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Abstract: Diagnosing a brain tumor takes a long time and relies heavily on the radiologist’s abilities
and experience. The amount of data that must be handled has increased dramatically as the number
of patients has increased, making old procedures both costly and ineffective. Many researchers
investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate
and fast. Deep Learning (DL) approaches have recently been popular in developing automated
systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables
a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for
classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-
CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey
wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by
a training model built with Inception-ResnetV2. The model employs commonly used pre-trained
models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1
(0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that
determine the underlying network structure; (ii) a hyperparameter that is responsible for training the
network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in
an adaptable framework that uses both algorithms’ strengths. The experimental results show that the
BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN’s performance
by the CNN optimization’s hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the
BRaTS 2021 Task 1 dataset.

Keywords: brain tumor; diagnosing; convolutional neural network; optimization; hyperparameters;
deep learning technique

1. Introduction

Recently, digital medical images have been essential for detecting numerous illnesses.
It is additionally used for training and research. The need for electronic medical images is
growing dramatically; for example, in 2002, the Department of Radiology at the University
Hospital of Geneva produced between 12,000 and 15,000 images daily [1]. An efficient
and exact computer-aided diagnostic system is required for medical report creation and
medical image research. The old method of manually evaluating medical imaging is time-
consuming, inaccurate, and prone to human error. Over the medical diseases, the brain
tumor has become a serious issue, ranking 10th among the major causes of death in the US.
It is reported that 700,000 persons have brain tumors, of which 80 percent are benign and

Bioengineering 2023, 10, 18. https://doi.org/10.3390/bioengineering10010018 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10010018
https://doi.org/10.3390/bioengineering10010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-9221-7658
https://orcid.org/0000-0002-8352-6731
https://doi.org/10.3390/bioengineering10010018
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10010018?type=check_update&version=1


Bioengineering 2023, 10, 18 2 of 19

20 percent are malignant [2]. According to estimates by the American Cancer Society from
2021, 78,980 adults have been diagnosed with a brain tumor, with 55,150 noncancerous and
24,530 malignant tumors (13,840 men and 10,690 females) [3]. According to studies, brain
tumor is the top cause of cancer deaths in children and adults worldwide [4].

The most typical kind of brain disease is a brain tumor. It is an unregulated develop-
ment of brain cells. Brain tumors are always classified into brain tumors, both primary and
secondary. The first starts in the brain and usually stays there, whereas the latter starts as
cancer somewhere else in the body and spreads to the brain [5]. There are two different
forms of tumors: malignant and benign. A benign tumor is a slow-growing tumor that
does not infiltrate nearby tissues; on the other hand, a malignant which is a very aggressive
tumor that spreads from one location to another. The World Health Organization (WHO)
grades a brain tumor as I-IV. Tumors in categories I and II are regarded as slow-growing,
while tumors in categories III and IV are always malignant and have a worse prognosis [6].

In recent decades, many imaging techniques such as X-ray, Magneto Encephalo Graphy
(MEG), Computed Tomography (CT), Ultrasonography, Electro Encephalo Graphy (EEG),
Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography
(PET), and Magnetic Resonance Imaging (MRI) have emerged that not only exhibit the
detailed and complete facets of brain tumors but also help doctors to accurately diagnose
the tumor and determine the correct treatment mechanism [4]. MRI is considered the most
popular imaging technique for detecting brain tumors [7]. Without subjecting the patients
to excessive ionization radiation, MRI is a non and excellent soft tissue contrast imaging
technique that gives essential information about brain tumor shape, location, and size.

The brain tumor diagnosis is highly time intensive and largely depends on the ra-
diologist’s skills and knowledge. Because there are more patients, the amount of data
that must be processed has grown significantly, making traditional techniques cost and
incorrect [8]. The difficulties are associated with significant brain tumor size, shape, and
intensity variations for the same tumor type and similar manifestations of other disease
types. A misclassification of a brain tumor can result in major consequences and reduce
the patient’s survivability. There is a rise in interest in building automated technologies
for processing images to overcome the limitations of manual diagnosis [4,9] and other
related applications [10–12]. Several systems for computer-aided diagnosis (CAD) have
been created recently to diagnose brain tumors automatically.

In recent years, among many other applications, artificial intelligence (AI) has demon-
strated promising results as a decision support system to assist in the detection of diseases
and the establishment of precise medical diagnoses. In order to address practical problems
researchers and governments focus on machine learning, a branch of artificial intelli-
gence [13,14]. Machine learning, for instance, may predict the COVID-19 outbreak in the
COVID-19 pandemic challenge by determining how risky the virus is and then scaling up
the level of the methods performed. In the realm of medical analysis, machine learning
algorithms are frequently used for things such as COVID-19 prediction [15], Alzheimer’s
disease progression [16], brain tumor development [17], breast cancer progression [18], and
other disorders [19–21]. Deep learning and machine learning are essential for identifying
diseases and resolving medical problems.

