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Abstract: The importance of vital sign monitoring to detect deterioration increases during healthcare
at home. Continuous monitoring with wearables increases assessment frequency but may create
information overload for clinicians. The goal of this work was to demonstrate the impact of vital sign
observation frequency and alarm settings on alarms in a real-world dataset. Vital signs were collected
from 76 patients admitted to healthcare at home programs using the Current Health (CH) platform;
its wearable continuously measured respiratory rate (RR), pulse rate (PR), and oxygen saturation
(SpO2). Total alarms, alarm rate, patient rate, and detection time were calculated for three alarm
rulesets to detect changes in SpO2, PR, and RR under four vital sign observation frequencies and four
window sizes for the alarm algorithms’ median filter. Total alarms ranged from 65 to 3113. The alarm
rate and early detection increased with the observation frequency for all alarm rulesets. Median filter
windows reduced alarms triggered by normal fluctuations in vital signs without compromising the
granularity of time between assessments. Frequent assessments enabled with continuous monitoring
support early intervention but need to pair with settings that balance sensitivity, specificity, clinical
risk, and provider capacity to respond when a patient is home to minimize clinician burden.

Keywords: remote monitoring; alarm; vital sign; hospital at home; wearable

1. Introduction

Healthcare and Hospital at Home (HaH) programs have become popular during the
COVID-19 pandemic, as hospitals exceeded their inpatient capacity, and the risk associated
with in-person care increased [1]. Improvements in technology, such as medical-grade
wearables and HIPAA-compliant communication platforms, alongside a clinical imperative
to change practice, have made it possible to deliver acute care in remote settings [2].
Monitoring a patient’s overall status, including vital signs, is a standard of care in hospital
settings to detect deterioration, facilitate intervention, and avoid adverse events. In a remote
setting, a patient is less easily reached, so false alarms are potentially more disruptive and
expensive. There is a premium on context and specificity. As we move care out of the
brick-and-mortar hospital setting, and into patients’ homes, we must ask the question, is
there a direct translation of vital signs and vital sign alarm settings between in-hospital
and remote monitoring? Or do we need to develop a new paradigm of alerting that is more
suited to this new environment?

One of the first indicators of clinical deterioration is a change in physiological status [3].
In the hospital, a patient’s overall status is assessed with a combination of objective and
subjective information collected through vital sign measurements, reported symptoms,
and clinical observation [4]. At-risk patients are identified with physiological track and
trigger systems (PTTS) that use algorithms to assess vital signs. These algorithms range in
sophistication from fixed individual vital sign thresholds, [5,6] to adaptive thresholds, [7]
to summarizing multiple vital sign measurements and observations into one metric, such
as early warning scores (EWS) [8]. PTTS allow clinicians to standardize assessments and
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responses to acute illness. The National Early Warning Score (NEWS), for example, is
consistently used throughout the National Health Service in the United Kingdom (UK),
and the latest iteration (NEWS2) incorporates respiratory rate, oxygen saturation, systolic
blood pressure, pulse rate, level of consciousness or new confusion, and temperature. An
aggregated score of 5–6 is a medium clinical risk and a key threshold for urgent response,
while an aggregated score of 7 is a high clinical risk and escalated to an urgent or emergency
response [9].

Assessments of physiological status are driven by the frequency of vital sign measure-
ments, which are typically collected every 8 to 24 h by the clinical staff in a general unit [10].
Large gaps in time between vital sign measurements allow for clinical deteriorations to
go undetected and may result in adverse clinical outcomes [3]. The low frequency of
assessments may be compounded by incomplete sets of vital signs resulting from clinician
selection of vital signs measured [11]. A previous study reported that as little as 21% of
the 229 vital sign-related interactions between nurse and patient involved a full set of vital
sign measurements [11]. Intermittent vital sign measurements generate sporadic informa-
tion that is not consistently assessed, recorded, interpreted, or actioned [4,12,13]. Nurses
agreed that continuous vital sign monitoring would enhance patient safety in the general
ward [14,15]. When vital signs are measured by a nurse, an artifact may be introduced to
the reading due to patient engagement; during manual observations, patients typically
wake, sit upright, and remain still, resulting in vital sign measurements that may not be
representative of their physiological status during activities of daily living.

The likelihood of early identification of a clinically significant change in patient status
increases as vital signs are measured more frequently [16]. Hospital units where patients
are likely to be medically unstable, such as intensive care, high dependency, and post-
anesthesia care units, use continuous monitoring systems that often include invasive
metrics, such as arterial or central venous blood pressure, with alarm settings that are
highly sensitive to acute changes. The number of alarms reported for a patient ranged from
6.5–45.5 per hour on an ICU [17,18] and these units typically have a 1:1 or 1:2 nurse-to-
patient ratio. A high nurse-to-patient ratio is required to be able to respond to alarms and
intervene appropriately when alarms have high sensitivity. Patients admitted to these units
spend most of their time stationary, as mobility is typically limited, either by pathology or
equipment. Continuous monitoring is therefore comparably straightforward, as limited
motion means the quality of continuous vital sign measurements is better, while tethered
equipment is not as much of a hindrance as in other hospital units, where patients are
encouraged to move more frequently as part of recovery [19].

