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Abstract: The human gastrointestinal (GI) tract is an important part of the body. According to
World Health Organization (WHO) research, GI tract infections kill 1.8 million people each year. In
the year 2019, almost 5 million individuals were detected with gastrointestinal disease. Radiation
therapy has the potential to improve cure rates in GI cancer patients. Radiation oncologists direct
X-ray beams at the tumour while avoiding the stomach and intestines. The current objective is to
direct the X-ray beam toward the malignancy while avoiding the stomach and intestines in order
to improve dose delivery to the tumour. This study offered a technique for segmenting GI tract
organs (small bowel, big intestine, and stomach) to assist radio oncologists to treat cancer patients
more quickly and accurately. The suggested model is a U-Net model designed from scratch and
used for the segmentation of a small size of images to extract the local features more efficiently.
Furthermore, in the proposed model, six transfer learning models were employed as the backbone of
the U-Net topology. The six transfer learning models used are Inception V3, SeResNet50, VGG19,
DenseNet121, InceptionResNetV2, and EfficientNet BO. The suggested model was analysed with
model loss, dice coefficient, and IoU. The results specify that the suggested model outperforms
all transfer learning models, with performance parameter values as 0.122 model loss, 0.8854 dice
coefficient, and 0.8819 IoU.

Keywords: U-Net; pretrained models; deep learning; segmentation; GI tract; radiation therapy

1. Introduction

The human Gastrointestinal (GI) tract is an essential component of the body. The
digestive system performs three main tasks: food digestion, nutrient absorption (carbohy-
drates, proteins, lipids, minerals, and vitamins), and waste elimination [1]. Many different
illnesses can infect the GI tract. A World Health Organization (WHO) study indicates
that 1.8 million fatalities annually are caused by GI tract illnesses [1]. One of the most
prevalent and dangerous malignancies in the world, particularly among older males, is
gastric cancer. According to GLOBOCAN 2018 data, stomach cancer is the third most
dangerous malignancy and the fifth most prevalent neoplasm, accounting for an estimated
783,000 deaths in 2018. Globally, an estimated 5 million persons received a diagnosis of
gastrointestinal cancer in 2019 [2]. Radiation treatment (RT) has the potential to increase
the cure rates for 3.5 million patients and to relieve the symptoms of another 3.5 million
patients [3]. Radiation oncologists provide X-ray beams that are aimed at the tumour while
avoiding the stomach and intestines. Oncologists may observe the location of the tumour
and monitor for exact dosage based on tumour cell presence, which might fluctuate from
day to day, using MR-Linacs [4]. The present task is to physically delineate the location of
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the stomach and intestines in order to make modifications to the direction of the X-ray beam
in order to enhance dosage distribution to the tumour while avoiding the other organs.
Unless deep learning technologies can be used to aid automating the segmentation process,
this is a laborious and time taking task that may easily extend cures from a few minutes to
an hour every day.

Deep learning can assist in reducing manual work and allowing more patients to
receive appropriate treatment by automating the segmentation process. Deep neural
network-based methods have recently been employed for the automated diagnosis of
medical illnesses [5,6]. Deep learning progress has been encouraging in recent years, with
an automatic diagnosis of disorders in numerous human organs such as the brain [7],
cervical cancer [8], eye problems [9], and skin cancer [10]. Deep learning is a new field
of machine learning that has recently acquired interest. It has outperformed traditional
algorithms in terms of accuracy since the characteristics are learned from data using
a general-purpose learning technique rather than being built by human engineers [11].
The current Al boom can be attributed to the advent of deep learning. In computer
vision and machine translation applications, deep networks have shown to be a significant
improvement. In recent times, deep neural networks have attracted a lot of interest for
use in picture segmentation. Medical imaging is only one area where deep learning-based
segmentation has been put to use, along with many others, to achieve better performance.
To facilitate computer-aided diagnoses and other medical analyses, the segmentation of
medical pictures is a common machine vision job [12]. In this research, we investigate the
GI Tract segmentation challenge. The following are the significant contributions of this
research work:

e  The proposed U-Net model has been deployed with six pretrained transfer learning
models as a backbone to analyse its performance. The six transfer learning models
chosen for the backbone of U-Net are Inception V3, SeResNet50, VGG19, DenseNet121,
InceptionResNetV2, and EfficientNet BO.

e  This work proposed a U-Net model based on deep learning that has been created for
the small size of images so that local features for segmentation can be enhanced and
extracted efficiently.

o  The proposed U-Net model has been deployed on the UW-Madison GI tract image
segmentation dataset for the stomach, small bowel, and large bowel segmentation in
the GI tract.

e  Model performance metrics such as model loss, dice coefficient, and IoU coefficient
are used to evaluate the models.