Many researchers investigated numerous algorithms for detecting and classifying
brain tumors with high performance and less error. Deep Learning (DL) techniques have
recently been widely employed to build automatic systems that can accurately classify
or segment brain tumors in less time. DL enables the use of a pre-trained Convolutional
Neural Network (CNN) model [22] for medical imagery, specifically for the classification of
brain tumors, which has been created for various applications, including GoogLeNet [23],
AlexNet, and ResNet-34 [24]. DL is made up of a multi-layered deep neural network [25].
The backpropagation algorithm is used by a neural network (NN) to reduce the error
between the target and actual value. Nevertheless, even as the number of layers increases,
developing artificial neural network models gets more difficult.
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The main contributions of the current work are:

• Introduce an enhanced model to improve brain tumor diagnosis.
• It proposes a Brain Tumor Classification Model (BCM-CNN) based on an advanced

3D model using Enhanced Convolutional Neural Network (BCM-CNN).
• The proposed Brain Tumor Classification Model (BCM-CNN) is based on two submod-

ules; (i) CNN hyperparameters optimization using an adaptive dynamic sine-cosine
fitness grey wolf optimizer (ADSCFGWO) algorithm followed by trained Model, and
(ii) segmentation model.

• The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms
in an adaptable framework that uses both algorithms’ strengths.

• The experimental results show that the BCM-CNN as a classifier achieved the best
results due to the enhancement of the CNN’s performance by the CNN optimization’s
hyperparameters.

The remainder of the paper is structured as follows: A brief review of state-of-the-art
deep learning methods for finding brain tumors is discussed in Section 2. The proposed
technique is described in detail in Section 3. Section 4 depicts simulation and experimental
results. The conclusion and future works are presented in Section 5.

2. Related Work

This section introduces a collection of cutting-edge DL-based brain tumor classification
techniques. Based on DL and transfer learning algorithms, there are numerous methods for
classifying brain tumors. State-of-the-art techniques can be classified into deep learning-
based, machine learning-based, and hybrid-based techniques. Table 1 summarizes different
classification techniques for a brain tumor.

2.1. Deep Learning-Based Techniques

B. Srikanth et al. presented [26] a 16-layer VGG-16 deep NN, which accepts improved
images from a prior pre-processing phase as input and moves them through the con-
volution layer for extracting the features and downsampling (Convolution, ReLU, Max-
Pooling). Their proposed approach increased the precision of brain tumor MR image
multi-classification. To avoid the overfitting problem, completely linked and SoftMax
layers are employed. Lastly, after 20 training iterations, their proposed model achieves the
best outcomes, which have a 98 percent accuracy.

GS Tandel et al. [27] The researcher developed five clinical multiclass datasets. They
used a transfer learning-based Convolutional Neural Network (CCN) to improve perfor-
mance in brain tumor classification by employing MRI images. The proposed CNN model
was compared to six alternative ML classification approaches, including Decision Tree
(DT), Naive Bayes (NB), Linear Discrimination (LD), K-nearest Neighbor, and Support
Vector Machine (SVM). The five types of multiclass classification brain tumor datasets are
considered, and the proposed CNN-based (DL) model technique beats the six types of
machine learning model techniques. For the five classes, the CNN-based AlexNet achieved
a mean accuracy rate of 87.14, 93.74, 95.97, 96.65, and 100 percent using three different
cross-validation procedures, K2, K5, and K10, respectively.

The authors in [28] proposed a CNN technique for a three-class classification to distin-
guish between three kinds of brain tumors, including glioma, meningioma, and pituitary
tumors. They used a pre-trained GoogleNet for feature extraction from brain MRI scans.
To identify the extracted features, proven-based classifications are used. The suggested
approach outperforms existing approaches with an average classification accuracy of 98%.
Precision, F-score, recall, specificity, and the Area Under the Curve (AUC) are performance
metrics employed in the study. According to the result of the research, transfer learning
techniques is a highly effective strategy when medical pictures are scarce.
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Regarding a three-class brain tumor classification, ref. [29] suggested a deep inception
residual network. They have adjusted the output layer of the ResNet V2 network with
a dense network and a softmax layer. The suggested model maximizes brain tumor
classification accuracy. The proposed model was tested on a publicly accessible brain
tumor imaging dataset with 3064 pictures. The accuracy of the proposed model exceeds
state-of-the-art techniques by 99.69%.

Using the concept of transfer learning, ref. [30] presented a brain tumor classification
technique with MRI images. VGG16, ResNet50, DenseNet, and VGG19 networks use
transfer learning to detect the most frequent brain cancers. Deep transfer learning algo-
rithms are trained and evaluated on the publicly available Figshare dataset, which contains
3064 T1-weighted MRI scans from 233 patients with three common brain tumor types:
glioma (1426 pictures), pituitary tumor (930 images), and meningioma (708 photos). The
suggested model enhances the classification performance by 99.02% compared to ResNet50
and Adadelta.

The RCNN approach was used to design a new architecture for brain tumor classifica-
tion that was tested using two openly accessible datasets from Figshare and Kaggle [31].
The authors presented a method for brain tumor detection that uses a low-complexity ar-
chitecture to reduce the processing time of a traditional RCNN structure. Firstly, to identify
glioma and healthy tumor MRI images, they used a Two-Channel CNN, a low-complex
framework, which improves accuracy by 98.21%. Afterward, this framework is employed
as a feature extractor in an RCNN to identify tumor areas in a Glioma MRI dataset that is
categorized from a preceding phase. Lastly, the tumor region is bounded by boxes. This
approach has been used for two more tumor types: meningioma and pituitary tumors.
With an overall confidence level of 98.8%, their approach could achieve a low execution
time in comparison to state-of-the-art techniques.