Advances in wearable technology have created an opportunity for continuous mon-
itoring to exist outside of high acuity [20] and hospital settings. This brings benefits but
can also result in information overload [21]. New equipment, alarm settings, and the
interpretation of increased vital sign measurements may end up being perceived as more
of a burden than a benefit without proper training. Clinicians may not always recognize
deterioration, but successful incorporation of continuous vital sign monitoring into decision
making requires an understanding of its strengths and limitations—it is a new paradigm
of monitoring, not simply an increase in the rate of intermittent observations [14]. Pairing
alarms and EWSs with continuous monitoring may help clinicians recognize deterioration,
but the tradeoff is an increased likelihood of false alerting and potential alarm fatigue,
especially if alarm settings are not selected with the new context in mind. Actionable alarms
are already a low percent (20–36%) of the total number of alarms triggered in adult ward
settings [22]. The percent of unactionable alarms is likely to be higher when alarm settings
traditionally used in hospitals are applied to vital sign measurements that are collected in a
less controlled environment and do not account for factors such as physiological variability,
activity, adherence to wearing the device, and measurement accuracy. Vital signs collected
through wearables are susceptible to motion artifacts, which decrease the signal-to-noise
ratio and can impact accuracy [23].
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When implementing vital sign monitoring in HaH programs, clinicians are responsible
for decisions that have tradeoffs between the risk of delayed/missed deterioration and
alarm fatigue. A high frequency of vital sign measurements without appropriate alarm
settings leads to a lot of data without actionable information (or too much actionable
information), while a low frequency of vital sign measurements, regardless of the alarm
settings, leads to late or missed deterioration. This balance becomes even more important
during remote monitoring because care teams rely on patients to wear their devices correctly,
and the subjective information collected through clinical observation is not as readily
attainable as when a patient is in a hospital room. There is a limited amount of evidence
on vital sign collection frequency and alarm recommendations for use in a HaH program.
The purpose of this work is to evaluate the effects of vital sign observation rates and alarm
settings on alarms using a method to simulate alarms in a real-world dataset collected
remotely in a clinical setting. Alarm metrics under different simulated vital sign observation
rates and alarm setting conditions demonstrate what would be observed and highlight the
impact of the decisions a clinician makes when setting these parameters.

2. Materials and Methods
2.1. Current Health (CH) Platform

Current Health is a system that supports the remote delivery of care to patients
in programs such as healthcare at home. The FDA 510(k)-cleared platform includes an
upper-arm wearable that continuously monitors pulse rate (PR), oxygen saturation (SpO2),
and respiratory rate (RR). Additional parameters, such as “Motion Level,” “Perfusion
Quality,” and “Wearable-On-Arm,” are derived from the sensor signals in the CH wearable
to provide context to the healthcare provider. Pairing vital signs (PR, SpO2, and RR) with
movement and patient adherence to wearing the CH wearable offers some compensation
for the clinical observation that is unavailable in a remote setting. These parameters are
also used to improve the quality of vital sign observations by excluding those collected
during unstable conditions, such as high levels of patient movement or incorrect wear.
When using the Current Health Generation 2 (Gen2) wearable sensor, the CH platform
outputs observations for PR, SpO2, and RR at rates of 30, 30, and 15 observations per
minute, respectively. This generates 43,200 PR and SpO2 observations, and 21,600 RR
observations every 24 h per patient. The CH platform uses a rolling median with an
aggregation window (AW), the window of time the median was calculated over, and a
minimum number of observations within AW to reduce variability in continuously collected
vital sign observations [24]. The minimum number of observations was set to 20% of the
expected number of observations for AW, determined by the observation rate (Table A1).
The CH platform also integrates with peripheral devices to collect blood pressure, axillary
temperature, lung function measures, weight, and patient-reported outcomes delivery
via tablet; however, these data were excluded for dataset completeness, as not all HaH
programs used peripheral devices.

2.2. HaH Program Dataset

Data from six HaH programs using the CH platform were screened for eligible patients.
Inclusion criteria were HaH admission > 24 h, use of Gen2 wearable, and Gen2 wear
time > 24 h. Exclusion criteria were multiple CH platform admissions, and test patients
identified by “test” in first/last name, invalid health service ID, or invalid age (<20 or
>130 years).

Seventy-six HaH patients with a variety of conditions who were admitted to the CH
platform between April 21 and May 15 and discharged before 31 May 2021, were available
to be included in the dataset. Patient demographics were limited to data available on the CH
platform. The patients were 60 ± 16 years old (n = 42), 14 male and 11 female. The reported
ethnicities were “Caucasian”: 17; “African American”: 4; “Southeast Asian”: 1; and
“Other”: 3. Gender and ethnicity were not reported in 51 patients. Each patient’s dataset
was composed of CH platform timestamps, such as CH platform admission timestamp
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(Ta) and CH platform discharge timestamp (Td); PR, SpO2, and RR values; and PR, SpO2,
and RR observation timestamps, such as initial vital sign observation timestamp (Tvs_i) and
final vital sign observation timestamp (Tvs_f).

2.3. Vital Sign Observations

The vital sign observation dataset (VSOD) was smoothed with a rolling median
(AW = 5 min, Table A1), akin to the platform’s deployment in clinical practice. VSSD
was used to create datasets with observations every 15 min (VS15), 1 h (VS1) [25], 4 h
(VS4) [26,27], and 12 h (VS12) [9] to simulate vital sign observation frequencies that are
common in hospital settings across the acuity spectrum (from the operating room and
intensive care to general wards and ambulatory clinics). Observation time was factored into
being as representative of in-person measures as possible. To simulate in-person measures,
observations from VSSD were downsampled to every 12 h, 4 h, 1 h, and 15 min starting
at 6am (Figure S1). The nearest observation was used when data were missing from the
minute mark up to 30 min before or after the minute mark. For example, a vital sign
observation from 6:05 am would be used for the 6am downsample time in the absence of
any observations between 5:55 and 6:04 am.

