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Abstract: In early corneal examinations, the relationships between the morphological and biome-
chanical features of the cornea were unclear. Although consistent links have been demonstrated
between the two in certain cases, these are not valid in many diseased states. An accurate assessment
of the corneal biomechanical properties is essential for understanding the condition of the cornea.
Studies on corneal biomechanics in vivo suggest that clinical problems such as refractive surgery and
ectatic corneal disease are closely related to changes in biomechanical parameters. Current techniques
are available to assess the mechanical characteristics of the cornea in vivo. Accordingly, various at-
tempts have been expended to obtain the relevant mechanical parameters from different perspectives,
using the air-puff method, ultrasound, optical techniques, and finite element analyses. However,
a measurement technique that can comprehensively reflect the full mechanical characteristics of
the cornea (gold standard) has not yet been developed. We review herein the in vivo measurement
techniques used to assess corneal biomechanics, and discuss their advantages and limitations to
provide a comprehensive introduction to the current state of technical development to support more
accurate clinical decisions.
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1. Introduction

Mechanical characteristics are important features of the cornea. These are dependent
on the distribution of collagen fibers in the stroma, the thickest layer of the cornea. The
alignment of these internal collagen fibers is directly related to the biomechanical properties
and (eventually) to the morphology of the cornea, which further influence its optical
properties. Parameters determining corneal biomechanical characteristics can be used to
reflect the states of corneal diseases.

A broader and deeper knowledge of corneal biomechanics could promote the evalu-
ation of corneal ectasia patients [1] and facilitate research on treatments such as corneal
cross-linking (CXL) [2,3], laser refractive surgery [4–6], and corneal transplantation [7]. It
could also improve the understanding of the mechanisms of ophthalmic diseases such as
refractive abnormalities [8], the effects of various corneal incisions on the corneal structure
and function [9], and intraocular pressure determination.

Various parameters are currently used to quantify the corneal biomechanical proper-
ties. The longitudinal, shear, and Young’s moduli are the three main classical mechanical
parameters that are used. Though different machines gave various terms for the description
of corneal biomechanics, they can almost all be related to these three biomechanical features.
This review explains the differences between them and their clinical implications. The
shear modulus is often used to describe the rigidity of a material and is also referred to
as the rigidity modulus. The Young’s modulus, on the other hand, reflects the stiffness
of the material [10]. In dynamic loading conditions, the cornea demonstrates viscoelastic
behavior; this material property is usually described by the dynamic modulus [11]. The
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difference between the biomechanical behavior of the cornea during energy storage and
energy dissipation is known as “hysteresis” [12]. This property makes accurate measure-
ment of the Young’s modulus of the cornea difficult: the hysteresis during loading and
unloading of the intraocular pressure (IOP) causes the Young’s modulus to vary in real
time with the IOP [12]. Accurate measurement of the corneal biomechanical properties
in vivo is of immense importance in clinical practice. At present, various instruments based
on different inherent principles are employed to evaluate the cornea based on different
biomechanical parameters.