ImageNet-based Vision Transformer (ViT) models (B/16, B/32, L/16, and L/32) that
have been trained and fine-tuned were proposed by [32] for brain tumor classification
purposes. Validation and testing were performed on a three-classes brain tumor dataset
from figshare that included 3064 T1w contrast-enhanced (CE) MRI slices with gliomas,
meningiomas, and pituitary tumors. L/32 was the highest model, gaining 98.2% in the total
test accuracy at a resolution of 384× 384. The ensembles of all four ViT algorithms showed
an average testing accuracy of 98.7% at the same resolution, surpassing the performance of
each algorithm at both resolutions and their ensembling at resolution 224× 224.

2.2. Machine Learning-Based Techniques

Pareek et al. [33] presented a method that detects if there is a tumor or not and then
classifies the tumor type. The proposed method was tested on 150 T1-weighted MRI
brain imaging for identifying brain tumors. The supervised approach was utilized for
the classification process, and the principal component analysis was employed for feature
extraction. They also assessed the tumor’s area and volume to determine the tumor’s
levels. The findings of the experiments demonstrate that KSVM is 97 percent accurate in
classifying brain tumors.

A novel method proposed in [34] produces excellent results and outperforms earlier
techniques. To improve MRI quality and to build an exclusionary feature set, the suggested
method employs normalization, densely speeded-up powerful features, and histogram
of gradient approaches. In the classifying stage, they use a support vector machine. The
proposed system has been tested on a significant dataset. The accuracy obtained with
this method is 90.27 percent compared to state-of-the-art techniques. Regarding experi-
mental findings, this strategy outperformed the most recent techniques. These findings
were obtained by a rigorous statistical study (k-fold cross-validation), demonstrating the
recommended method’s accuracy and robustness.
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A quantum Fully Self neural network (QFS-Net) network using qubits/three states of
quantum for segmentation of the brain lesions has been proposed [35] as a method to bene-
fit from the capabilities of quantum correlations. The advanced quantum back-propagation
approach used in supervised QINN networks is replaced with a ground-breaking super-
vised qutrit-based counter-propagating technique in the QFS-Net. This method enables the
propagation of iterative quantum states throughout the network’s layers.

2.3. Hybrid-Based Techniques

Khairandish et al. [36] Presented a hybrid approach that combines CNN and SVM with
threshold-based segmentation in terms of classification. The hybrid proposed CNN-SVM
demonstrates enhanced overall accuracy with 98.4959%. To extract features from tumor
regions and adjacent tissues, pre-trained AlexNet, GoogLeNet, ShuffleNet, and ResNet-
18 networks are employed [37]. Although deep features are crucial in the identification
process, some low-level data about tumors may be lost. As a result, a shallow network
is made to learn low-level data. Deep and shallow features are blended to compensate
for the loss of data. With the fused feature sets, SVM and k-NN classifiers are trained.
Data augmentation and ROI expansion simultaneously enhance the average sensitivity
by roughly 11.72 percent, according to experimental results. These findings support the
theory that the tissues around the tumor contain significant data. Not only that, but
feature fusion may substitute for missing low-level information. Furthermore, the deep
feature extractor process is conducted with the ResNet-18. their experimental results are
competitive compared to state-of-the-art techniques.

Authors in [38] proposed a deep learning-based automatic multimodal classification
technique for categorizing different brain tumors. The suggested approach comprises five
essential phases. In the first phase, an edge-based histogram and the Discrete Cosine Trans-
form (DCT) are used to implement the linear contrasting stretching. Phase two involves
the deep learning component Extractions are made. Deep learning feature extraction is
performed in the second phase. Two pre-CNN networks, namely VGG16 and VGG19, were
employed for feature extraction. The Extreme Learning Machine (ELM) and a correntropy-
based strategy were both employed in the third stage to choose the best features. The
resistant covariant features based on Partial Least Squares (PLS) were combined into one
matrix. ELM received the merged matrix to conduct the classification model. The suggested
technique was tested using the three datasets (BraTs2015, BraTs2017, and BraTs2018) with
an accuracy of 97.8%, 96.9%, and 92.5%, respectively.

A hybrid deep learning-based technique to classify brain tumors with ISLES2015
and BRATS2015 datasets was proposed in [39]. DLS techniques such as VGG16, VGG19,
and ResNet50 are used for experimental results. Then, the classifiers SoftMax, SVM-RBF,
and SVM-Cubic are used to construct the multi-class classification, and performance is
calculated according to the total accuracy reached by each method. The results of this
study proved that VGG19 with SVM-Cubic has significantly greater accuracy (96%) than
other methods.

Irmak et al. [40] proposed three-distinct Convolutional networks are suggested for three
distinct classification architectures. Detection of brain tumor accuracy reaches 99.33 percent
in the first CNN architecture. The accuracy of the second CNN model architecture reaches
approximately 92.66 percent. The second CNN architecture can categorize brain tumors
into five types: normal, meningioma, glioma, metastatic, and pituitary. With an accuracy
of 98.14 percent, the third CNN architecture successfully categorizes brain tumors into
Grade II, Grade III, and Grade IV. The state-of-the-art CNN algorithms such as Inceptionv3,
AlexNet, ResNet-50, GoogleNet, and VGG-16 compared to the suggested CNN models.
Utilizing the grid search optimization technique, all the essential model parameters of
Convolutional networks are automatically identified. Publicly released clinical datasets are
used to generate acceptable detection results.
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Table 1. Different brain tumor classification techniques.