2.4. Vital Sign Alarms

The physiological track and trigger component of the Current Health platform is
designed to support algorithm customization. The trigger-based vital sign alarms are
driven by a ruleset that contains vital sign rules; rules include vital sign threshold(s),
logic statements, and an aggregation window. The ruleset can be tailored to meet the
needs of the use case, taking into account the patient population, planned interventions,
expected clinical course, physical distance and response times, and staffing capacity, and
it is established prior to CH platform deployment. Rulesets may then be modified based
on subsequent experience; vital sign thresholds may be modified at the patient level. The
rulesets used in this evaluation were created to identify changes in SpO2 (hypoxia), changes
in PR (tachycardia, bradycardia), and changes in RR (tachypnea, bradypnea). These changes
are indicators of deterioration in a broad range of patients.

Vital sign alarms are affected by vital sign observation frequency, and alarm rules,
thresholds, and aggregation windows. To compare the alarm output of different alarm
parameters with each other and with in-person clinical monitoring (vital sign observation
conditions), we replicated the alarm system so that previously collected patient data
could be passed through retroactively (Figure S2). Three vital sign alarm rulesets were
evaluated: a subset of NEWS2 rules (A1) [9], individual vital sign rules (A2) [5,6], and
one primarily designed with combination rules (A3). Table 1 outlines the rules, including
vital sign thresholds and combination rules, for each of the three rulesets. Each vital sign
alarm ruleset was tested on VS15, VS1, VS4, and VS12 with an aggregation window set
to 0. As described earlier, an aggregation window indicated how many data points to
use when smoothing the vital sign dataset (VSOD) (Figure S1). Four aggregation window
conditions were tested for each vital sign alarm ruleset: 5 min (VSSD), 15 min (AW15),
1 h (AW1), and 4 h (AW4). A timestamp log was generated for each test condition when
the vital sign dataset was run through an alarm simulator (Python Software Foundation.
Python Language Reference, version 3.8. Available at http://www.python.org (accessed
on 10 November 2021) to indicate when an alarm ruleset condition was met. Timestamps
were generated for each rule and then grouped for the vital sign alarm ruleset. Where the
rulesets included logic statements with multiple vital signs, an overlap window of 30 s was
used, so the vital signs needed to have breached their thresholds within 30 s of one another
to trigger the alarm.

http://www.python.org
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Table 1. Alarm rulesets.

Alarm
Ruleset Alarm Rule Respiratory

Rate
Oxygen

Saturation Pulse Rate

A1

A1-01 RR < 9
A1-02 RR > 24
A1-03 SpO2 ≤ 91
A1-04 PR < 41
A1-05 PR > 130

A1-06 * 9 ≤ RR ≤ 11 92 ≤ SpO2 ≤ 93 111 ≤ PR ≤ 130
A1-07 * 21 ≤ RR ≤ 24 92 ≤ SpO2 ≤ 93 91 ≤ PR ≤ 110
A1-08 * 21 ≤ RR ≤ 24 94 ≤ SpO2 ≤ 95 111 ≤ PR ≤ 130
A1-09 * 21 ≤ RR ≤ 24 92 ≤ SpO2 ≤ 93 111 ≤ PR ≤ 130
A1-10 * 21 ≤ RR ≤ 24 92 ≤ SpO2 ≤ 93 41 ≤ PR ≤ 50

A2

A2-01 (Hypoxia) SpO2 < 92
A2-02 (Tachycardia) PR > 100
A2-03 (Bradycardia) PR < 60
A2-04 (Tachypnea) RR > 20
A2-05 (Bradypnea) RR < 10

A3

A3-01 * RR > 25 PR > 90
A3-02 * RR > 25 SpO2 < 90
A3-03 * RR < 10 SpO2 < 90
A3-04 PR < 45

* Combination rule.

2.5. Data Analysis

A patient’s length of stay (LoS) in the HaH program was defined as

LoS = Td − Ta (1)

where Ta and Td were the timestamps of CH platform admission and discharge, respectively.
A patient’s length of wear (Lw) was defined as

Lw = Tvs_ f − Tvs_i (2)

where Tvs_i and Tvs_f were the timestamps of the first and last vital sign observations, respectively.
To calculate adherence for each patient, the LoS was divided into 15-min windows.

A window with at least 1 wearable-on-arm “fact” was counted as an adherent window.
The window of wear was the difference in time between the first and last consecutive
adherent windows. Window without wear was the difference in time between the first
and last consecutive non-adherent windows. A count of the windows of wear was used
to calculate the number of times a patient removed the CH wearable during their LoS.
Wearable adherence was the number of adherent windows per LoS. Daily adherence (AD)
was the number of adherent windows per day (24 h). The amount of data each patient
contributed to the dataset was defined as the number of adherent windows per patient
divided by the total number of adherent windows in the dataset. The number of hours
monitored was defined as the sum of the windows of wear for all patients.

