
Citation: Lee, S.S.; Paliouras, M.;

Trifiro, M.A. Functionalized Carbon

Nanoparticles as Theranostic Agents

and Their Future Clinical Utility in

Oncology. Bioengineering 2023, 10, 108.

https://doi.org/10.3390/

bioengineering10010108

Academic Editor: Gou-Jen Wang

Received: 9 December 2022

Revised: 6 January 2023

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Review

Functionalized Carbon Nanoparticles as Theranostic Agents
and Their Future Clinical Utility in Oncology
Seung S. Lee 1,2, Miltiadis Paliouras 1,2,3,4,* and Mark A. Trifiro 1,2,3

1 Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
2 Lady Davis Institute for Medical Research—Jewish General Hospital, Montreal, QC H4A 3J1, Canada
3 Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
4 Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
* Correspondence: miltiadis.paliouras@mcgill.ca

Abstract: Over the years, research of nanoparticle applications in pre-clinical and clinical applications
has greatly advanced our therapeutic and imaging approaches to many diseases, most notably
neoplastic disorders. In particular, the innate properties of inorganic nanomaterials, such as gold
and iron oxide, as well as carbon-based nanoparticles, have provided the greatest opportunities in
cancer theranostics. Carbon nanoparticles can be used as carriers of biological agents to enhance the
therapeutic index at a tumor site. Alternatively, they can also be combined with external stimuli, such
as light, to induce irreversible physical damaging effects on cells. In this review, the recent advances
in carbon nanoparticles and their use in cancer theranostics will be discussed. In addition, the set
of evaluations that will be required during their transition from laboratory investigations toward
clinical trials will be addressed.

Keywords: carbon nanoparticles; theranostics; physical-directed therapies; tumor ablation; imaging;
cancer; genetic heterogeneity; clinical trials

1. Introduction

The use of nanomaterials in cancer theranostics has become of great interest over
the last few decades. Because many nanoparticles are in the range of 10–100 nm in size,
their half-lives in circulation are greatly enhanced compared to small active pharmaceu-
tical drugs [1]. In addition, these nano-formulations provide additional benefits, such
as alleviating off-target toxicity and evading the need to use strong excipients to stabi-
lize emulsions of nonpolar drugs in an aqueous environment [2,3]. The earliest forms
of nanoparticles in nanomedicine were focused on drug delivery to enhance the thera-
peutic index of pharmaceutical agents. For example, formulations, such as liposomal
doxorubicin (Doxil) and albumin-bound paclitaxel (Abraxane) are two of the well-known
clinically approved nanoparticles that have been used against different types of cancers
with success [4,5]. However, the greatest challenge to cancer therapeutics has become
genetic heterogeneity which allows neoplasia to genetically evolve and become resistant
to treatment regimes [6–9]. Although significant advances have been made in cancer bio-
logical therapeutics, fundamentally, they have not contributed to the development of any
alternatives toward addressing genetic heterogeneity.

In recent years, the utilization of nanoparticles has extended beyond the classical
drug delivery methods by exploiting their innate properties. Such unique properties of
nanomaterials include but are not limited to, utilizing their high surface area for the im-
proved cargo loading, enhanced magnetic properties, and unique optical characteristics,
which may be further manipulated by external stimuli, such as pH, temperature, light, and
magnetic fields [10,11]. There are several applications using nanoparticles as a component
to deliver physical-directed therapies. Several research groups have used nanoparticles
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for photothermal therapy by direct tumor injection [12–16]. While the technical difficul-
ties of direct intratumoral injection could be a challenge, the approach would allow for a
significantly higher concentration of nanoparticles localized in the tumor site [17]. How-
ever, a consequence of intratumoral injection combined with photothermal therapy is the
generation of excessive bulk heating, which leads to extended and unwanted damage
to normal tissue that would result in serious injury [12–16,18–20]. Carbon nanoparticles
(CNPs), like other inorganic nanoparticles, absorb light with extreme efficiency generat-
ing high surface temperatures. If placed adjacent to cancer cells, extensive hyperthermic
ablation is achieved [21–23]. They can also be uniquely functionalized on their surface.
For example, a multi-walled carbon nanotube with a diameter of 50 nm and a length of
1.5 µm will have approximately 104 attachment sites per single particle, and that can be
occupied with targeting and/or imaging moiety. By using these targeting measures, a
critical mass of nanoparticles can be accrued at a tumor site and, in conjunction with light
irradiation, can confer very focal tumor ablation. CNPs absorb light with extreme efficiency
and generate high surface temperatures (400 ◦C) in femtoseconds (fs) [24,25]. If targeted
at cancer cells, ablation will be sufficient to damage the targeted tumor cells but also the
neighboring cells resulting in a “near-field” effect during treatment. The significance of
this near-field effect on tumor-adjacent cells cannot be understated when acknowledging
the transformative influence cancerous cells have through the tumor microenvironment,
and the microenvironment itself is a risk factor for new neoplasia in situ [26,27]. Another
acknowledgment of phototherapy is the activation of immune responses, as a result of
releasing intracellular damage-associated molecular patterns (DAMPs) from the tumors
and increasing the immunogenicity of the tumor microenvironment [28–30]. The release of
DAMPs induces the maturation of dendritic cells, which will migrate to the lymph nodes
where the cross-penetration of antigen to differentiate naïve T cells into CD8+ T cells [31].
In addition, certain cytokines (IFNγ, TNFα, and various interleukins) have been reported to
increase. The activation of the immune response would have a positive effect on removing
the primary tumor and residual tumor cells [32].

Ultimately, research performed using a variety of different nanomaterials is aimed
at meeting the recognized shortcomings of cancer therapeutics. In this review, we will
describe the applications of CNPs as theranostic tools in cancer and discuss the challenges
faced by all nanomaterials as they advance toward clinical trials.

2. General Overview—Nanoparticles and Theranostic Applications

(i) Nanoparticles as carriers of therapeutic payload. In addition to the classical liposomes
and micelles, different nanomaterials have been used to load molecules of interest. Using
different methods, payloads have been loaded onto nanoparticles for enhanced delivery
to malignant tissues. Physical, non-covalent interactions, such as van der Waals forces,
hydrogen bonding, hydrophobic interactions, pi stacking, and different electrostatic inter-
actions, have all been utilized to load drugs onto different nanomaterials [33]. Not only
such preparations are reversible, but such molecules are also not chemically modified; thus,
they can remain active in their native forms. However, as a result of the non-covalent
interaction, the drug compound may become detached and reduce the delivery of the
effective concentration at the tumor site or elicit distant off-target or adverse side effects.
On the other hand, irreversible covalent conjugation of molecules of interest or utilizing
stronger interactions, such as avidin–biotin complexes, are preferred in other situations [34].
Covalent conjugation often requires the use of coupling agents and crosslinkers to form
bonds between functional groups, such as carboxylic acids, amines, thiols, maleimides, hy-
drazines, aldehydes, and more [35]. These nanoparticle-bound molecules would maximize
the therapeutic index of the pharmaceutical agent. Alternatively, the nanoparticle-payload
conjugate may be internalized to the cells via endocytosis, eliciting physiological damage
to cancer cells [36,37].

(ii) Nanoparticles responding to external stimuli. Whether employing a drug payload
delivery platform or exploiting a physical attribute of a nanoparticle as a cancer therapeutic
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modality depends on several factors, including accumulating and retaining the nanoparticle
at the tumor site. These can be accomplished by specifically formulating the nanoparticles,
such as optimizing the size of the nanoparticle or surface modification to enhance their
half-life (i.e., PEGylation or albumin) and/or including a tumor-specific targeting moiety.
Another means would be also exploiting the pathophysiological characteristics of the
tumor, such as enhanced permeability and retention (EPR). Together this would combine
maximizing the concentration with the activating property of the nanoparticle at the
tumor site (Figure 1). Activation methods that are being currently employed in preclinical
and clinical settings to induce or enhance treatment efficacy include exploiting the pH
differences between normal tissue and the tumor microenvironment or amplifying the
potential therapeutic effects through external means by applying light, magnetic fields,
and ultrasound.