Reference Used Technique Dataset Accuracy Advantages Disadvantages

[26] 16-layer VGG-16 deep
NN

Hospitals’
dataset from
2010–2015,
China

98% Improve multi-class brain tumor
classification accuracy. Small dataset

[27] CNN-based DL model REMBRANDT
100% for two-
class classifi-
cation

AI-based transfer learning sur-
passes machine learning for
brain tumor classification.

—

[28] CNN technique for a
three-class classification Figshare 98%

Transfer learning techniques is
a highly effective strategy when
medical pictures are scarce.

Samples from the category
meningioma were
misclassified. overfitting
with smaller training
data.

[31] RCNN-based model

Openly accessible
datasets from
Figshare and
Kaggle

98.21%

Low execution time that is opti-
mal for real time processing. Op-
erate on limited-resources sys-
tems

Limited to object detec-
tion and need to imple-
ment brain segmentation.

[36] Hybrid CNN-SVM BRATS 2015 98.49% Provide effective classification
technique for brain tumor

Need to consider the size
and location of brain tu-
mor.

[37] SVM and k-NN classi-
fiers Figshare, 2017 97.25%

Extended ROI’s shallow and
deep properties improve classi-
fier performance

Accuracy need to be im-
proved

[29] Deep inception residual
network

Publicly accessi-
ble brain tumor
imaging dataset
with 3064 pictures

99.69% Achieves high classification per-
formance.

Large number of parame-
ters. Maximum computa-
tional time.

[40] CNN model for multi-
classification

Publicly released
clinical datasets 99.33%

CNN models can help doctors
and radiologists validate their
first brain tumor assessment

—

[33] Kernel-based SVM Figshare 97% Can detect whether brain tumor
is benign and malignant.

Small dataset. Classifica-
tion accuracy need to be
increased.

[30] Transfer learning-based
classification Figshare 99.02%

Accurately detect brain tumors.
Transfer learning in healthcare
can help doctors make quick, ac-
curate decisions.

Classification accuracy
need to be increased.

[34] Multi-classification
model

Three different
publicly
datasets

90.27%

Low computational time. Help
doctors in making better classi-
fication decisions for brain can-
cers.

Classification accuracy
need to be increased.

[32] ImageNet-based ViT Figshare 98.7%
Accurately detect brain tumors.
Helps radiologists make the
right patient-based decision

Needs to consider the
size and location of brain
tumor

[38]
Deep learning-based
automatic multimodal
classification

BraTs 2015,
BraTs 2017,
BraTs 2018

97.8%
Feature extraction improved
classification accuracy and re-
duced processing time

Classification accuracy
need to be increased

[39] Hybrid deep learning-
based

ISLES2015 and
BRATS2015 96% Perform multi-class classifica-

tion for brain tumor
Classification accuracy
need to be increased

3. Brain Tumor Classification Model Based CNN (BCM-CNN)

This section proposes a Brain Tumor Classification Model (BCM-CNN) based on an
advanced model using a Convolutional Neural Network. The overall architecture of the
proposed model is shown in Figure 1. The BCM-CNN is used to diagnose a brain tumor. It
consists of a hyperparameters optimization, followed by an Inception-ResnetV2 training
model. The model’s output is a binary 0 or 1 (0: Normal, 1: Tumor) and uses common
pre-trained models (Inception-ResnetV2) to enhance the brain tumor diagnosis process.
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Dataset

Images Extraction

Labels Extraction

Image 
Preprocessing

Data Partitioning

+

Training and 
Validation

Test set

Final model
Network 
Training

Inception-
ResnetV2

Hyperparameters 
optimization

Performance 
Computation

Figure 1. The proposed BCM-CNN model steps.

3.1. CNN Hyperparameters Optimization

This subsection discusses the selected hyperparameters. The configuration’s hyperpa-
rameters are variables that are not part of the model and whose values cannot be inferred
from the data. Two main categories of hyperparameters exist: (i) a network structure-
determining hyperparameter; (ii) the network is trained by the hyperparameter. Table 2
contains a list of the hyperparameters that were examined in this study.

Table 2. CNN hyperparameters setup.

Parameter Value

CNN training options (Default)
RateDropFactor
Momentum Learn
L2Regularization
LearnRateDropPeriod
GradientThreshold
GradientThresholdMethod
ValidationData
VerboseFrequency
ValidationPatience
ValidationFrequency
ResetInputNormalization
CNN training options (Custom)
InitialLearnRate
ExecutionEnvironment
MiniBatchSize
MaxEpochs
Verbose
Shuffle
LearnRateSchedule
Optimizer

0.1000
0.9000
1.0000 ×10−4

10
Inf
l2norm
imds
50
Inf
50
1

1.0000 ×10−4

gpu
8
20
0
every-epoch
piecwise
ADSCFGWO

3.2. ADSCFGWO for CNN Hyperparameters

To select the most important characteristics from the metamaterial dataset in order to
achieve the best possible performance, the adaptive dynamic sine cosine fitness grey wolf
optimizer, abbreviated as ADSCFGWO, was initially introduced in [41]. This algorithm
draws from both the sine cosine and grey wolf algorithms in an adaptable framework that
makes use of both algorithms’ strengths. To estimate the double T-shape monopole antenna
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properties, the ADSCFGWO algorithm additionally optimizes a bidirectional recurrent
neural network (BRNN). In this work, the optimization of the CNN hyperparameters is
based on the adaptive dynamic sine cosine fitness grey wolf optimizer (ADSCFGWO)
algorithm. The ADSCFGWO algorithm is shown in Algorithm 1.