The remaining manuscript is arranged as follows: Section 2 presents a brief review
of earlier work in this area, Section 3 defines the proposed methodology, Section 4 rep-
resents the results and discussion, and Section 5 concludes the paper and discusses the
major findings.

2. Related Work

Over the past few years, highly encouraging outcomes have been produced in the
medical imaging field employing computer-aided-diagnosis algorithms [13-16]. A review
of the works revealed that several programmed algorithms based on both handmade
approaches and deep learning methods have been extensively utilised to identify and
categorize GI tract abnormalities [17-21]. Naqvi et al. [17] utilised the KVASIR dataset to
assess their work on a system to identify GI illnesses. The authors employed six visual
characteristics to construct the smoothness of the picture, which was created using Haralick
features and Local Binary Patterns (LBP). Following feature collection, they train the model
via kernel discriminant study and Logistic Regression. They received an F1 score of 0.75 [18],
extracted picture characteristics using Bidirectional Marginal Fisher Analysis (BMFA), and
supplied them to a Support Vector Machine (SVM) for the purpose of classification. Further,
transfer learning was applied with data augmentation to the KVASIR dataset [19]. The
pre-trained network Inception V3 was used to fine-tune the dataset. The model was 91.5%
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accurate. Zhang et al. [20] developed a CNN-based technique for the categorization of
stomach precancerous anomalies such as ulcers, erosion, and polyp. They employed an
iterative reinforcement learning method with SqueezeNet to reduce the computing time and
size of the model. The total accuracy was 88.90%. In Ref. [21], Inception V3 and VGGNet
pre-trained models on ImageNet dataset were utilised in the features extraction phase, and
SVM was employed for classification; the mixture of the mined features produces extreme
moral outcomes. Pogorelov et al. [22] tested 17 alternative techniques before settling on
a mixture of the transfer learning model ResNet50 and the Logistic Model Tree (LMT)
classifier. The primary goal of this work is to optimise the performance of our CNN model
while minimising computing interval and assets for the job of categorising 8 classes as
illness states, therapeutic processes, or structural innovations [22].

Gibson, E. published a registration-free neural network model for segmenting right
organs in 2018 [23]. This includes the pancreas, the digestive system (oesophagus, stomach,
and duodenum), and the adjacent organs, which are essential for routing in endoscopic
biliary and pancreatic processes (liver, spleen, left kidney, and gallbladder). In 2020, Wang
et al. introduced a multi-scale deep network (MCNet) for complete gastrointestinal (GI)
lesion segmentation from endoscopic photos. To help train models, this network takes in
information from both the global and local levels [24]. In 2020, Khan et al. proposed a deep
learning-based technique to classify or identify ulcers, polyps, and bleeding in the gastroin-
testinal tract. In Ref. [25], it was suggested that an altered Recurrent Convolutional Neural
Network (RCNN) be used for ulcer segmentation. Using the direct extension, Galdran
et al. 2021 developed a method for semantic segmentation of standard encoder-decoder
networks applicable to delineating gastrointestinal polyps from endoscopic images. In
addition, 600 annotated frames of gastrointestinal (GI) operation equipment were released
in 2021 as part of a proposal by Jha, D. et al. [26] to raise the bar and spur more research.
The goal of this research is to utilize existing knowledge of the problem of GI tract segmen-
tation. There has been limited research on the segmentation of GI tract organs. This work
intends to propose a U-Net model designed from scratch for segmenting organs such as
the stomach, large bowel, and small bowel. Furthermore, the proposed model has been
compared with different models utilising various transfer learning models as backbones of
U-Net topologies.