In vivo biomechanical measurements of the cornea are still in the nascent stage. The
tonometer, which measures corneal rigidity using contact technology, has been available
since the early 1900s [13]. Earlier noncontact methods for evaluating corneal mechanical
properties were based on the use of air turbulence to cause corneal deformation, enabling
noninvasive measurement of the biomechanical properties [14]. Less destructive corneal
deformation technologies, such as air puff [15] and ultrasound [16,17], were developed
later. Currently, commercial devices are used in clinical settings for measuring the corneal
biomechanical properties, but these types of equipment are destructive. Current techniques
usually reflect only a few mechanical properties of the cornea, such as longitudinal mod-
ulus, shear modulus, or Young’s modulus. There is no device that can comprehensively
and accurately measure the various corneal biomechanical parameters. These techniques
also make it difficult to reflect the biomechanical properties of different areas of the cornea
at the three-dimensional level, often measuring only at the axial level, or showing the
average properties of a large area. Moreover, IOP, central corneal thickness (CCT), eye
movements, and other factors can cause measurement errors. The development of optical
techniques in recent years has made it possible to evaluate corneal mechanical properties
in nonperturbative ways [18], and the extensive use of finite element methods in corneal
simulations has accelerated these developments [19,20] (Figure 1). These new techniques
could provide the spatial distribution of corneal biomechanical features, which is valuable
information for clinical use. However, these techniques are still in the early stages of
research. There is currently still a lack of a gold-standard technique that can comprehen-
sively quantify the various mechanical parameters of the cornea and describe the corneal
biomechanical properties.
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Figure 1. Development of in vivo corneal biomechanical measurements. Initial techniques for assess-
ing the corneal mechanical characteristics utilized air puffs (e.g., ocular response analyzer (ORA)) [14].
Later, less destructive corneal deformation techniques, such as ultrasound (mechanical waves) [16,17],
were developed. In recent years, new technologies such as brillouin microscopy (BM) [18] have
emerged. Some commercial devices (ORA, corneal visualization Scheimpflug technology (Corvis ST))
are now used in clinical settings.
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This review focuses on various techniques for collecting biomechanical measurements
of the cornea in vivo and describes their principles of operation, milestones during their
development, and application prospects, thus providing an introduction to these existing
assessment techniques and their recent developments. We expect this review to inspire
new ideas that can promote the development of corneal biomechanical measurement
in the future, which will be conducive to the improvement and development of new
and more reliable measurements, especially the realization of in vivo tracking of corneal
stress distribution.

2. Perturbation-Based Measurements

Corneal deformation induced by external pressure is a prerequisite for the assess-
ment of corneal mechanical characteristics using perturbation techniques, although the
mechanical parameters of interest and modes of analysis may differ within this broad
category of techniques. The current direction of development in measurement techniques
based on perturbation is from invasive to minimally invasive and noninvasive, with the
hope that a noninvasive, noncontact technique will be developed to evaluate corneal
biomechanical characteristics.

2.1. Ocular Response Analyzer

Early studies conducted to measure the corneal mechanical characteristics usually
relied on pneumatic loads to deform the cornea from the inner side. Thus, these studies
could only assess the local corneal mechanical properties in vitro [21–23]. In vivo tests im-
plemented by injecting saline into the eyeballs were performed subsequently to determine
the pressure–volume relationship and the stiffness of the living cornea [24]. Following
this, devices were also developed to measure IOP and corneal rigidity using an in vivo
contact plunger to flatten the cornea inwards [13]. The ocular response analyzer (ORA) is
the first noncontact commercial device to employ this principle to assess corneal stiffness.
It estimates the overall biomechanical behavior of the cornea by capturing the corneal
deformation as the cornea is subjected to air pressure. The external machine provides an air
pressure that varies in magnitude over time to deform the cornea in the inward direction.
During this process, two critical points are captured and recorded as P1 and P2 when the
central region of the cornea is in a flat shape. The deformation of the cornea is monitored
using collimated infrared laser light by detecting the intensity of the reflected infrared
signal [14].

Upon data processing, the ORA is able to reveal two parameters: corneal hysteresis
(CH) and corneal resistance factor (CRF). The former of these quantifies the corneal vis-
coelastic properties and the latter is an indicator of the overall corneal resistance, reflecting
the corneal elastic characteristics [12,14]. These parameters help to differentiate keratoconus
from healthy corneas [25]. Furthermore, the ORA is considered a new IOP measurement
technology because biomechanical indicators can be used to obtain the IOP data more
accurately, thus providing Goldman-related IOP (IOPg) and corneal-compensated IOP
(IOPcc) [14].

Although CH and CRF can reflect the corneal biomechanical properties, it is difficult to
distinguish between the biomechanical properties of different areas of the cornea according
to their principle and function [26]. The mathematical relationship between CH, CRF,
and elastic modulus remains unclear, thus limiting the clinical use of this technique [26].
Additionally, CCT and IOP can influence CRF and CH data. Therefore, the weighted value
of the CRF is often used in clinical applications of the ORA [27,28].