The population in the potential solution of the ADSCFGWO algorithm,
Xi(i = 1, 2, . . . , n) with size n, is split into two groups: the exploration group, n1, and
exploitation group, n2. The exploration group’s job is to use the search space to discover
new locations where the greatest possible solution might be located. The exploitation
group’s job is to use an objective function to enhance the best solution’s quality. These
two groups cooperate in the suggested optimization process to trade responsibilities and
required data that can hasten the retrieval of the optimum solution. The effective avoid-
ance of the local optima and the precise exploration of the search space are advantages of
this collaboration. The ADSCFGWO optimization technique has two key characteristics:
first, it maintains correct control over the equilibrium between the exploitation and explo-
ration groups; and second, it uses a dynamic mechanism to avoid steady regions in the
search space.

The fittest solutions are denoted by (Sα), (Sβ), and (Sδ). The position update in the
direction of the prey position is estimated during the search process as

X(t + 1) =
T1 + T2 + T3

3
(1)

where T1, T2, and T3 are calculated as

T1 = Sα − A1.D, T2 = Sβ − A2.D, T3 = Sδ − A3.D (2)

where D is calculated as |C1.(Fα ∗ Sα + Fβ ∗ Sβ + Fδ ∗ Sδ)− X(t)|. The A and C vectors are
defined as A = 2a.r1 − a and C = 2r2, where the vectors values r1 and r2 are randomly
selected from the range [0, 1]. The values of a are determined in the range [0, 2] and is
calculated as a = 2− t. 2

TMax
for TMax iterations. The fitness functions are calculated as

Fα =
Fα

Fα + Fβ + Fδ
, Fβ =

Fβ

Fα + Fβ + Fδ
, Fδ =

Fδ

Fα + Fβ + Fδ
(3)

The ADSCFGWO method automatically balances the subgroups of the population’s
exploitation and exploration. The algorithm uses a 70/30 system in which two groups—
exploration and exploitation groups—represent 70% of the population. A large number
of participants in the exploration group early in the optimization process helps with the
discovery of novel and intriguing search regions. The overall fitness of agents increases
when more exploitative agents can increase their fitness values, but the proportion of
agents engaged in exploration falls quickly from 70% to 30%. If a better solution cannot be
identified, using an elitism approach ensures convergence by keeping the process leader in
consecutive populations. ADSCFGWO may at any point increase the size of the exploration
group, provided that the leader’s fitness has not dramatically increased over the course of
three consecutive iterations.

The suggested ADSCFGWO algorithm’s computational complexity can be stated as
in Table 3 for population n and iterations tmax. From this analysis, the complexity of
computations is O(tmax × n) and O(tmax × n× d) with d dimension.
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Algorithm 1 ADSCFGWO algorithm

1: Initialize ADSCFGWO population Xi(i = 1, 2, . . . , n) with size n, iterations tMax, fitness
function Fn, parameters (a, A1, A2, A3, C1, C2, r1, r2, r3, r4)

2: Calculate fitness function Fn for each Xi
3: Find best solutions as Sα, Sβ, Sδ

4: Set t = 1
5: while t ≤ tMax do
6: Update r1 by r1 = a

(
1− t

Maxiter

)
7: for (i = 1 : i ≤ n1) do
8: DynamicSearch(Fn)
9: Update Fitness by Equation (3)

10: Update positions from GWO as X(t + 1) = T1+T2+T3
3

11: if (r4 < 0.5) then
12: Update positions from SCA as X(t + 1) = X(t) + r1 × sin(r2)× |r3Sα − X(t)|
13: end if
14: end for
15: for (i = 1 : i ≤ n2) do
16: DynamicSearch(Fn)
17: Update Fitness by Equation (3)
18: Update positions from GWO as X(t + 1) = T1+T2+T3

3
19: if (r4 ≥ 0.5) then
20: Update positions from SCA as X(t + 1) = X(t) + r1 × cos(r2)× |r3Sα − X(t)|
21: end if
22: end for
23: Update fitness function Fn for each Xi
24: Update parameters
25: Find best solutions as Sα, Sβ, Sδ

26: end while
27: Return best solution X∗

28: DynamicSearch(Fn)
29: if (Best Fn is same for three iterations) then
30: Increase exploration group solutions (n1)
31: Decrease exploitation group solutions (n2)
32: end if

Table 3. ADSCFGWO algorithm’s computational complexity.

