Gunnar Thalin as a widely recognized image stabilizer plugin produced
for the popular video player VirtualDub [91]. This toolbox generates an output file of the
estimated rigid body translations and rotations for all frames [92]. In addition, this tool uses
a high-performance image-based approach for stabilization, where movement is estimated
iteratively using a multi-resolution search (matching algorithm), so that large movements
can be calculated to high precision using the fewest possible calculations [93]. Deshaker
processes the video in two phases: (a) determines optimum parameters and (b) stabilizes
the video. The KMPlayer software is capable to extract the frames from the video. The
consecutive frames of the video were exported in images of 8bits (black and white color)
via the KMPlayer software developed by Pandora TV; a well-known multimedia player
that can play movies, music, and more. The images are greyscale for better and quicker
estimations. To perform the analysis, a part of all frames was selected that covered a period
of a few seconds from the video, based on the minimum displacement among the control
points. The time step was set at 33.33 ms based on the video’s frame rate of 30 fps.

Table 2. The software used in the proposed coupled method.

Software Purpose Developer

DJI GO 4 App UAV flight & record video Da-Jiang Innovations (DJI)

PTLens Lens distortion of video Tom Niemann-ePaperPress

Hugin Lens distortion of video SourceForge

Deshaker Tilt correction of video Gunnar Thalin

PIVlab Image analysis for the
surface velocity results William Thielicke and Eize J. Stamhuis

RIVeR Rectification of images
Antoine Patalano

Center for Water Research and Technology,
National University of Cordoba, Argentina.

Fish Deeper App Record and visualize
bathymetric results Deeper

Many user-friendly software programs are widely and freely available for image-
based velocimetry analysis, e.g., FlowManager, FUDAA-LSPIV, PIVlab, PTVlab, etc. [94].
The selected software for the image-based analysis was PIVlab [95], an open-source and
user-friendly tool of MATLAB, which has gained considerable attention for natural river
flow monitoring by many researchers [96,97]. Further pre-image editing was achieved
through the PIVlab which was used for the analysis of the captured frames. Rectification
of Image Velocimetry Results (RIVeR) is a complementary software to PIVlab and PTVlab;
suitable for fast processing on the rectification of the velocity vectors, especially when
video stabilization is not needed e.g., with fixed monitoring cameras [98]. The removal of
the video frame distortion requires a long time to be performed. For vector rectification,
a minimum number of GCPs are required to be measured in the field during the survey
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and next aligned on the video frame during the processing phase; thus, could increase the
overall time. Furthermore, RIVeR does not implement any tools for the accuracy assessment
of the rectification [99]. The interrogation area window size in PIVLab was set to two
passes to decrease gradually the pixels for the image-based analysis algorithm: (a) from 64
to 32 and (b) from 32 to 16. The PIV algorithm used was the Fast-Fourier’s Transformation,
in linear window deformation, and the sub-pixel estimator was set to Gauss 2 × 3 point.
The image pre-processing included by default the contrast-limited adaptive histogram
equalization (CLAHE) which locally enhances the contrast in the images with a window
size of 20 pixels for the image analysis. Finally, the recording and visualization of the
bathymetric measurements were done using the Fish Deeper application using a tablet
device. The overall steps of the methodology are presented in Figure 8.
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and post-processing steps.

3. Results

The studied reach that was captured parallel to XY plane by the UAV can be seen in
Figure 9. The red line represents a cross-section of the bridge that is used for the calibration
of the image. The real distance of this cross-section is 18 m. The results from the analysis
in PIVlab depicting in green color the vectors of the surface velocity are visualized in
Figure 10. The direction of the flow (as depicted in the image) is from the bottom towards
the upper part of the photo as it flows under the bridge to reach the gates of the dam. The
red line represents a cross-section of Aggitis River in order to visualize the surface velocity
range from the left bank to the right one (see Figure 11). The faster flow path is at the
right passage of the bridge where surface velocity exceeds the value of 1 m/s while there
are two places (bridge pillars) where the velocity is zero (as expected). The range of the
mean surface velocity is depicted in a colorized scale from 0 (dark blue) to 1.5 m/s (dark
red); (see Figure 12). The mean surface velocity at the selected cross-section was 0.85 m/s.
Figure 13 shows the results from the survey performed by the sonar attached to the UAV.
Sonar covered the same cross-section (depicted in red line) and the mean water depth was
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0.90 m. The stream bed is made of concrete at a specific location while sediment deposition
is found near the banks.
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Figure 13. The bathymetric result produced by the sonar survey along the cross section.

In regard to other field measurements, the hydrologic station recorded the mean
surface velocity at 0.70 m/s and the water depth at 0.91 m. The subsurface water velocity
(with the streamflow meter) was measured at 0.88 m/s while the mean depth based on
the tape measure was 0.92 m at the selected cross-section. Thus, the mean discharge
(streamflow), based on the current flow meter was measured at 14.57 m3/s, while based
on the hydrologic station it was 11.47 m3/s. The streamflow, based on the new method,
was estimated at 13.62 m3/s (see Table 3). Finally, Table 4 is a comparative and presents the
percentages of differences among the three methodologies utilized in this study.