3. Proposed Methodology

The main objective of this work is to propose a U-Net model designed from scratch
for accurate segmentation of healthy organs to assist the radio-oncologist. This section
describes the proposed methodology for the segmentation of the GI tract. Section 3.1
will present the input dataset used for the task of segmentation. Section 3.2 discusses
various pre-processing steps applied in order to enhance the dataset for further processing.
Section 3.3 shows the suggested U-Net model which is designed from scratch. Section 3.4
discusses the various transfer learning models which are used as the backbones of the
U-Net model. Figure 1 shows our proposed methodology for GI tract segmentation.
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Figure 1. Proposed Methodology for GI Tract Segmentation.

3.1. Input Dataset

The public land-grant research university Institution of Wisconsin-Madison in Madi-
son, Wisconsin, has released an MRI scan dataset. In the dataset, 85 people had scans for
1 to 6 days. For different patients, every scan has either 144 or 80 slices. There are 38,496
photos in the collection as a whole. Figure 2 shows a few examples of the images in the
set. The RLE encoding format is used for the images in the dataset. With the help of deep
learning algorithms, these RLE-encoded images are used to make masks for small bowel,
large bowel, and stomach.

Figure 2. Sample Images of the Dataset.

3.2. Dataset Pre-Processing

Dataset pre-processing is performed to enhance the data. It is used to make data more
compatible for further stages. The pre-processing steps performed in this research are
resizing, filtering, normalization, and augmentation. A detailed description of various
pre-processing steps is shown in the further sections.

3.2.1. Resizing

Resizing is the process of converting all the images in the dataset to a predefined size.
Since the neural network receives images of the same size, we have to resize the dataset.
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The size of the image after applying resizing step is 160 x 160 x 1. Figure 3a shows an
input image and Figure 3b shows its resized image.

)

(b)
Figure 3. Dataset Resizing: (a) Input Image & (b) Resized Image.

3.2.2. Gaussian Filter

A low pass filter called a Gaussian is used to blur certain portions of an image and
lessen noise (high-frequency components). As implied by the name of the function, the
weights inside the kernel, which are used to calculate the weighted average of the nearest
points (pixels) in a picture, have the form of a Gaussian distribution. Figure 4a displays an
input image that was chosen at random, and Figure 4b displays the filtered image.

(b)

Figure 4. Filtering: (a) Input Image & (b) Filtered Image.

3.2.3. Normalization

Normalization is the process of converting all the pixel values of the picture in the
range of 0 to 1. It is done by dividing each pixel value by 255. The Figure 5a shows the
input image and Figure 5b shows normalized image.

Figure 5. Data Normalization: (a) Input Image, (b) Normalized image.

3.2.4. Augmentation

Data augmentation is a pre-processing method that is applied to increase the diversity
of data and to increase the number of images in the dataset only for visual perception
during training. It is also called a dataset regularizer because it makes the dataset more
diverse. It is used to increase the images by applying modifications while keeping the class
label intact.
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The augmentations techniques used in the dataset are: horizontal flip, rotation by
120 degrees, and zoom by 0.2. Figure 6 shows the original and augmented images from
the dataset: Figure 6a original images, Figure 6b horizontal flip, Figure 6¢ rotation, and
Figure 6d zoom.

(d)

Figure 6. Data Augmentation: (a) Input Image, (b) Horizontal Flip, (c) Rotation & (d) Zoom.

3.3. Segmentation Using Proposed U-Net Model

For the segmentation of biomedical images, Olaf Ronneberger et al. [27] created the
U-Net. There are two ways to the architecture. The first path, also known as the contraction
path or encoder, is used to extract the context from the picture. A standard stack of
convolutional and max pooling layers serves as the encoder. In order to achieve exact
localization using transposed convolutions, the second path—also known as the decoder—
is the symmetric expanding path. U-Net is its moniker because of how it resembles the
letter U. As a result, it is an end-to-end fully convolutional network (FCN), which means
that it only comprises convolutional layers and lacks any dense layers, allowing it to accept
images of any size.