To assess alarm conditions, the patient’s LoS was divided into 4-h assessment windows
similar to the assessment frequency on a general medical/surgical ward [26,27]. An
assessment window was included for adherence ≥ 50% (≥8 adherent 15-min windows). A
positive alarm window (WAP) was an assessment window with at least one alarm trigger.
The log of timestamps generated by the alarm simulator (described earlier) was grouped
into assessment windows. Each assessment window included an initial trigger timestamp
(Ti), final trigger timestamp (Tf), and a count of triggers. Total events were defined as the
sum of WAP. The patient rate was defined as the percentage of patients with at least one
WAP. The alarm rate was the average WAP per patient per day. Early detection time (EDT)
was the time difference (in hours) between Ti and the end of the assessment window.
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Descriptive metrics of the dataset, CH wearable use, length of stay, vital signs, and
alarms were summarized as mean ± SD when normally distributed and median (IQR)
when not. Normality was tested with visual inspection and the Shapiro–Wilk test. Vital
signs during patient admissions were calculated using the VSSD dataset. Alarm metrics
(WAP, patient rate, alarm rate, and EDT) were compared between alarm rulesets (A1, A2,
A3), vital sign observation rates (VS12, VS4, VS1, VS15), and aggregation windows (AW4,
AW1, AW15, VSSD). Alarm metrics were also compared between vital sign observation rate
vs. aggregation window for the following conditions: VS4 vs. AW4, VS1 vs. AW1, VS15
vs. AW15. Patient rate and WAP were compared between vital sign alarm threshold values
for the following vital signs: SpO2 (91% vs. 92%); RR (20 breaths/min vs. 25 breaths/min,
10 breaths/min vs. 8 breaths/min); PR (100 beats/min vs. 131 beats/min; 60 beats/min
vs. 45 beats/min vs. 40 beats/min). Analyses were performed using GraphPad Prism
9 Version 9.3.1. (GraphPad Software, San Diego, CA, USA).

3. Results

The dataset included 76 HaH patients with a median LoS of 10 (9.7) days and 12,869 h
of monitoring with Current Health. Each patient’s admission contributed a median of
1.07% of data to the dataset, and contribution ranged from 0.05–3.74% of data, depending
on the patient’s LoS and adherence to wearing the wearable. Respiratory rates from all
76 patients were included in the vital sign dataset. Pulse rate and oxygen saturation were
included from 75 patients for 3 of the 4 sampling conditions (VS15, VS1, VS4) and included
from 74 patients for VS12. Missing vital sign data (exclusion from the vital sign dataset) was
a result of not meeting the minimum number of data points for the aggregation window
criteria. For vital sign observation data, this minimum number of data points was set
to 1, as the downsampled data had 1 data point per timestamp. Alarm conditions were
evaluated for 3270 4-h assessment windows.

Vital sign alarms were triggered by vital sign observations collected when the CH
wearable was worn during a patient’s healthcare at home admission. The median CH
wearable Lw was 7 (9.2) days. Median adherence during admission was 64.6 (63.5)%, and
ranged between 0 and 100% (Figure 1). During the first 10 days (median LoS), median
adherence ranged between 65 and 80%, except on Day 0 (AD = 16.15%). Low adherence on
Day 0 was potentially attributed to not having the wearable to wear for the full day. The
wearable was removed approximately twice per day with a median window of wear of
2 (13.25) h. The median window without wear was 1 h, with a maximum window without
wear of 8 days. This 8-day window without wear (max window without wear) was the
time between a patient’s last observation recorded and discharge from the CH platform.
This window of time either resulted from a patient not wearing the wearable as prescribed
or a delay in discharging the patient from the CH platform after the remote monitoring
period ended.

3.1. Alarms

Alarm metrics are reported in Table 2 for alarm rulesets (A1, A2, A3), observation rates
(VS15, VS1, VS4, VS12), and alarm aggregation windows (VSSD, AW15, AW1, AW4). The A2
ruleset (rules used only individual vital signs) was triggered most often (WAP), had the
largest EDT, patient rate, and alarm rate, while the A3 ruleset (3 of 4 rules used multiple
vital signs) was triggered least often and had the smallest EDT, patient rate, and alarm rate
for all observation rate and alarm aggregation window conditions except for EDT of VS12
and VS4 which were zero for both alarm rulesets. The A2 ruleset had the most WAP when
the conditions were compared across the rulesets.
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Figure 1. Median (IQR) adherence per day during healthcare at home (HaH) admission. The red line
indicates the number of patients enrolled in HaH per day.

Table 2. Alarm metrics.

Ruleset Observation
Rate

Aggregation
Window WAP

Patient
Rate (%)

Alarm
Rate

EDT
(hour)

A1

VS12 AW0 235 64.47 0.33 ± 0.56 0 (0)
VS4 AW0 683 85.53 0.96 ± 1.37 0 (0)
VS1 AW0 1364 94.74 1.93 ± 1.83 3 (2.00)
VS15 AW0 1899 98.68 2.68 ± 1.99 3.25 (1.75)
VSSD - 2251 100 3.18 ± 2.02 3.5 (1.52)
VSOD AW15 1759 96.05 2.48 ± 2.02 3.41 (1.76)
VSOD AW1 1195 76.32 1.69 ± 1.88 3.67 (1.68)
VSOD AW4 791 65.79 1.12 ± 1.65 3.97 (1.45)