Table 3. The estimated depth, cross sectional area, velocity and streamflow for the three uti-
lized methodologies.

Mean Values
/Methodology

Streamflow
Meter

Hydrologic
Station

UAV +
Sonar

Depth 0.89 m 0.91 m 0.90 m
Cross Sectional Area

(× 18 meters) 16.56 m2 16.38 m2 16.02 m2

Velocity 0.88 m/s 0.70 m/s 0.85 m/s
Streamflow 14.57 m3/s 11.47 m3/s 13.62 m3/s
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Table 4. Percentages of difference (%) among the three utilized methodologies.

Streamflow
Meter

Hydrologic
Station

UAV +
Sonar

Streamflow 14.57 m3/s 11.47 m3/s 13.62 m3/s
Streamflow

Meter 100% 78.72% 93.48 m2

Hydrologic
Station 127.03% 100% 118.74%

UAV +
Sonar 106.98% 84.21% 100%

4. Discussion and Recommendations

Among the various methods that exist (e.g., traditional velocity–area method, slope–
area methods, acoustic Doppler methods) [100] this study showcased an innovative ap-
plication of IV-UAV in combination with sonar bathymetry in order to acquire quick,
easy, and reliable results of streamflow. The specific methodology would have a great
impact on streamflow monitoring as well as capturing hydro-geomorphologic changes.
The accurate and reliable measurement of stream velocity plays an important role in lo-
cating “hot-spots” of soil erosion/deposition along the streambanks and the streambed.
Streamflow in natural channels usually varies substantially spatially. Specifically, velocity
varies from the surface of the water to the bottom of the streambed, from one side of the
bank to the other, along the pool-riffle morphology, and between meanders and straight
channels. Generally, water velocity is measured at 60% (100% is the water surface and 0%
is the streambed) on vertical velocities [101]. The meandering alters the locations of the
strongest and weakest flow resulting in important geomorphic implications for sediment
deposition or erosion processes and finally meander migration [102]. In addition, riparian
vegetation can significantly influence the morphology of a river, the channel geometry, and
the flow dynamics [103–105]. The extensive urbanization observed need to be considered
since urban planning/infrastructure engineering highly alter the stream’s kinetics and
velocity (e.g., channelization of streambanks, bridge, dams, fish ladders, etc.) [106–108].
Finally, climate change is altering the hydrologic regime and consequently the sediment
transport capacity and processes [109]. All the above make it a necessity to find a new tool
to be able to measure streamflow faster quicker and most cost-efficient. We believe the
method we tested will provide water managing authorities with an easily implemented
and user-friendly method.

Streamflow is among the most used methods to estimate the environmental flow of
rivers, with the key issue being the choice of appropriate criteria and tools for hydrologic
and hydraulic monitoring [110,111]. Environmental flow is the flow regime able to sustain
the natural values and services of water and water-dependent ecosystems on the natural
watercourses, riparian zones, and their floodplains [112,113]. Environmental flows are
essential to developing and implementing sustainable water management and the proposed
methodology could make a significant impact by a cost-effective increase of the monitoring
locations. Additionally, the European Green Deal could motivate agencies and responsible
authorities to adopt this method in order to further implement nature-based solutions (NbS).
NbS are defined as “living solutions inspired by, continuously supported by and using nature,
which are designed to address various societal challenges in a resource-efficient and adaptable manner
and to provide simultaneously economic, social, and environmental benefits” [114]. Understanding
streamflow dynamics and locations of erosion/deposition processes are critical elements
for the proper implementation of nature-based solutions [115]. Specifically, the type of
the nature-based solution, its dimensions, and its location (targeted approaches) will help
maintain the sustainability of natural streams [116,117].

Future research should include testing the method in different types of streams
(e.g., different bed materials, different channel sizes, widths, amount of tree cover and ri-
parian vegetation, slope, etc.). Generally, strong wind and heavy rainfall should be avoided
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as it is dangerous to fly the UAV under such conditions. But the advantage is that could go
later or the next day. The specific methodology might be more difficult to implement in
small order streams if the water depth is too low. In addition, vegetation plays an important
role. If the water surface is covered by the tree canopy, it is impossible to record proper
images to measure the surface water velocity, while the wire of the sonar is at risk to be
tangled with the tree branches. If trying to fly under the tree canopy, the GPS signal might
be weak and difficult to hover. Furthermore, the shadows of the tree canopy will induce
errors on the water surface for image analysis. In such cases, might have to fly when the
leaves have fallen. Larger rivers might be easier as monitoring points since in many cases
the width of the channel is quite big and in most cases, there is no closed vegetation canopy,
so might be easier to implement. In this case, we must be aware in order to record the
total width of the river (including ground control points). To achieve this, the UAV must
hover at a higher altitude and this probably would result in weaknesses in image analysis
(e.g., the tracers’ size may not be enough in order to be visible). We would like to expand
also to other types like braided streams. In these cases, we could record how the main water
paths of the river change through time and better understand the processes. Generally, we
would like to implement the method at ephemeral, intermittent, and perennial streams.