In this research work, a U-Net Model has been used for the automatic segmentation of
the stomach, large bowel, and small bowel in the gastrointestinal tract. The layer of the
proposed U-Net model has been designed from scratch. The number of layers is selected
from the experimentation. A lot of experimentation has been done for selecting the number
and sequence of layers in the U-Net model and the best combination of layers that gives
the highest results has been selected for the segmentation of the GI tract. The proposed
U-Net model contains a combination of convolution and max pool layers. Figure 7 shows
the block diagram of the different layer used in the suggested U-Net model. As discussed
earlier, the U-Net has two branches, one encoder and one decoder; the proposed model
also contains two branches: the left one is an encoder and the right one is the decoder.
It forms the shape of the English alphabet U; that is why it is called U-Net. There is no
dense layer in the model: it is only a combination of convolution, max pool, and transpose
convolution layers. The U-Net model proposed in this work has entirely different image
sizes as compared with the standard U-Net model. The input image size in the proposed
study is 160 x 160. Different layers of this U-Net model have been designed according to
the input image size.
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Figure 7. U-Net Model from Scratch.

Table 1 shows the model summary of the layers used in the designed U-Net model.
The input size of the images for the model is 160 x 160 x 1. This input image will pass
through four downsampling blocks. Each down-sampling block contains a combination of
two convolutions and one max pool layer. The input size, output size, number of filters,
size of the filter, and number of parameters for each layer have been represented in Table 1.
The size of the filter is 3 x 3 for each convolution layer and 2 x 2 for each max pool layer.
The number of filters is increasing or doubles in each convolution block as 64, 128, 256,
and 512. A centre block is also used in the model which is the same as the downsampling
block. It has 1024 filters for 2 convolution layers. Four downsampling and one centre block
collectively make the encoder branch. The size of the image after passing through the
encoder branch becomes 10 x 10 x 1024.

The decoder branch of this model contains transposed convolution, concatenation,
and convolution layers. As the image size is reduced in the encoder branch, the decoder
branch is used to increase the size of the image. It contains four upsampling blocks; the size
of the image will increase and the number of filters will be reduced after every up-sampling
block. The number of filters in the decoder branch is reduced as 1024, 512, 256, 128, and
64. A final convolution layer is also used, which makes the size of the image 160 x 160
x 3. The input image to the encoder branch is 10 x 10 x 1024, and the output size of the
image after going through all the upsampling blocks is 160 x 160 x 3. The size of the
output image is identical to the input image, but at the output of the U-Net model, we get
the segmented image. The segmented image contains a mask having three objects: small
bowel, large bowel, and stomach.
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Table 1. Model Summary of the Proposed U-Net Model.

Name of the Name of the Input Image Filter Size Number of  Activation Output Image Number of
Block Layer Size Filters Function Size Parameters
. Input image 160 x 160 x 1 —_— —_— —_— 160 x 160 x 1 —_—
Downsampling
Block 1 Conv1 160 x 160 x 1 3x3 64 ReLU 160 x 160 x 64 640
Conv2 160 x 160 x 64 3x3 64 ReLU 160 x 160 x 64 36,928
. Maxpool 160 x 160 x 64 2x2 64 — 80 x 80 x 64 —
Downsampling
Block 2 Convl 80 x 80 x 64 3x3 128 ReLU 80 x 80 x 128 73,856
Conv2 80 x 80 x 128 3x3 128 ReLU 80 x 80 x 128 147,584
. Maxpool 80 x 80 x 128 2x2 128 — 40 x 40 x 128 —
Downsampling
Block 3 Conv1 40 x 40 x 128 3x3 256 ReLU 40 x 40 x 256 295,168
Conv2 40 x 40 x 256 3x3 256 ReLU 40 x 40 x 256 590,080
. Maxpool 40 x 40 x 256 2x2 256 — 20 x 20 x 256 —
Downsampling
Block 4 Conv1 20 x 20 x 256 3x3 512 ReLU 20 x 20 x 512 1,180,160
Conv2 20 x 20 x 512 3x3 512 ReLU 20 x 20 x 512 2,359,808
Maxpool 20 x 20 x 512 2x2 512 — 10 x 10 x 512 —
Center Block Convl 10 x 10 x 512 3x3 1024 ReLU 10 x 10 x 1024 4,719,616
Conv2 10 x 10 x 1024 3x3 1024 ReLU 10 x 10 x 1024 9,438,208
. Concatenate 10 x 10 x 1024 —_— 1— — 20 x 20 x 1024 —
Upsampling
Block 1 Conv1 20 x 20 x 1024 3x3 512 ReLU 20 x 20 x 512 9,438,208
Conv2 20 x 20 x 512 3x3 512 ReLU 20 x 20 x 512 2,359,808
. Concatenate 20 x 20 x 512 —_— —_— — 40 x 40 x 512 —
Upsampling
Block 2 Conv1 40 x 40 x 512 3x3 512 ReLU 40 x 40 x 512 2,359,808
Conv2 40 x 40 x 512 3x3 512 ReLU 40 x 40 x 512 590,080
. Concatenate 40 x 40 x 512 —_— —_— — 80 x 80 x 256 —_—
Upsampling
Block 3 Convl 80 x 80 x 256 3x3 128 ReLU 80 x 80 x 128 590,080
Conv2 80 x 80 x 128 3x3 128 ReLU 80 x 80 x 128 147,584
Concatenate 80 x 80 x 128 —_— —_— — 160 x 160 x 128 —_—
Upsampling Convl 160 TZ?O % 3x3 64 ReLU 160 x 160 x 64 147,584
Block 4
Conv2 160 x 160 x 64 3x3 64 ReLU 160 x 160 x 64 36,928
Conv3 160 x 160 x 64 3x3 3 ReLU 160 x 160 x 3 195