To overcome these limitations, several new studies have defined additional parame-
ters [29,30]. These include the hysteretic loop area, which can improve the sensitivity of the
ORA by extending the detection range and analyzing the relationship between pressure
and displacement throughout the deformation process [30]. The ORA (Reichert Inc., Depew,
NY, USA) is now commercially available for clinical use.
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2.2. Corneal Visualization Scheimpflug Technology

Corneal visualization Scheimpflug technology (Corvis ST) was developed as an im-
provement of the ORA via the addition of an ultrafast Scheimpflug camera that allows
direct monitoring of corneal deformation [31–33]. Both the ORA and Corvis ST require
similar air perturbations, but the difference is that Corvis ST can maintain a consistent air
pressure across different measurements. As a result, Corvis ST can record the process of
corneal shape change more accurately, thus enabling more precise assessments [34,35].

Corvis ST reports two parameters, namely, the corneal biomechanical index (CBI) and
the total biomechanical index (TBI). Both are new parameters based on a linear regression
analysis combining corneal morphology and stiffness parameters, which can improve the
detection rate of conical corneas [36]. Other parameters based on Corvis ST that are able to
characterize the corneal biomechanical features in vivo have recently been proposed [37].
Figure 2 shows an example of keratoconus identified using Corvis ST (Oculus Inc., Wetzlar,
Germany), and multiple parameters are quantified.

Bioengineering 2023, 10, x FOR PEER REVIEW 4 of 13 
 

To overcome these limitations, several new studies have defined additional parame-
ters [29,30]. These include the hysteretic loop area, which can improve the sensitivity of 
the ORA by extending the detection range and analyzing the relationship between pres-
sure and displacement throughout the deformation process [30]. The ORA (Reichert Inc., 
Depew, NY) is now commercially available for clinical use. 

2.2. Corneal Visualization Scheimpflug Technology 
Corneal visualization Scheimpflug technology (Corvis ST) was developed as an im-

provement of the ORA via the addition of an ultrafast Scheimpflug camera that allows 
direct monitoring of corneal deformation [31–33]. Both the ORA and Corvis ST require 
similar air perturbations, but the difference is that Corvis ST can maintain a consistent air 
pressure across different measurements. As a result, Corvis ST can record the process of 
corneal shape change more accurately, thus enabling more precise assessments [34,35]. 

Corvis ST reports two parameters, namely, the corneal biomechanical index (CBI) 
and the total biomechanical index (TBI). Both are new parameters based on a linear re-
gression analysis combining corneal morphology and stiffness parameters, which can im-
prove the detection rate of conical corneas [36]. Other parameters based on Corvis ST that 
are able to characterize the corneal biomechanical features in vivo have recently been pro-
posed [37]. Figure 2 shows an example of keratoconus identified using Corvis ST (Oculus 
Inc., Wetzlar, Germany) , and multiple parameters are quantified. 

 
Figure 2. Example of an ectatic eye observed using Corvis ST and Pentacam. Corneal parameters 
are displayed in the upper left and corneal deformation morphology is displayed in the lower left. 
Corneal morphological data are shown on the right. The Belin−Ambrósio display (BAD) D is a pa-
rameter based on corneal morphology to assess the risk of corneal ectasia. The corneal biomechani-
cal index (CBI) and the total biomechanical index (TBI) are shown at the bottom. 

Figure 2. Example of an ectatic eye observed using Corvis ST and Pentacam. Corneal parameters
are displayed in the upper left and corneal deformation morphology is displayed in the lower
left. Corneal morphological data are shown on the right. The Belin−Ambrósio display (BAD)
D is a parameter based on corneal morphology to assess the risk of corneal ectasia. The corneal
biomechanical index (CBI) and the total biomechanical index (TBI) are shown at the bottom.