Figure 1. The use of nanoparticles and energy to maximize the therapeutic index. In the tumor
microenvironment, the integrity of the blood vessel wall lining is undermined due to uncontrolled
vasculature growth, allowing increased accumulation of molecules. The use of nanoformulations to
prolong the half-life and to exploit such enhanced permeability and retention (EPR) effect is central
in the field of nanomedicine. pH: The tumor microenvironment is slightly more acidic (pH 5.5~6.5)
than normal tissues, allowing the selective release of therapeutic cargos from the nanoparticle
carriers. NIR Light: The use of near-infrared light (>800 nm) to excite nanoparticles for imaging and
photodynamic/photothermal therapies. Magnetic Field: Magnetic fields are applied to the tumor
to guide superparamagnetic nanoparticles toward the region of interest, as well as for magnetic
resonance imaging. Ultrasound: The combination of focused ultrasound and microbubbles can assist
in nanoparticle delivery and tumor ablation (HIFU thermal ablation and sonosensitization).
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Acidic Microenvironment. The abnormal metabolism and protein regulation in the
tumor microenvironment favors anaerobic glycolysis, thereby making the region more
acidic than normal tissues, with the microenvironment of the tumor typically ranging
from pH 5.5 to 6.5 [38–42]. In addition, the pH of lysosomes, where different biomolecules
are broken down, is in the range between 4.5~5 for normal cells and 3.5~5 for cancer
cells [43]. Accordingly, nanoparticles that selectively release therapeutic agents under acidic
conditions have been designed. Nevertheless, the kinetics of pH-based drug adsorption,
though it is often influenced by many physiological factors, some investigators have
reported that the total accumulation of drugs at the tumor site was not significantly different
between acid-cleavable nanocarriers and noncleavable nanocarriers [44].

Light. The application of light in biomedicine has been essential for confocal mi-
croscopy and imaging biopsies [45], and more recently in near-infrared spectroscopy, such
as neuroimaging the extent of cerebral oxygenation and hemodynamics [46]. Light may
be used to induce damage to tissues via phototherapies. This can be achieved with light
either creating radical oxygens and thereby provoking cellular cytotoxicity or by thermally
ablating the cells of the exposed region. Often laser light is guided to deliver a sufficient
amount of energy at a particular location leading to enucleation or vaporization of the
exposed tissues [47]. These laser-guided tissue ablation techniques can be further enhanced
by using molecules that exhibit strong optical properties. Phototherapy for cancers was
first introduced in the 1970s as a photodynamic therapy [48,49]. Photodynamic therapy
uses photosensitizers (e.g., Porfimer sodium, verteporfin, and temoporfin) introduced to
the body (usually not targeted), followed by light therapy, whereupon the photosensitizers’
absorbance of light (usually visible light wavelength) leads to chemical production of cyto-
toxic radicals, such as reactive oxygen species that cause cell apoptosis [50,51]. However,
photodynamic therapy is very limited in scope and cannot lead to significant tumor abla-
tion [52,53]. Furthermore, most photodynamic therapy photosensitizers are relatively small
molecules and are not targeted, which causes them to accumulate in unwanted cellular
tissues, such as skin, and elicit photosensitivity to sunlight following the treatment. Light
sources have been guided to excite photosensitizers that are delivered to the target using
nanoparticles for enhanced photodynamic effects and enhanced cell death [54]. Depending
on the nanomaterial, photothermal effects can be induced upon light excitation and thereby
cause local thermal coagulation and tissue necrosis without damaging the untargeted
regions [55]. Light-based nanoparticle therapies are presented with two challenges: (1) the
control of the temperature generated by nanoparticles upon exposure, and (2) extending
light penetration due to intervening tissue absorbance, especially at wavelengths between
270–665 nm.

Among multiple types of nanoparticles, gold nanoparticles (AuNPs) have been most
widely investigated in cancer research as agents to deliver photothermal effects. The shape
and size of these AuNPs may be altered to shift the peak absorbance range toward the
near-infrared (NIR) spectrum. Three AuNPs nanoparticle types (nanoshells, nanorods, and
nanocages) display plasmonic properties and have been reported to raise temperatures by
more than 20 ◦C when irradiated by an 805 nm laser at a power density of 0.8 W/cm2 for
less than 10 min [56]. NIR light has distinctive potential advantages in clinical research by
avoiding tissue absorbance and allowing efficient penetration through tissues [57,58].

Magnetic field. One of the advantages of using magnetic waves vs. visible and in-
frared radiation is that tissues rarely absorb magnetic waves, thereby allowing enhanced
penetration through the body [38]. Accordingly, materials that exhibit magnetic behaviors,
such as iron oxides, have been explored in nanomedicine in conjunction with external
magnetic fields. These external magnetic fields can be used to direct magnetic nanoparticles
to the region of interest for desired biological effects [59,60]. One of the most common uses
of the superparamagnetic properties of magnetic materials and iron oxide nanoparticles
(IONPs) is as contrast agents in the magnetic resonance imaging (MRI) [61–63]. It has been
reported that approximately 35% of clinical MRI scans require contrast agents to improve
the sensitivity and accuracy of the imaging [64] and as such, contrast agents based on iron
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oxides, such as magnetite, maghemite, or hematite, have been widely used to aid imaging
and diagnosis of lesions during MRI [65,66]. The superparamagnetic properties of IONPs
can also serve as carriers of pharmaceutical agents against specific diseases, thereby greatly
enhancing the therapeutic index [67].

The application of hyperthermia therapy with IONPs is distinct from the photothermal
therapies of AuNPs. Unlike light-based thermal therapies, alternating magnetic fields are
used to stimulate IONPs, which then subsequently generate frictional heat. The heat
generation of superparamagnetic IONPs depends on the strength of the magnetic field,
magnetic properties, and the size of the nanoparticles [60,68]. If the diameter of IONP
is smaller than 100 nm, heat is produced due to the friction of IONPs according to the
magnetic field gradient. On the other hand, for larger IONPs, heat is rather generated by
the rotation of the magnetic moment at each field oscillation [69,70]. As mentioned above,
magnetic hyperthermia is superior to light-based approaches in that the magnetic waves
may penetrate tissue better [71]. On the other hand, hyperthermia treatment, in general,
requires longer and repeated exposure with a magnetic field compared to the length of laser
irradiation required for photothermal ablation due to the limited power of magnetic fields.

Ultrasound. Focused ultrasound has been used for different applications, including
high-intensity focused ultrasound (HIFU) techniques for focal ablation of tumors [72] and
drug delivery to inaccessible regions, such as the central nervous system [73]. Focused
ultrasound uses the mechanical acoustic energy generated by piezoelectric elements to
cause a rise in local temperature, histotripsy with the fragmentation of tissues due to
extreme high-pressure waves generated [74], and temporary disruption of cell membrane
integrity [75]. One of the main advantages of focused-ultrasound mediated therapies
is that their depth of ultrasound penetration is not limited as much as electromagnetic
radiation, allowing access to tissues that are located in the deeper regions. Different
nanoparticles have been utilized to enhance the thermal effects of focused ultrasound
therapy [76] as well as to deliver drugs in nano-formulations for enhanced therapeutic
index [77]. Sonosensitizers, molecules that elicit potent toxicity to cells when combined
with ultrasound waves, may also be conjugated onto nanoparticles to deliver sonodynamic
effects against different tumors [78].