A2

VS12 AW0 609 93.42 0.86 ± 0.76 0 (0)
VS4 AW0 1737 96.05 2.45 ± 1.89 0 (0)
VS1 AW0 2548 98.68 3.60 ± 1.92 3 (1.00)
VS15 AW0 2922 100 4.13 ± 1.78 3.75 (0.75)
VSSD - 3113 100 4.40 ± 1.68 3.96 (0.55)
VSOD AW15 2855 100 4.03 ± 1.83 3.98 (0.74)
VSOD AW1 2467 98.68 3.48 ± 2.04 4.00 (0.79)
VSOD AW4 2121 93.42 3.00 ± 2.22 4.00 (0.28)

A3

VS12 AW0 65 30.26 0.09 ± 0.31 0 (0)
VS4 AW0 185 50.00 0.26 ± 0.71 0 (0)
VS1 AW0 435 61.84 0.61 ± 1.16 2.00 (2.00)
VS15 AW0 712 65.79 1.01 ± 1.50 2.75 (2.00)
VSSD - 942 80.26 1.33 ± 1.66 3.05 (2.05)
VSOD AW15 626 65.79 0.88 ± 1.45 3.04 (2.16)
VSOD AW1 356 48.68 0.50 ± 1.13 3.25 (2.16)
VSOD AW4 200 32.89 0.28 ± 0.88 3.84 (1.90)

3.1.1. Vital Sign Observation Rate

Comparisons of alarm metrics between vital sign observation rates showed that A1
and A3 had a similar increase in patient rate of ~35% between VS12 and VS15; however,
patient rate of A1 was two times greater than A3 at VS12. Although the patient rate of A2
only increased by ~7% between VS12 and VS15, the patient rate at VS12 was high (93%) and
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reached 100% at VS15; all 76 patients had at least one WAP. Alarm rate of A3 only increased
by 0.9 alarms per patient per day between VS12 and VS15 even though there were 48 times
more observations at VS15 compared to VS12. WAP and EDT increased with increased vital
sign observation rates for all alarm rulesets.

3.1.2. Alarm Aggregation Window

In contrast, increased aggregation windows were associated with decreased WAP, pa-
tient rate, and alarm rate for all alarm rulesets. For patient rate and alarm rate, the changes
between aggregation window conditions were similar magnitudes to those between vital
sign observation rate conditions. For example, the patient rate decreased by 30.3% and
32.9% between AW15 and AW4 for A1 and A3, respectively, and the alarm rate decreased
by 0.6 alarms per patient per day between the two conditions for A3. EDT increased
with increased aggregation windows between AW15, AW1, and AW4. For two aggregation
window conditions (AW1 and AW4) of A2, EDT was 4 h, indicating that the alarm ruleset
criteria were met at the start of the assessment window.

Comparisons of alarm metrics between similar timeframes of vital sign observation
rate and aggregation window showed that most aggregation window conditions had lower
WAP, patient rate, and alarm rate, and greater EDTs than their vital sign observation rate
counterparts. For example, A3 at AW1 (1-h aggregation window) had a lower patient
rate (VS1 = 61.8%, AW1 = 48.7%) and alarm rates (VS1 = 0.6 alarms per patient per day,
AW1 = 0.5 alarms per patient per day) and a median EDT 1.25 h earlier than A3 at VS1 (1-h
observation rate).

3.1.3. Alarm Rule

The vital sign with the highest WAP was RR, followed by SpO2 (Table S1). Rules using
these individual vital signs triggered over 1000 WAP in A1 and A2 rulesets and produced
at least 1 WAP in the patient dataset that ranged from 84.2–100% for the conditions that
follow. The conditions in which this occurred for A1 were VS15, VSSD, and AW15 (A1-02:
RR ≥ 25); and VS15 and VSSD (A1-03: SpO2 ≤ 91). For the A2 ruleset, the conditions it
occurred in for SpO2 < 92 were VS15, VSSD, and AW15 and all conditions except VS12 for
RR > 20. There were seven A1 rules and one A3 rule that were not triggered in the alarm
evaluation. Alarm rules A1-04, A1-09, and A1-10 were not triggered in VS12. A1-10 was
not triggered in VS15, VS1, VS4, AW15, AW1, and AW4. A1-01 was not triggered in the
aggregation window conditions, except for VSSD. A1-04 was not triggered in AW1, and
AW4. AW4 did not include triggers from A1-05 or A1-08. There were no WAP in any of the
observation rate or aggregation window conditions for A1-06. There were no WAP for A3-03
(RR < 10 and SpO2 < 90) during VS12, VS4, AW15, AW1, and AW4.