Total Parameters: 34,512,323, Trainable Parameters: 34,512,323, Non-trainable Parameters: 0.

3.4. Segmentation Using Pre-Trained Transfer Learning Models

In general, transfer learning refers to a process where a model developed for one
problem is used in some capacity for another related problem. Transfer learning is a deep
learning method where a neural network structure is first trained on a dataset that is identi-
cal to the one that is being cracked. A new model that is trained on the target issue then
incorporates one or more layers from the trained model. In this work, the segmentation
of the GI tract was performed using six pre-trained transfer learning models: Inception
V3 [28], SeResNet50 [29], VGG19 [30], DenseNet121 [31], InceptionResNetV2 [32], and
Efficient Net B0 [33]. The U-Net topology was built using these pre-trained models. The
inception V3 [24] model is only an improved and efficient form of the inception V1 archi-
tecture. The Inception V3 model uses a number of strategies to optimise the network for
improved model adaption. It is more productive. In comparison to the Inception V1 and
V2 models, it has a deeper network, but its speed is unaffected. It costs less to compute.
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It uses auxiliary Classifiers as regularizers. SE ResNet [29] is a ResNet version that uses
squeeze-and-excitation blocks to allow the system to the bringactivechannel-wisestatistic
arrangement. Squeeze-and-Excitation Networks (SENets) provide a CNN building block
that enhances channel interdependencies at essentially no computational cost. They par-
ticipated in the ImageNet competition and contributed to a 25% increase in performance
over the previous year. In addition to providing a significant speed improvement, they
are simple to include in current designs. One of the simplest CNN designs utilised in
ImageNet contests is VGG19 (Visual Geometry Group-19) [30]. The architecture comprises
16 convolutional layers, 3 fully connected layers, and a total of 19 layers to learn weights
and bias parameters; thus, the name VGG-19. With the exception of three more convolution
layers, the VGG-19 design is remarkably identical to the VGG-16 architecture. The most
recent VGG model is VGG19. By leveraging smaller links among the layers, the DenseNet
(Dense Convolutional Network) design [31] aims to make deep learning networks even
deeper while also improving their training efficiency. Each layer of the convolutional
neural network is linked to all layers below it; thus, the first layer is connected to layers 2
through 4 and so on, and layers 2 through 5 and so on. To maximise information flow across
the network’s tiers, this is done. Each layer receives input from all the earlier levels and
transmits its individual feature maps to all the layers that will follow it in order to maintain
the feed-forward nature. In addition to the fundamental convolutional and pooling layers,
the model is composed of two significant components. These are the Transition layers
and the Dense Blocks. Inception-ResNet combines the Inception architecture with residual
connections. A convolutional neural network called Inception-ResNet-v2 was trained using
more than a million images from the ImageNet dataset. The network has 164 layers and
can categorise photos into 1000 different item types. It is constructed using a mix of the
Residual connection and the Inception structure. Multiple convolutional filters of different
sizes are merged with residual networks in the Inception—Resnet block. The introduction of
residual links not only escapes the humiliation problem brought on by deep arrangements
but also shortens training time. Using a compound coefficient, the convolutional neural
network design and scaling technique known as EfficientNet BO consistently scales all
measurements of depth, breadth, and resolution. The EfficientNet scaling method con-
sistently increases network breadth, depth, and resolution using a set of present scaling
constants, in contrast to standard practice, which scales these elements arbitrarily. In the
accumulation of squeeze-and-excitation blocks, the foundational EfficientNet-B0 system
is built on the MobileNetV2 inverted bottleneck residual blocks. Table 2 compares the six
transfer learning models in terms of the number of layers, parameters, and processing time.