3. CNPs as Theranostic Tools for Cancer

Pure carbon exists in various allotropes, with the most well-known forms of naturally
occurring carbon allotropes being diamond (sp3 bonds) and graphite (sp2 bonds). The
electrical, mechanical, optical, and thermal properties of carbon-based materials and their
diverse allotropes have gained great interest in recent years in biomedical fields such
as biosensing, drug delivery, tissue engineering, and target-specific theranostics [79,80].
Among the different CNPs, graphene, carbon nanotubes, and fullerenes (Figure 2) are
three of the most commonly utilized materials in the biomedical field. Because of their
high surface area consisting of sp2-bonded carbon atoms, carbon nanoparticles are highly
hydrophobic in their pristine forms [79]. However, the surface of CNPs can be function-
alized, allowing them to become soluble in aqueous solutions [81,82]. Furthermore, CNP
surface functionalization allows for the application of surface chemistry options for the
attachment, non-covalently or covalently, of different molecules of interest for diagnostic or
therapeutic purposes.
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Figure 2. Carbon nanoparticles. 2D diagrams and electron microscope pictures of graphene, carbon
nanotubes, and fullerene C60. Parts of the electron microscope picture of graphene are reproduced
from [83], the electron microscope picture of carbon nanotubes is reproduced from [84], and the
electron microscope picture of fullerene is reproduced from [85]. Copyright permissions were
obtained from the authors for the republishing of the figures.

3.1. Carbon Nanotubes (CNTs)

CNTs are well-ordered, hollow, carbon graphitic nanomaterials with cylindrical struc-
tures consisting of graphene sheets rolled at specific and discrete angles [86,87]. First
discovered in 1991 by Sumio Iijima, CNTs have since then gained a reputation in biomed-
ical fields based on their unique structures and properties, including strength and size
(stability, high aspect ratio, and large surface area) [88,89]. Typically, CNTs are available
in single-walled forms (single-walled carbon nanotube, SWCNT) or multi-walled forms
(multi-walled carbon nanotubes, MWCNT, consisting of several layers of carbon sheets
rolled in concentric layers) depending on the method of synthesis [90]. Both forms have
been regularly used for biomedical purposes, and there are indications of which form
may be more suitable for specific purposes [91]. For example, SWCNTs consisting of a
single layer of rolled graphene sheet boast a large spatial surface area (up to 1300 m2/g
in SWCNT vs. a few hundred m2/g in MWCNT [92]), onto which a molecule of interest
may be loaded. Furthermore, due to the hollow inner structure, drugs may be incorporated
into the inner cavities of CNTs allowing for the protection of unstable drugs from the
biological environment and allowing for controlled drug release depending on the tube
diameter [93,94]. On the other hand, MWCNTs have more defects in their structure during
synthesis compared to SWCNTs, which, ironically, would make surface functionalization
and modification more accessible [91].

One of the biggest challenges in the use of CNTs is their innate hydrophobicity. CNTs
regularly aggregate into bundles when suspended in an aqueous environment and must be
dispersed before in vivo applications. Surface modifications of CNTs by acid oxidation can
introduce functional groups, such as carboxyl, hydroxyl, phenolic, and lactone groups, on
their surface [95], allowing for polarization of the CNT molecule and, therefore, enhancing
their solubility in aqueous solutions. If functionalized for water solubility, CNTs have
been observed to clear away from circulation within a few hours with no specific organ
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accumulation [96]. Carboxylated SWCNTs have also been reported to degrade naturally
within 90 days by phagolysosomal simulant fluid, avoiding any long-term accumulation
in organs [97]. Further surface modification with PEG chains can enhance their length of
staying in circulation. Longer PEG chains on the CNTs grant improved circulation times as
fewer nanoparticles coated with PEG5400 are observed to be removed from circulation by
the reticuloendothelial system (RES) compared to the PEG2000-coated ones [98].

The concept of CNT-mediated drug delivery to tumor targets is similar to other forms
of nanoparticle drug delivery. The aromatic rings of CNTs allow for both pi stacking and
hydrophobic interactions, which are two crucial non-covalent interactions essential for
NP-drug binding. Similarly, CNTs can also be used as scaffolds to carry and target drugs
for more enhanced therapeutic effectiveness; more often, these drugs alone have a narrow
therapeutic window due to systemic toxicity [89,99]. Classes of anticancer agents that
have been loaded onto CNTs for targeted delivery include topoisomerase inhibitors [100],
anthracyclines, such as doxorubicin [101], platinum-based drugs (DNA chelators, such
as cisplatin and carboplatin) [102], antimetabolites (disrupts metabolic pathways during
the formation of nucleic acids in cancer cells, including antifolates methotrexate and
purine/pyrimidine antagonists, such as 5-fluorouracil and gemcitabine) [103], and anti-
microtubules [104]. Once the CNT-drug complex reaches the tumor mass via active or
passive targeting, the complex is internalized, and the drug load is released by designated
mechanisms [99]. Several mechanisms have also been proposed for this enhanced cellular
uptake of CNTs, including energy-dependent receptor-mediated endocytosis [99,105]. On
the other hand, internalization of the CNTs may also occur across the cell membrane in
an energy-independent passive manner through diffusion or penetration [106,107]. Based
on their small size (sub-1 µm in length) and their needle-like shape, SWCNTs may also
penetrate across the membrane without energy expenditure by “piercing” the cell [108].
Accordingly, penetration into the cell membrane via such piercing processes has been
suggested as a mechanism for the cytotoxicity associated with CNTs. However, further
investigations are required to fully understand the effects of internalization and cytotoxicity
associated with carbon-based nanomaterials.

CNTs have distinct light-absorbing properties that also make them ideal candidates as
photothermal agents. First, they efficiently convert NIR radiation into a heat [107]. It has
been reported that exposure of CNTs to high-energy laser leads to a dramatic increase in the
temperature up to a few thousand degrees within microseconds [109]. The heat generated
by CNTs is a result of electronic excitation upon laser exposure which is converted into
a molecular vibrational energy [110]. Furthermore, unlike many bulk metals, CNTs also
possess a very broad electromagnetic absorbance spectrum covering both NIR I and II
windows ranging from 650 nm to 1350 nm, which is the ideal range for efficient tissue
penetration [111,112]. During the laser exposure, the temperature profile of CNTs and its
surrounding is a function of the distance relative to the radius of the CNT, with larger
diameter CNTs, maximizing the laser heating process [113]. Therefore, the photophysical
absorptive properties of CNTs may be engineered according to the “nano-antenna effect”,
by tailoring their length and diameter (the wall number of the tube) and, by doing so, retain
their unique radiation–thermal conversion efficiency required for the effective photothermal
therapy [114]. The initial study on the photothermal ablation of tumors using CNTs was
performed in 2005 by targeting the folate receptors in HeLa cells [115]. Confocal microscopy
imaging confirmed that upon reaching the targeted HeLa cells, the functionalized CNTs
were internalized, and with subsequent 5-min exposure to an 808 nm laser with a power
of 3.5 W/cm2, irreversible damage to the tumor incurred. Since then, different strategies
have been employed to further optimize CNTs’ photothermal efficiency. Cancer-specific
antibodies, such as α-PSMA [116], α-TSHR [84], α-IGFR1 [117,118], or α-HER2 [118], and
cell-specific α-CD22 and α-CD25 targeted antibodies [119] all have been used to achieve a
more selective cell ablation effects (see Table 1).