3.1.4. Alarm Threshold

Vital sign alarm threshold values affected WAP and patient rates. Threshold values
closer to the typical vital sign range (Figure 2) were associated with increased WAP and pa-
tient rates. The median PR was 72.9 (19.4) beats/min, median RR was 19.3 (6.4) breaths/min,
and median SpO2 was 95.4 (3.6)% during patient admission to healthcare at home programs.
An SpO2 threshold value to detect hypoxia of 92% compared to 91% increased the patient
rate by a median of 8.6 (3.3)% across alarm conditions. There were 193 (106) more WAP
when using an SpO2 threshold of 92% instead of 91%, an increase of 33.0 (11.8)%. When
comparing RR thresholds to detect tachypnea, a threshold of 20 breaths/min increased
patient rate by a median of 22.4 (24.0)% and WAP by 1096 (165) windows, an increase of
121.0 (93.9)%, compared to a threshold value of 25 breaths/min. To detect bradypnea (low
RR), a threshold value of 10 breaths/min increased the patient rate by 9.9 (12.2)%, which
was 8 (9) more patients than when the RR threshold was set to 8 breaths/min and had
19 (37) more WAP. A PR threshold to detect tachycardia of 100 beats/min compared to
131 beats/min increased the patient rate by a median of 46.1 (14.5)% and WAP by a median
of 454 (356) across conditions. A PR threshold to detect bradycardia of 60 beats/min in-
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creased the patient rate by a median of 48.0 (9.5)% and 54.6 (12.5)% compared to thresholds
of 45 beats/min and 40 beats/min, respectively. There were 489 (273) and 450 (283) more
WAP for a threshold of 60 beats/min across conditions vs. 45 beats/min and 40 beats/min,
respectively.
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Figure 2. Median (IQR) vital signs for each patient in the healthcare at home dataset (VSSD). (a) Pulse
rate (PR); (b) Respiratory rate (RR); (c) Oxygen saturation (SpO2). The horizontal lines indicate the
threshold values set for each alarm ruleset. Solid horizontal lines are thresholds used in single vital
sign rules: A1 (purple), A2 (cyan), A3 (magenta). Dashed horizontal lines are thresholds used in
combination rules: A1C (cyan), A3C (blue).

4. Discussion

A systematic evaluation of the impact that the selection of vital sign observation rate,
alarm rule, alarm aggregation window, and alarm threshold have on vital sign alarms
was conducted on a real-world vital sign dataset. Simulating alarm conditions gave us
important metrics about the alarm rate, patient rate, and detection time for our patient
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population, which would have been impossible to gather without the alarm simulation.
The vital sign dataset was collected with the Current Health wearable, which continuously
recorded oxygen saturation, respiratory rate, and pulse rate from patients admitted to
HaH programs in the US and UK. Patient acuity was akin to a general medical/surgical
ward. Best practice alarm recommendations that clinicians are familiar with are currently
tailored to hospital settings. These may be too sensitive for less controlled environments,
such as patients at home, where there may be greater activity, and clinical confirmation of
deterioration is more laborious. Alarm metrics generated from four vital sign observation
rates and four aggregation windows demonstrated the tradeoffs associated with each
condition. These comparisons, derived from simulated scenarios, provide examples to
enhance the understanding of how alarms are affected by alarm ruleset settings in a
real dataset.

Remote care relies on monitoring a patient’s overall status with limited to no subjective
information, such as clinical observation, placing more weight on objective information,
such as vital signs and reporting systems, to detect changes in physiological status. Contin-
uous vital signs offer a more robust picture of a patient’s overall status for clinical decision
making [28] and enable early detection of changes in physiological status. Alarms based
on vital signs observed at 15 min (VS15) occurred 3.25 h, 3.75 h, and 2.75 h earlier than at
4 h (VS4) for A1, A2, and A3, respectively.

A byproduct of continuously collected data is an increased number of alarms. Alarm
metrics (total WAP, patient rate, and alarm rate) increased with an increased observation rate
in all alarm rulesets. Two factors that may contribute to increased alarms are the conditions
under which vital signs are collected and the assessment rate. A patient is generally awake,
seated upright, and still during manual observation, which provides a controlled condition
for vital sign measurements. Similarly, vital sign measurements collected by wearables,
such as finger pulse oximeters, which are infrequent and short in duration (“spot checks”),
provide snapshots of a patient in a constant state. In contrast, when a more robust picture
of a patient’s status is captured through continuous data collection, it includes vital signs
of a patient in different positions (lying, seated, or standing) and during a range of daily
activities (sleeping, watching television, talking, walking, etc.). Variation in vital sign
values, and noise, are inherent in a vital sign dataset collected in free-living conditions. In
addition to the vital sign measurement conditions, the vital sign observation rate is directly
related to the number of data points included in an assessment, and as the observation
rate increases, the likelihood that a change in physiological status has the potential to be
detected increases [3,10]. For example, vital sign observations collected every 12 h can only
generate a maximum of 2 alarms/day whereas vital sign observations collected every hour
can generate a maximum of 24 alarms/day. The percent of assessment windows with a
positive alarm (WAP) increased by 50.9% in A1, 70.7% in A2, and 19.8% in A3 from the 12-h
observation rate (VS12) to the 15-min observation rate (VS15). This overload of data and
a higher likelihood of triggering an alarm can be more of a burden than an asset unless
alarms are designed to translate the increased vital sign data into actionable information.

Current alarm recommendations were designed for use in a hospital setting. Even
so, a systematic review of vital sign alarms in the hospital setting reported that 74–80% of
alarms were not actionable, and a significant relationship exists between alarm exposure
and response time [22]. Direct translation of current recommendations to the remote setting,
where more vital sign data are assessed and assessment is conducted under free-living
conditions, will likely yield a greater number of nonactionable alarms and an increased risk
of alarm fatigue [29]. Healthcare systems will need to staff their programs proportionally to
support alarm response, where contact with patients for follow-up may be more challenging
than in person. Alarm sensitivity, and its implications can be mitigated by a deeper
understanding of how alarm parameters change alarm outcomes so that appropriate
choices can be made for this new monitoring environment.