No. Operation Complexity

1 Initialization O(1)
2 Calculate objective function O(n)
3 Finding best solutions O(n)
4 Updating position of current grey wolf by fitness O(tmax × n)
5 Updating position of current individual by Sine Cosine O(tmax × n)
6 Updating objective function O(tmax × n)
7 Finding best fitness O(tmax)
8 Updating parameters O(tmax)
9 Producing the best fitness O(1)

3.3. 3D U-Net Architecture Segmentation Model

U-Net [42] is a network that is used for fast and accurate image segmentation. It
comprises an expanded pathway and a contracting pathway. The contracting pathway
adheres to the standard convolutional network design. Two 3× 3 unpadded convolu-
tion layers are applied repeatedly, and after them, a ReLU activation function and a
2× 2 max-pooling with stride 2 are applied for down-sampling. The number of features at
every stage in the down-sampling process is doubled. The expanding pathway consists of
an up-sampling process, a 2× 2 convolution layer that reduces the size of the feature map,
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a combination with the proportionally clipped feature map from the contracting pathway,
and two 3× 3 convolution layers, each accompanied by a ReLU activation function. All
the 64-component extracted features are mapped to the required number of categories in
the last layer using a 1× 1 convolution layer. The model includes 23 convolutional layers
overall. The reason for using a U-net network is that it is fast compared to other networks.
On a modern GPU, segmentation of a 512× 512 picture consumes less than a second.

Numerous U-Net-based variant networks have been proposed since U-Net [42]’s
extensive research and application in medical image segmentation in 2015; 3D U-Net [43]
is the most representative of these. Figure 2 depicts the 3D U-Net’s structure. The encoder-
decoder architecture of this model expands on the prior U-Net (2D). The encoder component
performs feature extraction from an analysis of the input image. The associated decoder
produces a segmented mask. The mask extraction is supervised by this model by mini-
mizing a cost function. 3D U-Net differs from 2D U-Net in that its features are extracted
and restored using 3D convolution, 3D max-pooling, and 3D deconvolution blocks in turn
after the volume data are input. In addition, batch normalization is added by 3D U-Net to
prevent bottlenecks and hasten convergence. For the segmentation process, the dataset is
partitioned into a train, validation, and test datasets.

Figure 2. Structure of the 3D U-Net.

4. Experimental Results

This section describes the used dataset, the Performance metrics used in CNN, the
implementation of the proposed strategy, and the experiments conducted. The parameters
for the ADSCFGWO algorithm’s configuration are shown in Table 4.

Table 4. Parameters for the ADSCFGWO algorithm’s configuration.

Parameter Value

a [0, 2]
r1,r2,r3,r4 [0, 1]
# Runs (Repeat the whole algorithm) 11
# Iterations (tMax) 80
# Agents (Population size n) 10

4.1. Dataset Description

The used dataset is BRaTS 2021 Task 1 Dataset [44]. As training, validation, and
testing data for this year’s BraTS challenge, a sizable number of multi-institutional regular
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clinically acquired multi-parametric MRI (mpMRI) images of glioma with pathologically
confirmed diagnosis and accessible MGMT promoter methylation status are used. For Task
1, the datasets utilized in this year’s competition have been updated with many additional
routines clinically collected mpMRI scans since BraTS’20. To quantitatively assess the
projected tumor segmentations, expert neuroradiologists create and approve ground truth
annotations of tumor sub-regions for each patient in the training, validation, and testing
datasets. As shown in Figure 3, the dataset is partitioned into a train, validation, and test
datasets. Figure 4 illustrates an example of the dataset.

Figure 3. Dataset distribution.

Figure 4. Example of dataset images.

The data augmentation technique is used in this study to artificially generate fresh
training data from the current data. As a sort of data augmentation, picture augmentation
produces altered representations of the training dataset’s images. The input dataset is
subjected to several image transformations, such as horizontal and vertical shift, horizontal
and vertical flip, random rotation, and random zoom. The shift augmentation maintains the
same image dimensions while shifting all of the MRI image’s pixels in either a horizontal
or vertical direction. When flipping horizontally or vertically, all pixels’ rows and columns
are reversed. The MRI image is randomly rotated between 0 and 360 degrees clockwise
using the rotation augmentation. The zoom augmentation’s final step involves randomly
zooming the MRI image by a factor between [0.9, 1.1].

4.2. Performance Metrics Used in CNN

The conventional computer-aided diagnostic approach may be tested using a variety
of key performance metrics, including accuracy, precision, F1-score, recall, specificity, and
sensitivity. The number of cases that were accurately identified as defective is shown by
the letter TP, which stands for True Positive. False Positive, abbreviated as FP, refers to the
number of cases that were incorrectly identified as defective. Additionally, FN stands for
False Negative and reflects the number of occurrences that were incorrectly classified as
non-defective. TN is for True Negative, which represents the number of cases that were
correctly identified as non-defective. The metrics are defined as in Table 5.
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Table 5. Performance metrics used in CNN

No. Metrics Calculation

1 Accuracy TP + TN
TP + TN + FP + FN

2 Sensitivity TP
TP + FN

3 Specificity TN
TN + FP

4 Precision (PPV) TP
TP + FP

5 Negative Predictive Value (NPV) TN
TN + FN

6 F1-score 2× PPV × TPR
PPV + TPR

4.3. The BCM-CNN Evaluation

As shown in Table 6, the effectiveness of the suggested approach (BCM-CNN) is
evaluated in comparison to the previously widely used classifiers CNN [22], Decision
Tree (DT) [45], Linear Discriminant (LD) [46], Support Vector Machine (SVM) [47], and
K-Nearest Neighbor (K-NN) [48]. The default parameters are used for these methods.