Bioengineering 2023, 10, 108 8 of 28

Table 1. Comparative table of nanoparticles for photo-ablation listed in this review 1.

Study Type of
Nanoparticles Indication Target

Amount of
Nanoparti-

cles
Used

Laser
Wavelength

(nm)

Laser
Power

(W/cm2)
Time In Vitro/Vivo

(Route) 2 Results and Comments

Carbon-based

Chakravarty
et al. (2008)
[119]

SWCNT Daudi (Burkitt’s
lymphoma) CD22, CD25 40 µL,

0.09 mg/mL 808 5 7 min in vitro

Specific in vitro photothermal cell ablation by
antibody-directed methods. Antibody-bound CNTs
remained with cells in serum solution despite washing with
PBS.

Dotan et al.
(2015) [84] MWCNT BCPAP (thyroid) TSHR n/a 532 2.7 30 s in vitro In vitro evaluation of MWCNT-mediated cell ablation. ~73%

cell ablation achieved.

Kam et al.
(2005) [115] SWCNT HeLa (cervical) Folic acid Up to 5 mg/L 808 1.4 2 min in vitro In vitro evaluation of SWCNT endocytosis and

CNT-induced photothermal ablation.

Khan et al.
(2012) [120]

Gold nanocage-
SWCNT

LNCaP
(prostate)

A9 RNA
aptamer
targeting

PSMA

3 nM 1064 2 10 min in vitro In vitro photothermal ablation of LNCaP cells using
GNC-CNT hybrid resulted in over 95% of cell death.

Krishna et al.
(2010) [121] Fullerenes BT474 (breast) No 30 µL of

0.45 mg/mL 785 0.5 10 min in vivo (i.t.)
Histological sections of tumors obtained 20 h post-treatment
showed up to 40% necrosis in the nanoparticle-treated mice,
compared to 20~50% necrosis in the control.

Lee et al.
(2017) [116] MWCNT LNCaP

(prostate) PSMA 75 µL of
60 µg/mL 532 2.7 30 s in vitro

>65% in vitro cell ablation. The temperature of the bulk
cell-CNT solution remains relatively consistent after laser
exposure.

Li et al. (2014)
[122]

Reduced
graphene oxide

AGS (gastric
cancer) Transferrin 50 µg/mL 800 Up to 0.03

Up to 45
raster
scans

in vitro Femtosecond lasers are used to evaluate in vitro
photothermal therapy of graphene oxides.

Lu et al. (2019)
[117] SWCNT BXPC-3

(pancreas) IGF1-R 300 µg/mL,
200 µL 785 1 5 min in vitro/in vivo

(i.v.)

SWCNT-based, image-guided photothermal therapy on an
orthotopic murine model of pancreatic cancer-bearing
BXPC-3.

Markovic et al.
(2011) [86]

Graphene and
SWCNT U251 (glioma) No Up to 10

µg/mL 808 2, spot size
6 × 8 mm

Up to 5
min in vitro

Graphene functionalized by PVP, CNT by DNA. In vitro
IC50 of 0.3 ± 0.0 µM and 4.2 ± 0.3 µM for graphene and
CNT respectively when irradiated for 5 min.

Robinson et al.
(2010) [111] SWCNT 4T1 (murine

breast) No 200 µL,
0.35 mg/mL 808 0.6 5 min in vivo (i.v.)

Compared the photothermal efficiency of SWCNT vs gold
nanorods in vivo. GNR required higher power (2 W/cm2)
to achieve complete tumor remission than CNT (0.6 W/cm2)
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Table 1. Cont.

Study Type of
Nanoparticles Indication Target

Amount of
Nanoparti-

cles
Used

Laser
Wavelength

(nm)

Laser
Power

(W/cm2)
Time In Vitro/Vivo

(Route) 2 Results and Comments

Robinson et al.
(2011) [123]

Reduced
graphene oxide

U87MG
(glioma)

RGD
peptide 6.6 mg/L 808 15.3 8 min in vitro Destruction of U87MG cells when incubated with RGD

peptide-functionalized reduce graphene oxide in vitro.

Shao et al.
(2007) [118] SWCNT BT474, MCF7

(breast)
IGF1R,
HER2

4 µL,
0.1 mg/mL 808 0.8 3 min in vitro

Two different functionalization—one with α-IGF1R
antibodies, and another with α-HER2 antibodies on
different sets of CNTs were prepared, incubated with the
cells, and irradiated with laser in vitro.

Torti et al.
(2007) [114]

Nitrogen-doped
MWCNT

CRL1932
(kidney) No Up to 0.083

mg/mL 1064 3 4 min in vitro
Evaluated the correlation of the length of MWCNT and their
photothermal effects. Longer (1100 nm) CNTs were better in
cell ablation (up to 95%) than shorter (300 nm) CNT in vitro.

Yang et al.
(2010) [124]

Nanographene
sheets

4T1 (murine
breast) No 200 µL,

20 mg/kg 808 2 5 min in vivo (i.v.) PEG-functionalized graphene sheets, passive targeting.
Complete remission of tumor after laser irradiation in vivo.

Yang et al.
(2012) [125]

Reduced
graphene oxide

4T1 (murine
breast) No 200 µL,

20 mg/kg 808 0.15 5 min in vivo (i.v.)

PEG-functionalized graphene sheets, passive targeting.
Complete remission of the tumor using reduced graphene
oxide and laser irradiation in vivo. Non-reduced graphene
oxides did not induce photothermal effects in mouse
models.

Gold-based

Chen et al.
(2007) [126] Gold nanocage SK-BR-3 (breast) HER2 Not specified 810 1.8 5 min in vitro

In vitro cytotoxicity was evaluated with calcein AM and
EthD-1 assay; a laser power density of 1.5 W/cm2 was
sufficient to induce a significant decrease in cell viability.

Gormley et al.
(2011) [127] Gold nanorod S-180 (murine

sarcoma) No
200 µL,

9.6 mg/kg,
OD = 120

808 1.6 10 min in vivo (i.v.) In vivo measurement of the internal temperature of the
tumor, ∆T of 13.7 ± 2.9 ◦C after 10 min of exposure.

Hao et al.
(2015) [128]

Gold nanoshell-
deposited PLGA

nanoparticle

U87MG (glioma) Angiopep-2
peptide

Up to 1.2
mg/mL 808

Not
specified 5 min in vitro/in vivo

(i.v.)

Loaded with docetaxel; the combination of photothermal
effects + DTX inhibited up to 70% of cell growth in vitro,
and up to 70% inhibition of tumor growth in vivo.

Not specified 1.5 1.5 min

Hirsch et al.
(2003) [129]

Gold-silica
nanoshell

SK-BR-3 (breast)
No Not specified 820

35 7 min in vitro/
in vivo (i.s.)

Temperature profiles were monitored with MRI. In vivo
temperature increase of 37.4 ± 6.6 ◦C on 4–6 min NIR
exposure.TVT

(canine
venereal)

4, 5mm spot
diameter <6 min
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Table 1. Cont.

Study Type of
Nanoparticles Indication Target

Amount of
Nanoparti-

cles
Used

Laser
Wavelength

(nm)

Laser
Power

(W/cm2)
Time In Vitro/Vivo

(Route) 2 Results and Comments

Huang et al.
(2006) [130] Gold nanorod HOC313 clone 8,

HSC3 (oral SCC) EGFR OD800nm = 0.5 800
10, 1mm

spot
diameter

4 min in vitro
In vitro cell viability was evaluated by trypan blue staining.
At 20 W/cm2 exposure for 4 min, normal untargeted HaCat
cells were also injured.