However, Corvis ST cannot be used to analyze the corneal mechanical behavior in
a specific direction. Furthermore, its results are also affected by factors such as the IOP [26].
Repeated experiments using Corvis ST have demonstrated that single measurements do not
yield accurate results, and some form of averaging is generally required [38,39]. However,
these limitations have not hindered the application of Corvis ST in clinical studies. Corvis
ST has been shown to improve the screening accuracy in refractive surgery screening [40].
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Corvis ST (Oculus Inc., Wetzlar, Germany) is currently commercially produced and is in
clinical use.

2.3. Optical Coherence Elastography

Optical coherence tomography (OCT) is a technique used to examine the microscopic
structures in biological tissues. The study that first reported it did not target ocular com-
ponents [41]. Optical coherence elastography (OCE) is an imaging method that combines
OCT with external loading to measure the corneal elasticity in vivo. It uses tomography
for nondestructive estimation of the material properties of the cornea [42]. The evaluation
can be performed without a significant increase in the IOP generated by using a pressure
source to flatten the cornea. It utilizes the short coherence length of a broadband light
source to achieve precise axial and lateral segmentation on a high-scattering medium with
high resolution. According to the concept of OCE, the observed tissue deformation can be
mathematically modeled and analyzed to approximate the Young’s modulus [43] in order
to achieve noninvasiveness. Extensive research has been performed in this area. In addition
to the pressure source, a miniature air-puff perturbation method has been proposed which
can use a short, high-intensity air puff to cause a local displacement in the cornea; the
pulse is propagated in the form of elastic waves, and can thus avoid the measurement
errors originating from IOP changes [15,44,45]. The corneal viscoelasticity can also be
quantitatively assessed [46].

Some studies have quantified the corneal biomechanical properties after CXL treatment
in rabbit eyes using OCE [47], and have assessed the ability of OCE to perform in vivo
measurements in humans [48]. A number of techniques have been developed based on
OCE. Other studies further established a novel noncontact OCE imaging technique that
uses interference from external pressure to assess the material properties of the cornea [49].
Air-puff-based corneal deformation is the basis of air-puff OCE [50]. Similarly to ORA,
measurements can only be taken on a single axis, so only one-dimensional data can be
obtained [50]. Additionally, the mechanical properties of the cornea show heterogeneous
variations across the cornea, which makes the specificity of the measurement limited. For
the same reason, measurement accuracy can be affected by IOP and CCT [50]. Shear-wave
OCE can reflect corneal stiffness by measuring the speed of surface wave propagation
through the corneal tissue with an ultrasound device. This makes it possible to take
measurements in two or even three dimensions [51]. The results of the measurements still
correlate with IOP, CCT, and eye movements [52]. Pulsed laser excitation OCE [53] and
acoustic radiation force OCE [54] utilize laser-induced surface acoustic waves and ARF
systems as excitation, respectively, which are then monitored in conjunction with OCT
techniques. Both allow the Young’s modulus of the cornea to be measured in real time. It
is well known that the mechanical properties of the cornea vary with factors such as IOP,
and real-time testing can avoid the lagging problems associated with changes in IOP [53].
The techniques are still in the in vitro testing phase and in vivo measurements have not yet
been achieved.

2.4. Mechanical Waves

Mechanical waves can be used in perturbation techniques to induce slight tissue
displacement. These techniques can reflect the biomechanical properties of the cornea based
on propagation analyses of mechanical waves induced in the corneal tissue, thus serving as
a new noninvasive technique type used to assess corneal biomechanical properties.

2.4.1. Supersonic Shear-Wave Imaging

Supersonic shear-wave imaging (SSWI) is a novel ultrasound technique that can
provide real-time and quantitative mapping of the corneal viscoelasticity in noninvasive
conditions to objectively assess soft-tissue stiffness [16,55]. A conventional ultrasonic probe
causes corneal displacements, and the ultrasound wave in the tissue evolves into shear
waves that propagate and reflect the local elasticity of the cornea based on the speed of



Bioengineering 2023, 10, 120 6 of 13

their propagation [16]. This technique reflects the viscoelastic index and Young’s modulus
of the cornea and is directly applicable to in vivo studies.