This methodology could be used by water managers to help provide best management
practices to reduce erosion and mitigate floods. If the velocity is low and the stream bed
is smooth, streams may exhibit laminar flow in which all of the water molecules flow
in parallel paths. At higher velocities, the flow is characterized as turbulent flow (water
molecules don’t follow parallel paths) [118]. Typically, streamflow in natural environments
is turbulent. Stream water has the capacity to carry a dissolved load, fine sediments, clay,
and silt particles as suspended load, and coarse sands and gravels as bed load. Fine par-
ticles will only remain suspended if the flow is turbulent. In laminar flow, suspended
particles will slowly settle into the bed [119]. The interaction between a turbulent flow
and a granular bed via sediment transport produces various bedforms such as ripples
(downstream-propagating transverse bedforms), chevrons and bars (bedforms inclined
with respect to the flow direction), and antidunes (upstream-propagating bedforms) [120].
With increasing discharge, the bottom velocity of the pool increases faster than that of the
adjacent riffles; thus, the streamflow sorts bedload material in different locations. Specifi-
cally, the coarsest material is deposited on the riffles and bars at relatively high flow whereas
fines are deposited in pools at relatively low flow [121]. Stream competence refers to the
heaviest particles a stream can carry and it highly depends on the stream velocity. Stream
capacity is the maximum amount of solid load (bed and suspended) a stream can carry.
It depends on both the discharge and the velocity (since velocity affects the competence
and therefore the range of particle sizes that may be transported) [122]. During floods
when stream velocity and discharge (and therefore competence and capacity) are very
high resulting in intense hydro-geomorphologic changes on streambeds and streambanks
from bed scouring (erosion), sediment transport (bed and suspended loads), and sediment
deposition [123]. Thus, through this methodology by increasing the locations of streamflow
measurements along with their frequency greater insight into the hydrologic regimes and
fluvio-geomorphic process will be gained. This should lead to the implementation of more
water management that are based on more accurate and detailed data that should lead to
more sustainability in the long-term and should help mitigate the serious problems that
the riverine ecosystem might be facing (e.g., erosion, deposition, flooding).

The innovative method, presented in this paper, improves the ability and reduces the
uncertainty in estimating and developing streamflow datasets on natural rivers by using
a UAV coupled with a sonar. The method is very easy to be implemented, it needs only
the proper certification based on European Union Legislation about UAV pilot license and
flight plans regulations/guidelines [124]. An important advantage against other methods is
the remote character of the technique. The method can be applied at inaccessible locations
and can cover long distances of reach. One of the requirements is to keep clear visibility
with the airborne platform for safety rules. In other methods, such as the typically used



Hydrology 2022, 9, 148 15 of 20

streamflow meter along cross-sections, this is time-consuming, while in most cases the
monitoring stations are stable. In addition, the installation of a monitoring station at a
regular place requires either proper authorization or extra funds for security purposes as
they are vulnerable to natural or manmade disasters (even thief issues). The proposed
method has the potential to address this challenge through rapid, on-demand, and high-
resolution spatial streamflow data [125]. Last but not least, the tools required (both software
and hardware) are of low-cost, and in some cases, even free (e.g., the software). This is a
major advantage when selecting the best monitoring method in all monitoring cases as
well as for hydrologic and hydraulic studies.

This method could be utilized by water managers to achieve sustainable water man-
agement (essential to know discharges throughout a year) and also understand better
when floods and erosion/deposition occur but also under what conditions (understanding
the processes). This should help mitigate the extreme events along the stream banks and
bed and the adjacent floodplains. For image velocimetry to be effective, the choice of
the velocimetry algorithm and its parameters, and also the design of the measurement
setup, camera calibration, general image processing, and signal filtering should be carefully
considered and chosen [126]. The absence of densely seeded surfaces (with surface tracers)
may lead to consistent flow velocity underestimations in diverse natural conditions [127].
The operator effect is another prominent error source in image-based velocimetry meth-
ods (trained personnel need to be hired). Video sampling, ortho-rectification parameters,
motion analysis parameters, and filters can also strongly impact velocity and discharge
measurements. [128].

Overall, this was a first attempt of implementing a doubling monitoring system on
natural rivers, so further study is needed to test the approach in different types of streams
as mentioned above. Although the new technique is very promising, the attached sonar
system is not a permanent device or cannot be remotely-monitored through a mechanism
able to wrap/unroll its wire. For this reason, a telemetric device must be developed that
will enable it to act as a cargo delivering platform. This should have attached a motor
to stretch or gather the sonar device while simultaneously not affecting the camera field
of view for the orthogonal captures (parallel to XY plane). This improvement should
significantly improve the utility of the methods and the ease-of-use to the operator.
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