Liao et al.
(2015) [55]

Gold
nanorod-loaded

PCL
polymersome

C26 (murine
colon) No 200 µL,

50 mg/kg 808 2.5 5 min in vitro/
in vivo (i.v.)

Loaded with doxorubicin; hyperthermia-triggered release of
DOX. Up to 73% in vitro cell ablation with a combination of
GNR-DOX and laser, and the same protocol evaluated
in vivo caused tumor cell necrosis and the complete
removal of the tumor.

Loo et al.
(2005) [20] Gold nanoshell SK-BR-3 (breast) HER2 100 µL of 3 ×

109/mL 820 8 × 10−7 7 min in vitro In vitro cytotoxicity was evaluated with calcein
fluorescence.

Melancon
et al. (2008)
[18]

Hollow gold
nanoshell A431 (skin) EGFR 100 µL of 7.3

× 1010/mL 808 40 5 min in vitro/in vivo
(i.v.)

In vitro cell death was confirmed with EthD-1 staining.
Enhanced tumor accumulation with antibody targeting
compared to non-targeting GNS (not significant), confirmed
using 111InCl3 radiolabeling.

Piao et al.
(2016) [131]

Gold nanocage HeLa (cervical)
No

10 µg/mL
850 0.4

5 min in vitro/
in vivo (i.v.)

Loaded with cTL peptide for additional cell membrane
disruption. Applying laser to bare GNCs did not cause cell
damage in vitro, but the addition of cTL peptide did (cTL
mediated cell death,~60%). Compared 0.4 W/cm2 (no skin
damage) vs 1.0 W/cm2 (skin damage) in vivo with
cTL-GNC.

4T1 (murine
breast)

100 µL,
4 mg/mL 10 min

Sun et al.
(2014) [132] Gold nanocage MDA-MB-435

(breast)

SV119
targeting
sigma-2
receptor

0.2 nM 808 0.8 20 min in vitro
Loaded with doxorubicin; 80% reduction of cell growth
in vitro with laser-induced photothermal + DOX treatment,
while ~25% of cell growth without laser.

Topete et al.
(2014) [133] Gold nanoshell HeLa (cervical) Folic acid Up to 13 µM 808 2.5 5 min in vitro

In vitro data; loaded with doxorubicin and SPION;
hyperthermia-triggered release of doxorubicin, magnetic
guidance to the target using SPION.

Topete et al.
(2014) [134]

Branched gold
nanoshell

MDA-MB-231
(breast) Folic acid Not specified 808 2 10 min in vitro

Functionalized with human serum albumin and
indocyanine green, loaded with doxorubicin for
light-triggered release. In vitro: >90% cell death with DOX
loaded, albumin/ICG/folic acid-functionalized gold
nanoshell.
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Table 1. Cont.

Study Type of
Nanoparticles Indication Target

Amount of
Nanoparticles

Used

Laser
Wavelength

(nm)

Laser
Power

(W/cm2)
Time In Vitro/Vivo

(Route) 2 Results and Comments

Magnetic

Chu et al.
(2013) [135]

Iron oxide
nanoparticles

Eca-109
(esophagus) No

100 µL,
Up to 0.5 mg/mL 808 0.25

20 min in vitro/
in vivo (i.t.)

Iron oxide nanoparticles of different shapes (spherical,
hexagonal, and wire-like shapes) were evaluated; 50%
of cell death post laser irradiation In vitro, and
significant tumor growth inhibition with continuous
laser treatment after nanoparticle administration
in vivo.

70 µL,
8 mg/mL

20
min/day,
24 days

Espinosa et al.
(2016) [136]

Iron oxide
nanocubes

SKOV3
(ovarian), PC3

(prostate), A431
(skin)

No

[Fe] of 0.7 mg/mL,
of the nanocage

itself not specified 808
0.3, 0.8 5 min in vitro/

in vivo (i.t.)

In vitro results show that for SKOV3 cells, laser
irradiation resulted in 64% cell ablation while for dual
laser and magnetic hyperthermia combination over
85% of cell death was observed. Similar patterns were
observed for in vivo experiments—dual protocols for
tumor ablation were most efficient than either laser or
magnetic by themselves.

A431 50 µL,
14 mg/mL 0.3 10 min

Fu et al. (2020)
[67]

TiS2 nanosheet
anchored iron

oxide
nanoparticles

4T1 (murine
breast) No Up to 100 µg/mL 808/1064 0.3/1.0

5 min
in vitro/

in vivo (i.v.)

Used magnets to pull the nanoparticles toward the
target. A significant difference between targeting and
non-targeting groups in vitro was observed when 50
µg/mL concentration was used (<5% cell viability).
Tumor weight was 30% of the control with
photothermal ablation in vivo and further enhanced
when combined with immune checkpoint inhibitors.1064 1

Shen et al.
(2013) [137]

Chitosan-
modified iron

oxide

KB (oral SCC),
MCF-7 (breast) No

500 µL,
Up to 300 µg/mL 808

2 Up to 3
min in vitro/

in vivo (i.v.)

Cell viability dropped below 10% in vitro when the
nanoparticle concentration of 75 µg/mL was
incubated and irradiated with cells for 3 min. Low
toxicity associated with the chitosan-modified iron
oxide in vivo, complete tumor remission after the
combination of nanoparticle administration and laser
treatment.

S180 (murine
ascites)

200 µL,
10 mg/mL 1.5 5 min

1 If a study is divided, the top row represents in vitro data, and the bottom represents in vivo data. 2 Route. i.s. = interstitial injection; i.t. = intratumoral injection; i.v. = intravenous
injection (tail-vein).
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3.2. Graphene

In 2004, a single layer of graphene was isolated and characterized by Andre Geim
and Konstantin Novoselov at the University of Manchester using the “scotch tape” tech-
nique [138]. Graphene consists of a single layer of sp2-bonded carbon atoms that are
packed into a unique two-dimensional honeycomb crystal lattice [86,139]. Graphene oxide
(GO), a derivative of graphene, is often considered for biomedical applications due to the
ease of preparation, its richness in functional groups, and extensive surface area availabil-
ity [122,140]. Before the layers of graphene were discovered and isolated from graphite
crystals, which were shown to have unique electrical, optical, chemical, and mechanical
properties, it was merely regarded as a part of the graphite’s crystal structure [141]. The
planar structure, availability of functional groups, such as epoxy bridges, hydroxyl, and
carboxyl groups, and the abundance of delocalized pi electrons in GO sheets endow them
with an outstanding ability to immobilize different substances, including drugs, ligands,
and fluorophores for theranostics purposes [142,143]. In recent years, the properties of
graphene sheets have begun to threaten the dominance of CNTs in potential biomedical
applications. Graphenes, especially in the PEGylated forms, are reported to have lower
in vitro cytotoxicity compared to CNTs [144].

The large surface area of graphene also allows for the surplus availability of pi electrons
which can be used to form pi stacking interactions available to some aromatic anti-cancer
drugs, including doxorubicin and camptothecin [145]. The loading capacity and the release
of these anti-cancer drugs are found to be dependent on the hydrogen bond formed between
the hydroxyl and the carboxyl group of the GO and the amine groups on the drug, as well
as the pH of the environment [146,147]. Once administered and delivered to the targeted
cell, there are two proposed routes of internalization: one is energy-dependent endocytosis
or phagocytosis, and the other is energy-independent direct penetration into the target
cell [148]. Some suggest that the GO-based nanoparticles enter cells only through energy-
dependent endocytosis based on the lower cytotoxicity observed in cells by GO-based
nanoparticles compared to the cytotoxicity profiles observed with CNT-based nanoparti-
cles [149]. Lastly, targeting moieties specific to the tumors may also be engineered onto
the surface of the GO-nanoparticles, promoting further specificity in drug delivery, thus
minimizing potential cytotoxic side effects on non-cancerous cells.