The vital signs that triggered alarms most frequently were respiratory rate, followed
by SpO2; consistent with previous work [18]. Although respiratory rate was triggered
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more frequently than SpO2, it has been shown that pulse oximetry alarms are the largest
contributor to the number of false alarms [30]. Three adjustable alarm settings to improve
alarms are vital sign threshold, aggregation window, and combination rules. There was
a 33% reduction in the number of assessment windows with a positive alarm when the
SpO2 threshold was lowered from 92% to 91%, which was similar to reductions observed
by reducing SpO2 threshold from 90% to 88% (45% reduction) [31] and 90% to 85% (61%
reduction) [22]. When SpO2 was part of a combination rule, it was triggered less frequently
(A3-02, A3-03, A1-06, A1-07, A1-08, A1-09, A1-10) (Table S1). Similarly, an aggregation
window that increased from 5 min (VSSD) to 4 h (AW4) in A2—hypoxia reduced the number
of assessment windows with a positive alarm by 70.6%.

The comparison between alarm rulesets illustrates that a modification to any one of the
settings can influence the alarm, but there is a compound effect when two or more settings
are changed. The alarm ruleset A3 included one individual rule and three combination rules
while A2 included five individual rules. There was a 69.7–90.6% decrease in assessment
windows with a positive alarm when using A3 compared to A2. The subset of assessment
windows with a positive alarm triggered by PR was reduced by a range of 95.7–98.7%
when the PR threshold was lowered from 60 beats/min in A2 to 45 beats/min in A3. The
number of assessment windows with a positive alarm for A3 decreased with an increase in
the aggregation window. Previous work showed that tailoring both aggregation windows
and vital sign thresholds produced the greatest reduction in alarms compared to tailoring
either aggregation window or vital sign threshold alone [31].

Alarm rate for all conditions evaluated was less than half of the acceptable ‘upper limit’
of 10.8 alarms/day per patient reported by Prgomet et al. when continuous monitoring
was implemented on a general ward [32]. The tradeoff of a reduced number of alarms is
missed or late detection of deterioration. Alarm metrics (WAP, patient rate, and alarm rate)
decreased with increased aggregation windows in all alarm rulesets, without decreasing
EDT. There are two elements to include in the interpretation of the EDT comparison
between aggregation windows to understand why a larger aggregation window may have
resulted in an earlier detection time. The first is that the number of WAP included in
the median EDT calculation was greater for smaller aggregation windows. For example,
there were 4-h assessment windows where a trigger occurred in AW15 with a low EDT
but was not triggered in AW1. The median EDT in AW15 might have been lowered by
the additional WAP but remained high for AW1. The second is the number of vital sign
observations included in the aggregation window. The smaller the aggregation window,
the faster the data points outside of the ‘normal range’ were removed from the median
calculation. For example, the median vital signs in AW1 and AW4 were smoothed over
more time, potentially causing the vital sign to stay steady under the alarm rule threshold,
while smaller aggregation windows (AW15 and VSSD) may have fluctuated above and
below the threshold value (Figure S1). The consequence of this was a carryover effect
between consecutive assessment windows, which resulted in an alarm at the beginning
of the second assessment window. There was a higher chance of carryover with a larger
aggregation window because, as described above, larger aggregation windows included
more vital sign observations in the median calculation.

Another factor to consider is what happens at the patient level when deciding on
combination vs. individual alarm rules, aggregation window size, and/or vital sign thresh-
old. Average alarms per day generated by one rule were used to illustrate the effects of
these clinical decisions. Patient 51, for example, was highly adherent to wearing the CH
wearable (91.0%), and the patient’s pulse rate and respiratory rate were in the normal
ranges (PR = 80.1 (9.2) beats/min; and RR = 21.9 (2.4) breaths/min). However, this patient
presented with low oxygen saturation (SpO2 = 92.6 (3.4)%) during admission (Figure 2). The
assumption in this example was that the vital sign observation rate was not a modifiable fac-
tor and was set to the CH wearable vital sign observation rate. Let’s say that the clinician de-
cided to use a combination rule: SpO2 < 90% and RR > 25 breaths/min. The average alarms
per day would change based on aggregation window size: VSSD = 0.9 ± 0.9 alarms/day,
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AW15 = 0.6 ± 0.9 alarms/day, AW1 = 0.2 ± 0.6 alarms/day, AW4 = 0.1 ± 0.3 alarms/day. In
other words, if Patient 51 had an LoS = 10 days, using VSSD would result in a follow-up
call by the clinician almost 10 times during their LoS, whereas using AW1 would result
in a follow-up call approximately twice during their LoS. Now, let’s say that the clinician
decided to use an individual rule (SpO2 = 91%) and AW1. Patient 51 would generate
2.3 ± 1.9 alarms/day. Alarms per day would increase even more to 3.1 ± 2.0 alarms/day
had the clinician selected a higher vital sign threshold (SpO2 = 92%).