SSWI can be used to quantify the corneal elastic anisotropy in vivo [56], quantitatively
estimate the local corneal stiffness, and generate a two-dimensional elastogram of the
cornea [16]. SSWI has also shown good evaluation capabilities in CXL treatments [57,58].
This technique has been applied to assess the stiffness of many biological tissues in addition
to in vivo measurements of corneal biomechanics [59–61].

2.4.2. Ultrasound Surface Wave Elastometry

Ultrasound surface wave elastometry (USWE) uses an ultrasound probe to measure the
time of wave propagation between two transducers set at a fixed distance; the propagation
time can be used to determine the corneal elasticity. This technique reflects the local
mechanical properties of the cornea and compares the stiffness values in the central, radial,
and other directions [17]. This technique was used for donor tissues in the past [17], but
has been successfully applied to in vivo examinations of corneas recently [62].

USWE has been applied to the determination of corneal biomechanics in CXL stud-
ies [63]. However, this technique has not been adequately studied; as a result, relevant
commercial instruments are unavailable.

3. Non-Perturbation-Based Measurements

Unlike perturbation-based measurements, non-perturbation-based measurements
do not rely on corneal deformation. These techniques usually involve direct corneal
biomechanical assessments based on the inherent structural properties of the corneal tissue.
The acquisition of the intrinsic corneal tissue parameters can be currently achieved using
techniques such as optical or computational simulations.

3.1. Brillouin Microscopy

Brillouin microscopy (BM) uses the Brillouin shift between Stokes and anti-Stokes
scattering to measure the longitudinal or bulk modulus in order to describe the mechanical
compressibility of tissue. BM imaging techniques can be used to obtain volumetric images
of the elastic characteristics of the cornea [18]. A low-power, near-infrared laser beam is
used to analyze the spectral data of the echo signal and generate a three-dimensional map
of the longitudinal modulus of the corneal surface and the corneal thickness.

BM observations can describe the local biomechanical characteristics of the cornea
and reflect its three-dimensional spatial heterogeneity. The downsides are the narrow
measurement range and the long acquisition time, which limits the large-scale use of
BM approaches [64,65]. As for biomechanical properties, BM can be used to assess the
longitudinal modulus of the cornea. However, the technology is not currently available for
the assessment of Young’s modulus and stress–strain behavior.

Many clinical studies have utilized BM for in vivo corneal measurements [65], detection
of keratoconus [66], and other applications. Clinical trials are being conducted using
BM to demonstrate that corneal CXL treatments can increase corneal stiffness [67]. This
technique is expected to become a standard and valid clinical examination technique for
the assessment of the biomechanical characteristics of the cornea [68].

3.2. Phase-Decorrelation OCT

Phase-decorrelation OCT (PhD-OCT) is a new technique used to characterize corneal
biomechanics by combining OCT and BM. Unlike BM, which uses Brillouin scattering,
PhD-OCT uses dynamic light scattering of particles in a fluid to obtain the relevant pa-
rameters. After scanning, the attenuation constant of the particles, which is related to the
viscoelasticity of the material, is calculated using the Fourier transform [69].

PhD-OCT can reflect the corneal spatial heterogeneity in three dimensions [70]. More-
over, PhD-OCT can circumvent most of the disadvantages of corneal biomechanical
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measurements, such as IOP dependence and extended assessment time, thus making it
a promising technique.

3.3. Finite Element Method

The finite element method is an in silico technique that can mimic real-world physical
or mathematical problems by discretizing the complex geometry into a finite number
of small volumes with regular shapes, the so-called elements. Regarding the corneal
assessment applications, the cornea and its surrounding structures can be represented as
a large number of brick or pyramid elements, which are connected through nodes and
defined with specific material properties that are ideally derived from patient-specific
measurements. The responses to changes in the simulated structure are then obtained by
calculating the stiffness matrix. For large deformation analyses, calculation iterations are
needed until a converged solution of the entire structure is obtained [71].

The finite element method has been used extensively in several studies of the cornea,
and many techniques based on these models have been developed for evaluating corneal
biomechanical properties [70,72].