Samples from the texted dataset are employed in the classification experiment. As a
result of the BCM-CNN based on the ADSCFGWO algorithm boosting the performance
of the CNN after altering its hyperparameters, the BCM-CNN delivered the best results
when employed as a classifier, with an accuracy of (0.99980004), Sensitivity (TRP) of
(0.99980004), Specificity (TNP) of ( 0.99980004), Pvalue (PPV) of (0.99980004), Nvalue
(NPV) of (0.99980004), and F1-score of (0.9998). After the SVM-Linear model, which has
an accuracy score of (0.968992248), the K-NN model, which has an accuracy score of
(0.965250965), and finally, the LD model, which has an accuracy score of (0.961538462),
the simple CNN model gets the second-best accuracy with a score of (0.9765625). The
DT model was only able to achieve the lowest level of accuracy with (0.956022945). This
came about as a consequence of the fact that the method that was proposed resulted in an
improvement in CNN’s overall performance.

Table 6. The performance of the proposed method (BCM-CNN) versus basic classifiers.

Accuracy Sensitivity (TRP) Specificity (TNP) p Value (PPV) N Value (NPV) F1-Score

BCM-CNN 0.99980004 0.99980004 0.99980004 0.99980004 0.99980004 0.9998
CNN 0.9765625 0.975609756 0.977198697 0.966183575 0.983606557 0.970874
SVM-
Linear 0.968992248 0.956937799 0.977198697 0.966183575 0.970873786 0.961538

K-NN 0.965250965 0.956937799 0.970873786 0.956937799 0.970873786 0.956938
LD 0.961538462 0.947867299 0.970873786 0.956937799 0.964630225 0.952381
DT 0.956022945 0.947867299 0.961538462 0.943396226 0.964630225 0.945626

Table 7 shows the proposed BCM-CNN-based classifier’s statistical description and a
comparison of classifiers based on 11 runs (run the algorithm 11 times) and 80 iterations
(tMax in Algorithm 1) for 10 agents (Population size n in Algorithm 1) of the ADSCFGWO
algorithm. This is to confirm the stability of the proposed method compared to other
methods. Table 8 presents the compared and the proposed classifier’s test results using a
one-way ANOVA (analysis of variance) test. In contrast, Table 9 discusses the comparison
and the proposed classifiers test results using the Wilcoxon Signed-Rank test. With a
p-value of less than 0.05, this statistical test demonstrates the significant difference between
the suggested BCM-CNN classifier’s results and those of other classifiers.
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Table 7. Proposed BCM-CNN classifier’s statistical description and a comparison of classifiers.

BCM-CNN CNN SVM-Linear K-NN LD DT

Number of values 11 11 11 11 11 11
Minimum 0.9998 0.9766 0.969 0.9653 0.9515 0.946
25% Percentile 0.9998 0.9766 0.969 0.9653 0.9615 0.956
Median 0.9998 0.9766 0.969 0.9653 0.9615 0.956
75% Percentile 0.9998 0.9766 0.969 0.9653 0.9615 0.956
Maximum 0.9998 0.9866 0.972 0.9653 0.9715 0.966
Range 0 0.01 0.003 0 0.02 0.02
10% Percentile 0.9998 0.9766 0.969 0.9653 0.9535 0.948
90% Percentile 0.9998 0.9852 0.972 0.9653 0.9703 0.9649
95% CI of median
Actual confidence level 98.83% 98.83% 98.83% 98.83% 98.83% 98.83%
Lower confidence limit 0.9998 0.9766 0.969 0.9653 0.9615 0.956
Upper confidence limit 0.9998 0.9796 0.9719 0.9653 0.9654 0.9602
Mean 0.9998 0.9777 0.9695 0.9653 0.9619 0.9564
Std. Deviation 0 0.00306 0.001195 0 0.00462 0.004649
Std. Error of Mean 0 0.0009226 0.0003603 0 0.001393 0.001402
Lower 95% CI of mean 0.9998 0.9757 0.9687 0.9653 0.9588 0.9533
Upper 95% CI of mean 0.9998 0.9798 0.9703 0.9653 0.965 0.9595
Coefficient of variation 0.000% 0.3130% 0.1232% 0.000% 0.4803% 0.4860%
Geometric mean 0.9998 0.9777 0.9695 0.9653 0.9619 0.9564
Geometric SD factor 1 1.003 1.001 1 1.005 1.005
Lower 95% CI of geo. mean 0.9998 0.9757 0.9687 0.9653 0.9588 0.9533
Upper 95% CI of geo. mean 0.9998 0.9798 0.9703 0.9653 0.965 0.9595
Harmonic mean 0.9998 0.9777 0.9695 0.9653 0.9619 0.9564
Lower 95% CI of harm. mean 0.9998 0.9757 0.9687 0.9653 0.9588 0.9533
Upper 95% CI of harm. mean 0.9998 0.9798 0.9703 0.9653 0.965 0.9595
Quadratic mean 0.9998 0.9777 0.9695 0.9653 0.9619 0.9564
Lower 95% CI of quad. mean 0.9998 0.9757 0.9687 0.9653 0.9588 0.9533
Upper 95% CI of quad. mean 0.9998 0.9798 0.9703 0.9653 0.965 0.9595
Skewness 2.887 1.924 −0.2076 −0.2118
Kurtosis 8.536 2.047 4.001 3.839
Sum 11 10.76 10.66 10.62 10.58 10.52

Table 8. Compared and proposed classifiers test results for ANOVA.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.01323 5 0.002646 F (5, 60) = 295.4 p < 0.0001
Residual (within columns) 0.0005374 60 0.000008957 - -
Total 0.01377 65 - - -

Table 9. Compared and proposed classifiers test results for Wilcoxon Signed-Rank.