The potential of GO and its derivatives as a photothermal agent has been evaluated in
recent years. Combined with the strong NIR optical absorption capacity, efficient thermal
conversion, and potential tumor-targeting specificity, GOs have become a strong candidate
for such methods. The first in vivo study using PEGylated GO-nanoparticles in photother-
mal therapy was examined in 2010 [124]. In this study, 4T1 breast tumor xenograft mice
were injected with the nanoparticles intravenously and via passive targeting, accumulated
(EPR effect) at the tumor site as confirmed by fluorescent labeling. The tumor mass was
irradiated with an 808 nm laser for 5 min at a power of 2 W/cm2. The investigators
found that 100% of xenograft tumors were eliminated post-treatment, indicating the ef-
fectiveness of GO nanoparticles as in vivo photothermal agents. To complement these
results, similar ultra-small reduced nano-GOs (nRGO-PEG) were prepared, in which the
PEGylated GO nanoparticles were reduced again before being re-coated with PEGylated
phospholipid [123,125]. The additional reduction of the GO nanoparticles “cleaned” resid-
ual functional groups from the surface, yielding a GO product with higher optical potential
and enhanced NIR absorbance [140]. The nRGO-PEG was conjugated with an Arg-Gly-Asp
peptide to encourage selective cellular uptake to targeted U87MG glioma cell lines. This
improvement in surface modification also improved tumor ablation efficiency in vivo with
the injection of nRGO-PEG into 4T1 breast cancer xenograft tumors resulting in complete
ablation in 5 min with an 808 nm laser needing only 0.15 W/cm2 of laser power [125]. The
ability to achieve a complete therapeutic effect using a very low optical power is beneficial
not only in minimizing nonspecific damage of untargeted tissues but also in improving
treatment efficacy when applied to larger or internal tumors.
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3.3. Fullerene

The structure of fullerenes was theoretically predicted since the 1960s [150,151], and
they were first identified (C60 and C70 buckyballs) with mass spectrometry by Harold Kroto
from the University of Sussex and Richard Smalley from Rice University in 1985 [152].
Just like other carbon allotropes, such as CNTs, fullerenes are hollow carbon clusters
that also consist of sp2 carbons that form symmetric sphere-shaped cages with various
sizes [153]. One of the most common forms of fullerenes, C60, consists of 60 carbon atoms
with 12 pentagons made of C5–C5 single bonds and 12 hexagons made of C5–C6 double
bonds [153]. Unlike graphene and carbon nanotubes, the size distribution of fullerenes is
relatively uniform, and the sizes of the common fullerenes in biomedical applications are
often smaller than 5nm; although these nanoparticles would passively accumulate at the
tumor microenvironment [154], they would also be rapidly cleared from the body by renal
filtration and urinary excretion, potentially minimizing their efficacy [155].

The hollow fullerene cages can be utilized for diagnostic purposes. In certain cir-
cumstances, metal atoms can be placed within the interior of the fullerene cage, forming
what is known as endohedral fullerenes or metallofullerenes [156]. Often, the minimum
size for such endofullerenes is C60 due to the size restraint of entrapped metals, while
larger fullerene molecules, such as C80 or even larger, are preferred to enclose metals,
such as lanthanum, yttrium, scandium, and gadolinium [157]. Accordingly, gadolinium-
enclosed [158,159] or conjugated [160] fullerenes have been evaluated as MRI contrast
agents for cancer diagnostics. In addition, radioisotopes, such as 177Lu radionuclide-
encapsulated fullerenes, have been examined for both radiodiagnostic and therapeutic
purposes [161].

Just as fullerenes were used for diagnostic purposes, different variations have also
been designed for drug-delivery-based cancer therapies. Because of their small sizes,
fullerenes can readily cross the cellular membranes without damaging cells if they are
properly functionalized to be soluble in aqueous environments [162]. This internalization
property makes fullerenes an optimal vehicle for carrying chemotherapeutic agents into the
tumorigenic cells allowing a great increase in therapeutic efficacy. Various chemotherapeu-
tic payloads loaded onto fullerenes have been evaluated for in vitro and in vivo efficacy,
including doxorubicin [163], paclitaxel [164], cisplatin [165], and even DNA-based gene
therapies [166].

While photoacoustic images could be obtained using high-contrast polyhydroxy
fullerenes, photothermal effects are also observed when injected directly into the tumor
with 30 µL (0.45 mg/mL) of the fullerene nanoparticles and irradiated immediately with
a 785 nm laser at 0.5 W for 10 min [121]. Different variations of fullerenes have also
been evaluated for their effectiveness in photodynamic therapy as well. Known for their
photostability, C60 and C70 fullerene variations have been reported for potential appli-
cations in photodynamic therapies [167,168]. In one study, 0~20 µM of C60 fullerenes
were incubated with CCRF-CEM acute lymphocytic leukemia (ALL) cells for 24 h in vitro.
Light wavelengths ranging from 365 nm to 650 nm were applied, and it was seen that at
365 nm, 4 J/cm2 of light was sufficient to induce over 90% of cell death, while for light at
higher wavelengths (515 nm and 650 nm) no significant cell death was observed even at
20 J/cm2 [167]. In another study, photodynamic treatment using a C70 fullerene formulation
was carried out on HeLa-Luc xenografted tumors treated with a 980nm laser at 0.7 W/cm2

for 3 min where the authors did not observe any tumor recurrence 14 days following
phototherapy [169]. However, the main absorption of light photons by fullerenes occurs in
the ultraviolet range, where the high energy levels could induce irreversible non-specific
tissue damage as well as be limited by the penetration of the tissue depth [167,170]. Such
limitations can be overcome by using additional photosensitive molecules, as shown by
Guan et al., where a C70 fullerene-based platform was conjugated with chlorin e6 photosen-
sitizers [168]; another method is to apply the principles of two-photon excitation to match
the required energy level using lower energy intensity [170].
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4. Potential Translation of Nanoparticle Theranostics into the Clinic

We have discussed the theranostic applications and research investigations of different
nanomaterial platforms in in vitro and in pre-clinical in vivo settings. Nevertheless, the
ultimate objective of these studies would be to translate their innovativeness and assess their
utility in a clinical setting, thereby providing physicians with alternative therapeutic options
and, possibly, a new standard of care. Over the last few years, the unique photoablative
properties of the abovementioned nanoparticles have been applied for possible therapeutic
purposes. Their theranostic potential is expanded by labeling the nanoparticles with either
contrast or radioactive agents, thereby allowing physicians to identify and obtain a better
understanding of the tumor and the treatment region.

However, cancer is a heterogeneous disease with extensive tumor heterogeneity en-
compassing variabilities in genomic sequence, gene expression, metabolism, motility, pro-
liferation, and metastatic potential [6,171]. These variations may occur between different
tumor masses (inter-tumoral) [7,8] and/or within a single tumor mass (intra-tumoral) [7–9].
With the expansive use of next-generation sequencing technologies, the extent of somatic
DNA alterations in tumors is now substantiated, with the mutational landscape of cancers
being greater than what was originally anticipated [172]. Another revelation of tumor
sequencing in cancers is the presence of excessive mutations between tumor foci vs. ad-
jacent tissue samples that are histologically “normal” [173]. Multifocal tumors, such as
prostate cancer, are often identified to be genetically distinct from each other. Nevertheless,
intra-tumor heterogeneity of non-driving somatic mutations common in both malignant
and normal tissue samples can complicate the use of biologically targeted treatments, as
the characterization of the dominant biology of patients’ cancer becomes difficult. With
individual tumor cells developing functionally distinctive and critical pathophysiological
features that would promote cancer progression, overcoming the almost innate genetic
heterogeneity of tumors becomes the principal challenge in the cancer treatment [9].