The vital sign observations of Patient 51 during CH admission were slightly higher
for PR and RR, and slightly lower for SpO2, compared to the median vital sign obser-
vations at the group level (PR = 72.9 (19.4) beats/min, RR = 19.3 (6.4) breaths/min, and
SpO2 = 95.4 (3.6)%). Average alarms per day were similarly higher than those reported at
the group level (Table S1). There were scenarios, however, where the average alarms per
day were lower than expected. During CH admission, the vital sign observations for Patient
58 were PR = 59.2 (4.0) beats/min, RR = 16.8 (1.4) breaths/min, and SpO2 = 79.2 (0.6)%.
This patient had lower observation values compared to the group level for all vital signs.
While both patients had low oxygen saturation, Patient 58 SpO2 was much lower than
Patient 51. When the same clinical decisions outlined for patient 51 were applied to the data
for patient 58, it was hypothesized that a median SpO2 as low as 79.2% would generate
high average alarms per day, especially for individual SpO2 rules. However, Patient 58
generated zero alarms for the combination rule (SpO2 < 90% and RR > 25 breaths/min)
for all aggregation window sizes. When either of the individual rules (SpO2 = 91% or
SpO2 = 92%) was paired with AW1, zero alarms were generated. It was only when using
an extremely sensitive setting (individual rules with AW15 and VSSD) that alarms were
generated for Patient 58 (AW15 = 0.4 alarms/day, VSSD = 0.6 alarms/day). The reason for
the lack of alarms was because of patient 58’s low adherence (19.9%) to wearing the CH
wearable. While the patient’s extremely low SpO2 is likely a result of improper equipment
use, the value served the purpose of this example to demonstrate that vital sign observation
data need to exist to generate alarms, and sounds a cautionary note that rules based on
population data may overlook vulnerable individuals.

Remote monitoring is predicated on data flowing from patient to provider, which is
only possible when patients actually use the monitoring equipment as prescribed. The
biggest factor that impacts the data is patient adherence to wearing/using the equipment as
prescribed. The median adherence of the healthcare at home dataset was 64.6%, indicating
that patients wore the Current Health wearable more than half of the time during their
admission. Patterns in wear habits can be extracted from the metadata and used to time
nudges to potentially increase adherence. The Current Health platform includes alarms
for missing data as a prompt to the clinician so they can reach out to the patient, another
technique to improve adherence. Other factors to address when deploying remote patient
monitoring equipment are education to support proper use of the equipment, especially
if body placement is important, a contingency plan in the event of failed data transmis-
sion, and how to account for movement when the ideal condition to collect vital sign
measurements is at rest.

The conclusions that could be drawn from this work were limited, as the vital sign
dataset was not labeled with clinical outcomes. If it were, we could have differentiated
those vital sign changes that corresponded to genuine clinical deterioration rather than
physiological variability or artifacts. Without this information, we can only describe the
principles by which alarm decisions can be made, and the likely impact of changes on alarm
volume. This alludes to a broader problem in which vendors typically design monitoring
products without the ‘feedback loop’ of clinical utility. Monitoring products are developed,
integrated into the clinical workflow, and used by healthcare providers, and only then can
real-world feedback be sought on their alarm parameters.

Consequently, assumptions are made, and proxies are created that enable vendors
to make use of unlabeled data to develop their products and create default settings. For
example, one method trialed to create a reference for this study was to use NEWS2, an
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objective measure used as part of the standard of care, and an observation rate of 4 h,
common in the acute care setting [9]. Labels were created as a proxy of physiologic
values that warranted follow-up based on the subset of rules from the NEWS2 ruleset
tied to clinical escalation recommendations (scores of 3 or higher for a single vital sign
or a 5 or higher for a combination of vital signs). This condition alarmed 20.9% of the
assessment windows. There was at least 1 alarm in 85% of the patients, with approximately
1 alarm/day per patient. However, a 4-h observation rate may not be suitable for remote
monitoring. Although 15 conditions produced more assessment windows with positive
alarms than this condition, these may be a more accurate reflection of a patient’s change
in status. Only 5 of these conditions had an alarm rate per patient above 3.5 alarms/day.
These alarm rates are lower than the reported in-hospital and other at-home alarm rates
per patient of 10.8 alarms/day [32] and 3.42 alarms/day [33]. Thus, while this proxy
may have been a good representation of alarms that would necessitate clinical follow-up
and a ‘sense check’ for our findings, there was still no way to verify it without feedback
from the clinician. While trigger-based alarms and systematic evaluations of the impact
of alarm settings are a strong foundation for physiological track and trigger systems,
the information needed to develop more sophisticated algorithms that are optimized for
specificity requires engagement from clinicians. The clinical utility of alarms is critical
to making them more effective, and outcomes need to be fed into the system by the
user (healthcare providers). Differentiation between a true alarm, a true and clinically
significant alarm, and a false alarm enables the development of alarm algorithms using
more sophisticated approaches, such as machine learning algorithms [34], that provide
greater specificity without compromising sensitivity, which minimizes (if not eliminates)
the clinical risk of caring for patients in the home.

5. Conclusions

Evaluation of how well standard tools, practice, and clinical interpretation translate to
a remote setting is needed as healthcare transitions into the home. It should not be assumed
that they will be equally effective in this comparatively new environment. Total alarms
ranged between conditions of vital sign observation frequency and/or alarm setting, from
65 to 3113. Vital sign thresholds closest to the normal range, smaller aggregation window,
and/or individual vital sign rule were the conditions most likely to increase alarm rates
and were therefore most amenable to modification to increase specificity and minimize
the potential for alarm fatigue. Although technology is meant to enable clinicians, the
majority of innovations live as feedforward systems, but clinical utility is the foundation of
alarm optimization. There is a need to shift from the current feedforward dynamic between
vendor/healthcare provider to one of a feedback loop to further develop products that best
support the healthcare system.
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Appendix A

Table A1. Minimum number of observations for each aggregation window (AW).

Minimum Observations

AW PR SpO2 RR

5 min 30 30 15
15 min 90 90 45

1 h 360 360 180
4 h 1440 1440 720
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