BCM-CNN CNN SVM-Linear K-NN LD DT

Theoretical median 0 0 0 0 0 0
Actual median 0.9998 0.9766 0.969 0.9653 0.9615 0.956
Number of values 11 11 11 11 11 11
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 66 66 66 66 66 66
Sum of positive ranks 66 66 66 66 66 66
Sum of negative ranks 0 0 0 0 0 0
P value (two tailed) 0.001 0.001 0.001 0.001 0.001 0.001
Exact or estimate? Exact Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.9998 0.9766 0.969 0.9653 0.9615 0.956
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The accuracy of the proposed BCM-CNN and comparative methods is shown by the
box plot in Figure 5. This graph demonstrates the maximum accuracy results that the
BCM-CNN-based optimization algorithm was able to produce. Based on the number of
values with the Bin Center range (0.946–1.0), the accuracy histogram for the algorithms that
have been presented and compared is shown in Figure 6, which attests to the stability of
the suggested algorithm.

Figure 5. Box plot of accuracy for the BCM-CNN model under consideration and the contrasting models.

Figure 6. Histogram of accuracy for the BCM-CNN model under consideration and the contrast-
ing models.

Figure 7 displays the residual, QQ (quantile-quantile), homoscedasticity plots, and
heat map for the proposed and compared techniques. The possible problems can be
observed in the residual values and plots as opposed to the plot of the original dataset.
The independent variable is plotted on the horizontal axis, while the residual values
are plotted on the vertical axis. The ideal situation is achieved if the residual values
are scattered randomly and uniformly along the horizontal axis. The residual value is
calculated as follows when the mean and the sum of the residuals are both equal to zero:
(Actual-Predicted values). Figure 7 displays the residual plot. To determine if a model
is linear or nonlinear and which one is best, plot patterns in a residual plot can be used.
The projected scores for the dependent variable are examined visually together with the
homogeneity of variance or heteroscedasticity. When the error term, also known as noise or
random disturbance in the relationship between the dependent and independent variables,
is constant across all values of the independent variables, this situation is referred to as
homoscedasticity. The heteroscedasticity plot, shown in Figure 7, improves the precision of
the research results. Any infraction can be quickly and easily detected.
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(a) Residual plot (b) Homoscedasticity plot

(c) QQ plot (d) Heat map

Figure 7. The heat map, residual, QQ, and homoscedasticity plots of the ADSCFGWO and compara-
ble algorithms.

The QQ plot is also shown in Figure 7. A probability plot is one illustration. By plotting
the quantiles against one another, two probability distributions are primarily compared. It
is possible to see that the point distributions in the QQ plot fit on the line in the illustration.
Since the relationship between the actual and projected residuals is linear, the suggested
technique is effective. Figure 7 serves as a tool for data visualization and displays heat
maps for the offered and contrasted algorithms. The intensity of a two-dimensional color
scale indicates the complexity of an algorithm. The color fluctuation provides obvious
visual cues as to how the proposed solution is superior to the comparable algorithms. The
ADSCFGWO algorithm’s performance in feature selection, as seen in Figure 7, is supported
by these figures.

4.4. 3D U-Net Segmentation Model

There are four classes in the segmentation process. Segmentation classes are NOT tu-
mor, non-enhancing tumor (RED color), EDEMA (Green color), and ENHANCING (yellow
color). These classes were converted into three classes later. Figure 8 illustrates samples
of images and masks with a positive brain tumor. For more precious and fast detection
of brain tumor, the 3D U-net segmentation model has been implemented on the BRaTS
2021 dataset. The dataset is divided into 70% training, 20% validation, and 10% testing.
Implementation is constructed online on Kaggle. U-net model enhances segmentation
validation accuracy up to 99.33%, and validation loss up to 0.01 as shown in Figure 9. We
can conclude that our proposed model can detect brain tumor with high accuracy compared
to state-of-the-art techniques in terms of classification and segmentation.
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Figure 8. Visualize image with mask of a positive brain tumor.

(a) (b) (c)

Figure 9. Training and validation performance parameters; (a) Accuracy, (b) Loss, (c) Dice coef.

5. Conclusions and Future Work

A large number of researchers looked at a wide variety of algorithms with the goal of
accurately detecting and classifying brain cancers in a quick and efficient manner. Deep
learning (DL) makes it possible to use a Convolutional Neural Network (CNN) model
that has already been pre-trained for the analysis of medical pictures, in particular for the
categorization of brain tumors. The fundamental objective of this research is to develop
an improved model with the intention of making brain tumor diagnosis more accurate. A
Convolutional Neural Network (CNN) that is based on a Brain Tumor Classification Model
(BCM-CNN) was proposed in this paper. The optimization of the CNN’s hyperparameters
was based on an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO)
algorithm. The BCM-CNN was used as a classifier in the experiments, and the results reveal
that it produced the best results due to the enhancement of the performance of the CNN
after the optimization was performed. The BCM-CNN was given the BRaTS 2021 Task 1
dataset, and it performed with an accuracy of 99.99%. The main limitation of the proposed
algorithm is that it takes a long time to process due to the extra optimization steps. It may
not be applicable as the size of the trained data is limited, so we intend to solve this issue
in future work by generalizing more data. We also intend to make a prediction in future
work, not just classification.
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NN Neural Network
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