Stress–Strain Index Mapping

Stress–strain index mapping is an emerging approach used to assess the biomechanics
of corneal materials. This method is based on material model simulations using the finite
element method [20] and can be used to analyze the distribution of collagen fibers in the
cornea [73,74]. It uses inverse analysis to obtain two-dimensional maps of the corneal
stiffness, calculate the material tangential modulus at different IOP levels, and estimate the
stress–strain behavior [75]. This approach relies on the proven link between the corneal
tissue microstructure and stiffness distribution, and on the concept of the stress–strain
index (SSI) proposed in a previous study on Corvis ST [76]. SSI can be used to quantify the
corneal Young’s modulus, which is an independent material property that is not influenced
by IOP and CCT [75,77]. It has been demonstrated that the SSI parameter gradually
decreases as keratoconus progresses [78]. This indicates that the concept of SSI can reflect
the biomechanical properties of the cornea and is almost completely independent of corneal
morphology and IOP.

The SSI map is a comprehensive analysis of the local SSI values obtained via Corvis
ST, using the geometric information and collagen distribution principles to derive the final
stress–strain index map. In view of the nonlinear nature of the stress–strain behavior of the
cornea, SSI maps can provide more accurate measurements of biomechanical parameters.
Before exporting the SSI maps, it is necessary to diagnose the presence and type of corneal
ectasia to select the appropriate model for computational analysis. In the case of a healthy
cornea, the derived SSI maps show only slight fluctuations in the SSI values across the
corneal surface, whereas keratoconus shows great disparities in the SSI value over some
areas [75]. Two-dimensional images provide a new tool for the assessment of local changes
of corneal stiffness. SSI maps visually quantify the biomechanical characteristics of the
corneal surface and provide direct insight into the mechanism of progression of the patient’s
keratoconus. However, it should also be noted that the current technique is based on
a single model of corneal fiber distribution and does not take into account differences
between individual eyes. Moreover, the study only included a fairly small number of
keratoconus cases, which makes the final results unrepresentative, and more data need to
be included in subsequent research.

The SSI mapping technique has evolved very rapidly and is now in clinical trials.
Recent studies have evaluated the progression of keratoconus using SSI maps [79] and
demonstrated the technique’s potential for commercial clinical applications.

4. Corneal Biomechanics in Clinical Settings

The concern about corneal biomechanics stems directly from clinical problems. The
corneal stroma is essentially a thin tissue made up of multiple layers of interwoven fibers,
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so any disruption of the corneal structure will alter the biomechanical properties of the
cornea [80]. One of the most relevant diseases is keratoconus. The most important changes
in keratoconus are the reduction in stromal layer thickness and the rupture of the Bowman
layer. The collagen fiber content in the cornea is also decreased significantly [81]. This
results in a change in the corneal biomechanical properties, which eventually manifests
in the morphology of the cornea, with a reduction in the central corneal thickness and
a conical shape of the cornea. A study using the OCE technique to assess changes in corneal
biomechanical properties in vitro in keratoconus and to map the two-dimensional distribu-
tion of Young’s modulus showed that the Young’s modulus in the central conical region
was much lower than that in healthy corneas [82]. Such comparisons are expected to enable
early detection of the changes in biomechanical properties associated with keratoconus
and to aid clinical diagnosis. Some systemic connective tissue diseases that manifest in
the eye as keratoconus, as well as keratoconus as a complication of refractive surgery, may
also be associated with this pathogenesis [83]. To reduce the probability of keratoconus as
a complication refractive surgery, most current refractive procedures restrict postoperative
corneal stromal bed thickness to a minimum of 250 µm [84]. CXL treatment, which is an
effective means of increasing corneal resistance by forming new molecular bonds between
the corneal laminae and collagen fibers, is primarily used to treat keratoconus [85]. It
has been shown to be effective in enhancing the biomechanical resistance of the cornea,
increasing the Young’s modulus in the central conical region, and stiffening the cornea [57].