The phenomena of cancer recurrence to therapeutic interventions are often observed
with prolonged treatment with biological agents [174]. Biological agents place selective
pressure on tissues, resulting in cells with initial resistance to proliferate and eventually
leading to a new malignant mass. Examples of selectively targeted mutations to thera-
peutic agents are anti-androgens in the treatment of prostate cancer, where the androgen
receptor incurs a mutation to the targeting ligand binding domain, where now the an-
tagonizing drug functions act as agonists [175,176]. Mutations in the androgen receptor
have been found to circumvent antiandrogens, such as bicalutamide, enzalutamide, and
apalutamide [177–179]. In advanced prostate cancer and castrate-resistant disease state,
a class of mutations in the androgen receptor has been identified with a complete loss of
the ligand binding domain and functionally constitutively active without any need for
androgen ligands [180]. Hormone ligand-directed therapies, such as enzalutamide and
abiraterone, in this scenario, would be completely infective. These scenarios present a
“tug of war” between the development of next-generation therapeutic modalities and the
expansion of new malignant tumors.

A critical discussion point for the use of nanoparticles and their application in focal
therapy is their ability to deliver tumor-destructive effects to the targeted area with minimiz-
ing the damage to nearby tissue or incurring non-specific/off-target effects. The selection
of CNTs, functionalized with tumor-targeting moieties, offers significant advantages and
benefits over other inorganic nanoparticles, and delivers the medical needs unmet by the
current cancer therapeutics:

(1) The combination of intravenous administration of a targeted CNT formulation with
non-invasive focal photothermal therapy will result in tumor ablation with minimal
tissue damage. This is a result of the accumulation of a critical mass of nanomaterial,
and the amount of heat generated upon light stimulation will confer total tumor
ablation even if not every cell has been targeted. This is a positive consequence of
treatment, as the ablation has a “near-field” effect on tumor cells and the adjacent
surrounding cells. As these adjacent cells are influenced by the tumorigenic properties
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of the nearby neoplasia, ensuring expansion of the ablation field is important as they
have the potential to undergo neoplastic transformation.

(2) The ability to target CNTs to all tumor cells independent of their genetic profiles,
the CNT/photothermal effects will be limited to cells expressing the tumor-specific
antigen. However, should tumors be proven to be resistant to the targeting moiety,
there is the possibility of personalizing and adjusting/adding the targeting moiety
against different surface antigens. The adaptability of tumor target agent selection will
come from new emerging information that is garnered from biomarker evaluations
and unique mutation profiles defined from patient tumor sequencing.

(3) Complete and rapid tumor ablation should not afford the selection of resistant tumors,
as is commonly observed with prolonged biological therapeutics. The photoablation
of the tumor would be total after the first and single treatment, with the likelihood of
tumor recurrence significantly reduced, unlike recurrent chemotherapy or radiation
therapy. The procedural safety inferred from using targeted CNT treatment is substan-
tive, considering the consequential side effects resulting from existing therapies [181].

(4) The ability to accurately diagnose and monitor disease onset, recurrence, and progres-
sion is critical. Targeted CNTs can provide tumor diagnostic and surveillance tools,
as it comes from the ability of dual labeling with an agent that is compatible with
existing imaging platforms, i.e., MRI, PET, or even ultrasound.

(5) The overall costs of cancer therapeutic drugs and other treatment options are typically
expensive. Although CNTs are much cheaper to manufacture than most nanoma-
terials, the process of functionalizing CNTs with both the targeting and imaging
moieties brings added costs to the final formulation. However, therapeutic CNT
platforms should not contribute to additional hospital costs and stay times in the same
capacity as surgery and radiation interventions. Altogether, functionalized CNTs as a
photothermal treatment protocol can become a standard of care for patients with early-
stage and localized disease, with the new treatment being safer and demonstrating a
clear improvement in overall survival benefit.

Clinical applications of CNPs have been limited, predominantly as contrast tracers
during surgical applications, and only a handful of clinical trials have been conducted
to evaluate their clinical utility with two trials evaluating the imaging potential of CNTs
(NCT01773850 and NCT04495634). However, the current clinical landscape of inorganic-
based nanoparticles is expanding. IONPs as contrast agents are being used to improve the
quality of MRI (ClinicalTrials.gov Identifier: NCT01895829, NCT02744248, NCT02511028,
NCT01815333). Nevertheless, it remains to be seen whether these nanoparticles are ap-
proved as previously available iron oxide contrast agents, such as ferumoxides (Feridex)
and ferumoxsil (Gastromark), have been discontinued from clinical use in the U.S. due
to regulatory and marketing concerns [182]. On the other hand, several ongoing clinical
trials are using a variety of nanomaterials as either imaging or therapeutic agents. Table 2
outlines promising companies using inorganic or synthetic polymer-based nanoparticles
that are in or entering clinical trials. These nanotherapeutic platforms are serving as either
drug/genetic payload carriers (Bind Therapeutics and New Link Genetics) or physical
enhancing agents (Nanobiotix and Nanospectra Biosciences).

The concept of improving the therapeutic index by delivering higher concentrations
to or near the tumor mass has been in practice for a while in the clinical landscape. One
example of nanomaterial-mediated chemotherapy is ABI-007 or Abraxane®, where the
protein albumin is a delivery vehicle for paclitaxel [183]. While paclitaxel itself is a highly
proficient anti-cancer agent, it is poorly soluble in water due to its structural hydropho-
bicity and initially required the use of solvents, such as Cremophor EL and ethanol, for
clinical uses despite the severe allergic reactions associated with them [183,184]. Therefore,
albumin is used to carry the water-insoluble paclitaxel in circulation. Numerous clinical
trials using these albumin-bound paclitaxel formulations were performed to confirm the
superior therapeutic efficacy [185,186]. In response to the success of ABI-007, nanoparticle
formulations were developed consisting of synthetic polymers, with New Link Genet-

ClinicalTrials.gov
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ics developing CRLX101 (cyclodextrin-based polymer carrying camptothecin) [187] and
Bind Therapeutics introducing BIND-014 (PSMA targeting Accurin polymeric nanoparticle
containing doxorubicin) [188]. CRLX101 and BIND-014 have been assessed in a number
of clinical trials for different malignancies. Similar to traditional drugs, both platforms
underwent multiple dosing. BIND-014 was well-tolerated in safety studies, with 30% of the
42 prostate cancer patient in the trial showing a ≥50% decline in PSA levels [189]. However,
it has not progressed beyond Phase 2 trials. In 2016 BIND Therapeutics was purchased by
Pfizer, and in 2019, New Link Genetics merged with Lumos Pharma. Nonetheless, there
are no indications from existing company profiles of continuing clinical trials with either
nanoparticle-drug formulations at the moment.