Table 2. Comparison of Transfer Learning Models.

Model Name Number of Layers Pararltjeutlelllsae(lr\/?ifllion) Proc(els_;ls;ﬂ;gs;ﬁme
Inception V3 [28] 48 25 4:36
SeResNet50 [29] 101 44.5 5:18
VGG 19 [30] 19 138 5:35
DenseNet 121 [31] 121 29 4:46
Inception ResNet V2 [32] 164 56 5:10
EfficientNet B0 [33] 237 11 5:25

4. Results and Discussion

The proposed model (U-Net from scratch) and six pre-trained models, such as Incep-
tion V3, SeResNet50, VGG19, DenseNet121, InceptionResNetV2, and EfficientNet B0, were
examined in this work, and the Keras Tensorflow Package was used to generate the models.
Keras is a freely available, simple-to-use framework designed exclusively for NNs. It is
open source and works with both Theano and Tensorflow. It is purposely built to accelerate
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loss

DNN computations. All simulations in this study were conducted on the Google Colab
Platform, utilizing a Colabnotebook quipped with Tensorflow and a GPU.

4.1. Hyperparameter Tuning

With a batch size of 32, the models were trained for 20 epochs. The batch size hyper-
parameter specifies the number of samples to proceed before updating the model’s internal
parameters, whereas the epochs parameter specifies the number of runs over the whole
training data. The critical hyper-parameter is the learning rate, which controls the model’s
learning speed. It should not be very high or excessively low. If the learning rate is set
too low, the network may take an inordinate time to attain the minimum loss, or if it is set
too high, the network may overshoot the low-loss regions. The learning rate has been set
to 0.0001 in this work. For model compilation, the Adam [34] optimization method was
utilized. Additionally, all convolutional layers have been activated using the ReLU [35]
activation function.

4.2. Analysis of Training and Validation Loss

The proposed model and transfer learning models were evaluated in terms of model
loss, dice coefficient and IoU coefficient. Figure 8a to Figure 8g shows the loss curves during
training and validation for all the transfer learning and proposed models, respectively. From
the figure, it can be concluded that the transfer learning models perform similarly. The plots
of transfer learning models are very much similar, but the plot shown in Figure 8g is very
uniform. The proposed model achieved less loss as compared to transfer learning models.
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Figure 8. Loss Plots: (a) DenseNet121, (b) Inception V3, (c) SeResNet50, (d) VGG19, (e) InceptionRes-
NetV2, (f) EfficientNet B2, & (g) Proposed U-Net.

Figure 9 shows the comparison of model loss in a graphical form. It can be seen from
Figure 9 that all six transfer learning models achieved similar results. The transfer learning
models achieved the model loss values as 0.418 for inception v3, 0.4404 for SeResNet 50,
0.5522 for VGG 19, 0.4672 for DenseNet121, 0.4538 for Inception ResNetV2, and 0.4538
for Efficient Net BO. The proposed model achieved a 0.122 model loss value. It can be
concluded from the figure that the proposed model outperforms all the transfer learning
models, as it achieved the least loss value.