Outside the field of refraction, glaucoma is also associated with the corneal biomechan-
ical properties. The measurement of IOP is inextricably linked to corneal viscoelasticity [86].
Furthermore, corneal hysteresis (CH) can be an important indicator for the diagnosis of
glaucoma and as a prognostic factor for the associated risk: lower CH values may be
associated with damage such as lower visual field indices and higher degrees of optic
disc defects [86]. It is now thought that CH may be more relevant to changes in glaucoma
structure and function than parameters such as CCT. The accurate measurement of CH
using ORA has also accelerated the progress and application of related research.

5. Conclusions

In recent years, the field of corneal biomechanics has been an area of focus owing to the
continuous development of refractive surgery techniques. Table 1 provides an overview of
some of the currently available measurement techniques. Several techniques are available
for the in vivo evaluation of biomechanical characteristics of the cornea, among which ORA
(Reichert Inc., Depew, NY, USA) and Corvis ST (Oculus Inc., Wetzlar, Germany) are already
in commercial production. Both commercially available devices enable noninvasive, more
accurate measurements of biomechanical properties by analyzing the process of corneal
large-amplitude deformation. However, the large-amplitude deformation of the cornea
shows a nonlinear character, and IOP and CCT can affect the accuracy of the measurement.
The analysis method is also based on ultrafast photographic equipment that precludes the
possibility of spatially resolved measurements. In response to these problems, measurement
techniques such as SSI, USWE, and OCE have been developed. These low-perturbation,
low-amplitude techniques enable two-dimensional and even three-dimensional spatial
measurements, reflecting variability in the biomechanical properties of different regions of
the cornea and improving the safety of detection. It should be noted that these devices still
measure based on the perturbation principle, which makes it difficult to avoid sources of
interference such as IOP, CCT, eye movements, etc. In view of the unavoidable measurement
inaccuracies associated with perturbations, techniques such as BM and SSI mapping have
subsequently emerged to assess the biomechanical properties of the cornea, based on optical
principles or finite element modeling of the internal structures of the eye. These techniques
allow for high-accuracy measurements of the cornea and provide a more comprehensive
picture of various corneal biomechanical properties. However, these techniques are still in
the early stages of research: BM allows detection in three dimensions, but it has considerable
limitation of range and takes a long time to evaluate; while SSI maps are currently only
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available in two dimensions and need to be modeled separately for multiple diseases and
different types of corneas, which is costly. These features limit the use of these devices in
clinical applications, such as the early diagnosis of corneal ectasia and incision selection for
refractive surgery.

Table 1. Overview of methods used for in vivo corneal biomechanical measurements.

Method Principle Advantages Disadvantages

Ocular Response
Analyzer (ORA)

analysis of corneal deformation
based on air puffs

the first corneal-mechanics-related
instrument that reflects corneal

hysteresis versus corneal resistance
factor (CRF)

interrupted by IOP
and CCT

Corvis ST direct detection of corneal
deformation by using ORA

reflects the corneal biomechanical
and tomographic biomechanical
indices to accurately record the

corneal shape changes

only the uniaxial
behavior of the cornea

can be analyzed

Optical
Coherence Elastography

a tomographic imaging technique
for optical coherent elasticity of

the cornea

Young’s modulus and
viscoelasticity of the cornea can

be assessed

difficult to achieve fine
measurements in vivo

Brillouin Microscopy analysis of spectral data from echo
signals based on Brillouin scattering

the cornea can be described on
a three-dimensional level

measurement range
limitations and long

acquisition times

SSI Mapping
evaluation techniques combining

the corneal fiber structure and finite
element method

not subject to intraocular pressure
(IOP) and central corneal

thickness (CCT)

only two-dimensional
data are available

These assessment techniques are being developed and have the potential to enable
noncontact, noninvasive clinical examinations, and to provide real-time, three-dimensional,
high-resolution maps of the distribution of corneal biomechanical parameters. These
measurements will provide more accurate clinical tools for issues such as early screening
of keratoconus or risk assessment for refractive surgery, and improve the understanding of
corneal diseases.
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