On the other hand, the progression of clinical trials with nanoparticles as physical-
directed or enhancing therapeutic platforms has been promising. Nanospectra Bioscience is
leading clinical trials to assess nano-directed photothermal therapy. Using gold nanoshells
(Aurolase™), an initial non-randomized pilot study regarding safety and efficacy was
performed on 16 patients with early-stage prostate cancer [190]. All patients with early
prostate cancer were recruited and treated with continuous near-infrared wavelength
laser light. Post-treatment biopsies showed residual tumors in four patients at a 3-month
follow-up, and two men had biopsy-proven cancer at a 12-month follow-up. Still, the
procedure itself demonstrated that there was no evidence of any side effects experienced
(even after one year) by patients in urological, rectal, and other general indices. The trial
also provided information on the efficacy of nanoparticles in administering focal ablation
with the sparing of damage to normal nearby tissue. These results are very encouraging
in addressing potential safety issues of inorganic nanoparticles for use in biomedical
therapeutics. A recent clinical trial of 30 men (NCT04240639) would provide enough
positive data for Nanospectra to consider FDA filing for their device [191]. However,
Nanospectra’s platform is not without its limitations. An outstanding concern is that the
company employs an untargeted nanoparticle that depends upon passive accumulation
at the tumor site. Therefore, successful tumor ablation will depend upon the sufficient
concentration of the nanoshells in the tumor space. A second limiting caveat is that the
presence of the nanoshells at the tumor site is transient and not adhered to in place, which
could limit the treatment window from achieving maximal tumor ablation. Nanobiotix
has developed NBTXR3, hafnium oxide-based nanoparticles, used to enhance and amplify
the energy deposit within tumors in the radiotherapy [192]. It has been studied in the soft
tissue sarcoma [193], head and neck squamous cell carcinoma [194], and hepatocellular
carcinoma [195]. For soft tissue sarcoma, NBTXR3 had a 16.1% vs. 7.9% (radiotherapy alone)
pathological complete response rate (p = 0.04) with an overall safety profile of NBTXR3
similar to those receiving radiation only. Recent evidence suggests that NBTXR3 has been
shown to stimulate an immune response that is not observed with radiotherapy alone, with
an increase of CD8+ T cell infiltration [196]. Similarly, NBTXR3 is also non-targeted and is
injected intratumorally to maximize tumoral accumulation.
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Table 2. Therapeutic Nanoparticles Formulations in Clinical Trials.

Company Drug Nanostructure Mode of Action Clinical Trial ID/Study Indication 1/Cancer Type

Nanobiotix NBTXR3
hafnium oxide (HfO2)

nanoparticles Radioenhancer

NCT04484909/&/Pancreatic cancer
NCT04505267/&/Non-small cell lung cancer

NCT02721056/**/Liver cancer
NCT04862455/&/HNSCC

NCT04615013/&/Esophageal cancer
NCT03589339/*/Multiple advanced cancer

NCT02805894/**/Prostate cancer
NCT01946867/&/Locally advanced SSC

NCT01433068/*/Soft Tissue Sarcoma
NCT02379845/*/Soft Tissue Sarcoma

NCT04892173/&*/HNSCC
NCT02901483/%/HNSCC

NCT02465593/%/Rectal Cancer
NCT04834349/&*/HNSCC

NCT05039632/&*/Lung and Liver metastasis

NewLink Genetics
(Lumos Pharma) CRLX101 cyclodextrin-based polymer

Drug payload
delivery

(camptothecin)

NCT02389985/%/Ovarian cancer
NCT02648711/%/Solid tumors

NCT01612546/**/Esophageal cancer
NCT01380769/**/Non-small cell lung cancer

NCT02187302/*/Metastatic renal cell carcinoma
NCT03531827/%*/CRPC

NCT01803269/%*/Solid tumor
NCT00333502/*/Solid tumors

NCT02010567/%*/Rectal cancer
NCT01625936/*/Renal cell carcinoma

NCT00753740/W/Ovarian Cancer
NCT01652079/*/Ovarian cancer, fallopian tube cancer

Ensysce Biosciences SWCNTs
siRNA and

Drug payload delivery
(taxol/doxorubicin)

Unknown pre-clinical stage

Bind Therapeutics
(Pfizer) BIND-014 Accurin polymer

Drug payload
delivery

(Docetaxel)

NCT01812746/*/CRPC
NCT01792479/*/Non-small cell lung cancer

NCT01300533/*/Metastatic cancers, solid tumors
NCT02283320/*/Squamous cell non-small lung cancer

NCT02479178/%/multiple cancers
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Table 2. Cont.

Company Drug Nanostructure Mode of Action Clinical Trial ID/Study Indication 1/Cancer Type

Nanospectra
Biosciences Inc.

AuroLase Gold nanoshells Laser assisted
ablation

NCT01679470/%/Primary or metastatic lung tumors
NCT00848042/**/Head and neck cancer

NCT04240639/&*/Prostate cancer
NCT02680535/*/Prostate cancer

1 Study Indication. *—Study Completed; **—Study Completed—has results; %—Study Terminated; %*—Study Terminated—has results; &—Recruiting; &*—Not Yet Recruiting;
W—Withdrawn.
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5. Conclusion Remarks

Modern methods in medicine have revolutionized our management of neoplastic
disorders. Our increased understanding of the underlying mechanisms of cancer will
provide us with continuing potential therapeutic avenues. Perhaps the single biggest
challenge in the management of cancer today is the inevitable development of resistance
phenotypes exerted by current therapeutic regimes creating selective pressures [197]. The
application of nanomaterials has been added to the cancer research therapeutic armamen-
tarium. Inorganic and carbon-based nanoparticles, as immediate agents, can deliver or
enhance physical energy at the site of the tumors. In doing so, the cells are not susceptible to
selective genetic pressures and leave irreversible damage. Photothermal-based pre-clinical
animal models and clinical trials suggest these modalities confer positive outcomes and
will be a viable option in cancer therapy.

As nanoparticles are currently proposed as therapeutic agents, their toxicity has been
investigated with numerous clinical studies assessing their safety profile, and more studies
will be needed. The FDA has officially declared nanoparticles to be neither harmful nor safe
and will assess the safety profile on a per-nanoparticle basis. They have provided a guidance
report for the industry and for the application of nanoparticles [FDA-2010-D-0530 (accessed
on 8 June 2018)] The FDA is willing to support and define the regulatory process related
to therapeutic nanoparticles. The National Cancer Institute has also established an NCI
Alliance for Nanotechnology for Cancer. Furthermore, their discussions on nanoparticle
theranostics have also been updated, with all NCI alliance sites working hand-in-hand
with the FDA regarding the safety profiles of nanoparticles.

1. The FDA will consider the current framework for safety assessment sufficiently robust
and flexible to be appropriate for a variety of materials, including nanomaterials, and
maintain a product-focused, science-based regulatory policy.

2. Technical assessments will be product-specific, and this will consider the effects of
nanomaterials in the biological and mode of action (e.g., photothermal) context of
each product and its intended use.

3. As such, the policies for each product area, both substantive and procedural, will vary
according to the statutory authorities and relevant regulatory frameworks. This regu-
latory policy allows for tailored approaches that adhere to applicable legal frameworks
and reflect the characteristics of specific products or product classes and evolving
technology and scientific understanding.

4. Moreover, the industry remains responsible for ensuring that its products meet all ap-
plicable legal requirements, including standards for safety, regardless of the emerging
nature of the technology involved in the manufacturing of a product. The FDA also
encourages the industry to consult with the Agency early in the product development
process to address any questions related to the safety, effectiveness, or other attributes
of products that contain nanomaterials or about the regulatory status of such products.
Early consultations with the FDA will facilitate a mutual understanding of the specific
scientific and regulatory issues for nanotechnology products.

A major distinction needs to be made for the classification of nanoparticles used in
conjunction with external stimuli, such as photo-ablative therapy or radiation, and their
classification as medical devices. This is because the external stimuli will activate the
intrinsic physical properties of the particles rather than being dependent on modulating
a cellular pathway, thereby eliciting a process of programmed cell death. Therefore, the
application of nanotherapeutic platforms will result in product attributes that differ from
those of conventionally-manufactured products (i.e., biologicals) and, thus, may merit
a different examination and classifications for clinical trials process vs. investigational
new drugs.
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