4.3. Analysis of Dice Coefficient

Figure 10a—g shows the dice coefficient curves during training as well as validation
for all the transfer learning and proposed models, respectively. From the figure, it can be
concluded that all six transfer learning models show almost similar performance. The dice
coefficient plots of transfer learning models are very much similar, but the plot shown in
Figure 10g gives the best performance among all the models. The proposed model achieved
the highest dice coefficient as compared to transfer learning models.
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Figure 9. Model Loss Comparison Graph.

Figure 11 shows the comparison of model loss in a graphical form. It can be seen from
Figure 11 that all six transfer learning models achieved similar results. The transfer learning
models achieved the model loss values as 0.6049 for inception v3, 0.582 for SeResNet 50,
0.4741 for VGG 19, 0.5558 for DenseNet121, 0.5684 for Inception ResNetV2, and 0.5684
for Efficient Net BO. The proposed model achieved a 0.8854 model loss value. It can be
concluded from the figure that the proposed model outperforms all the transfer learning
models, as it achieved the highest dice coefficient value.

4.4. Analysis of IoU Coefficient

Figure 12a to Figure 12g shows the IoU curves during training and validation for all the
transfer learning and proposed models, respectively. From the figure, it can be concluded
that the transfer learning models perform similarly. The plots of transfer learning models
are very much similar, but the plot shown in Figure 12g is very much uniform. The
proposed model achieved the highest IoU as compared to transfer learning models.
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Figure 10. Dice Coefficient Plots: (a) DenseNet121, (b) Inception V3, (c) SeResNet50, (d) VGG19, (e)
InceptionResNetV2, (f) EfficientNet B2, & (g) Proposed U-Net.
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Figure 12. IoU Coefficient Plots: (a) DenseNet121, (b) Inception V3, (c) SeResNet50, (d) VGG19,
(e) InceptionResNetV2, (f) EfficientNet B2, & (g) Proposed U-Net.

Figure 13 shows the comparison of the IoU coefficient in a graphical form. It can
be seen from Figure 13 that all six transfer learning models achieved similar results. The
transfer learning models achieved the IoU values as 0.7687 for inception v3, 0.7588 for
SeResNet 50, 0.6646 for VGG 19, 0.7486 for DenseNet121, 0.7532 for Inception ResNetV2,
and 0.753 for Efficient Net BO. The proposed model achieved a 0.8819 model loss value.
It can be concluded from the figure that the proposed model outperforms all the transfer
learning models as it achieved the highest IoU value.
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4.5. Visual Analysis of Segmented Images

Figure 14 shows results in the form of images. The figure includes the input images
and the mask for the respective images which are obtained using RLE encoding. The
figure also includes the predicted images by using all the transfer learning models and the
proposed model. Here red color shows the stomach, green shows large bowel and yellow
color shows small bowel. From the figure, it can be seen that the images predicted by the
proposed models are very much similar to the original mask.

We have analysed the results in terms of model loss, dice coefficient, and IoU. The
results were also visualized in the form of images and their respective masks obtained by
the proposed and transfer learning models. From all the results discussed previously, it
can be concluded that the proposed model shows the best results as compared to all the
six transfer learning models. The proposed model achieved the results of 0.122 model loss,
0.8854 dice coefficient, and 0.8819 IoU.

Image 2 Image 3

Input

Images

Mask

Inception V3 Model

Figure 14. Cont.
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Figure 14. Visual analysis of the results.

5. Conclusions

Gastrointestinal cancer cases are increasing every year according to the reports of the
WHO and GLOBOCAN. GI cancer can be treated with the help of radiation treatment.
In radiation treatment, the radiation oncologist must manually outline the position of
the tumour while avoiding other healthy organs like the stomach and intestine so that
high-power X-ray beams can be directed toward the tumour. This paper proposed a deep
learning-based technique that can help radiation oncologists to automatically segment
the stomach and intestine. The paper proposed a U-Net model designed from scratch
and this model has been compared with six pretrained transfer learning models, namely,
Inception V3, SeResNet50, VGG19, DenseNet121, InceptionResNetV2, and EfficientNet
B0, which were used as the backbone for the U-Net topology. The comparison shows that
the proposed U-Net model whose layers are designed to form scratch outperforms all the
transfer learning models.
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