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Abstract: Arrhythmia is one of the causes of sudden infant death, and it is very important to detect
fetal arrhythmia for fetal well-being. Fetal electrocardiogram (FECG) is one of the methods to detect
a heartbeat. Fetal arrhythmia can be detected based on the heartbeat detection results from FECG
signals such as heartbeat intervals. However, the accuracy of arrhythmia detection easily degrades
depending on the accuracy of heartbeat detection. In this paper, we propose a deep learning-based
fetal arrhythmia detection method using FECG signals. Recently, arrhythmia detection methods
using adult ECG signals have achieved a high arrhythmia detection accuracy based on deep learning.
Motivated by this fact, in the proposed method, the acquired FECG signals are segmented, and
the segments are input into a deep learning model that classifies them into normal or arrhythmia
ones. Based on the classification results of multiple segments, a subject is judged as a healthy or
arrhythmia subject. Each segment of the training data is divided into three categories based on
the estimated heartbeat interval: (i) normal, (ii) arrhythmia, and (iii) a segment that could be both
normal and arrhythmic. Only segments labeled as normal or arrhythmia are used for training a deep
learning model to achieve a higher classification accuracy of the model. Through these procedures,
the proposed method detects fetal arrhythmia with fewer effects of heartbeat detection results. The
experimental results show that the proposed method achieves 96.2% accuracy, 100% specificity,
and 100% recall, improving the values of conventional methods based on heartbeat detection and
feature detection.

Keywords: fetal electrocardiogram; fetal arrhythmia; deep learning

1. Introduction

Fetal heart rate (FHR) is an important indicator for accessing fetal health status. The
risk of unexplained, unexpected fetal death is particularly high during the prenatal and
perinatal periods. Fetal arrhythmia is one of the causes of sudden infant death [1,2].
Fetal arrhythmia is an abnormality of the fetal heartbeat, and is generally diagnosed as
tachycardia if it is greater than 180 beats per minute and bradycardia if it is less than
100 beats per minute [3]. Fetal arrhythmias can be treated with antiarrhythmic drugs if
diagnosed promptly [4]. Therefore, there has been great interest in the efficient diagnosis of
fetal arrhythmia, and various fetal arrhythmia detection methods have been investigated.
Ultrasonography, echocardiography, electrocardiography, and magnetocardiography are
methods to collect fetal biological signals for this purpose [5]. Among these methods, fetal
electrocardiogram (FECG) acquisition can be divided into invasive and non-invasive types.
The invasive type involves a large physical burden on the mother and fetus [6]. In contrast,
a non-invasive fetal electrocardiogram (FECG) can be used to obtain information on the
electrical activity of the fetal heart from electrodes attached to the maternal abdomen [7].
Thanks to the low price of the used device, FECG has been widely used to detect the
fetal heartbeat. The most conventional fetal arrhythmia detection methods are based
on fetal heartbeat detection [8–10]. Specifically, in the conventional methods [8,10], the
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heartbeat is firstly detected, and then features are extracted from FECG signals based on
the heartbeat detection results. Using the features, a subject is classified into healthy or
arrhythmia. In addition, the conventional method [9] estimates FHR, extracts features
from the variability of the FHR and classifies a subject into healthy or arrhythmia. The
arrhythmia detection accuracy of these conventional methods depends on the accuracy
of heartbeat detection. However, there is a problem that the fetal ECG signal is easily
distorted by external disturbances such as maternal heartbeats and fetal body movements,
and the accuracy of heartbeat detection is easily degraded [11]. In other words, as the
accuracy of heartbeat detection deteriorates, the accuracy of fetal arrhythmia detection
also deteriorates. Hori et al. have proposed a method for arrhythmia detection based
on deep learning using adult ECG signals on data from 48 adult arrhythmia patients
in the MIT-BIH arrhythmia database [12,13]. Since ECG patterns vary from subject to
subject, developing an arrhythmia detection method that can accommodate different
waveform patterns will enable the detection of abnormalities that could not be detected
by the conventional methods. In this method, a versatile ECG abnormality determination
method is proposed using an autoencoder and a convolutional neural network (CNN).
Specifically, the autoencoder learns only normal waveforms that are easy to collect and
acquires features of normal waveforms. The CNN is then used to compare the features
obtained from the ECG waveforms targeted for arrhythmia detection with the features of
the normal waveforms of healthy subjects. The results are used to determine whether the
input ECG waveform is a normal waveform or an abnormal one containing arrhythmia
based on a threshold value. This makes it possible to take into account the differences in
waveforms for each subject. Gyohten et al. have also proposed a method to detect any
arrhythmia by building a normal ECG model using deep learning in 42 adult arrhythmia
patients in the MIT-BIH arrhythmia database [12,14]. This method uses CNN and long
short-term memory (LSTM) to build a model of the normal ECG signal. This model takes
a normal ECG signal as input and learns to predict subsequent normal ECG signals. When
an abnormal ECG signal is input, the model can predict the subsequent ECG signal, which
is far from the actual ECG signal, and can determine whether the input signal is abnormal
or not. This means that the method can determine any arrhythmia because it does not
require prior knowledge of annotation. Next, we present other literature that applies deep
learning models to FECG signals. In [15], a multichannel signal quality classifier for FECG
waveforms is presented. Each recording was labeled as a whole and assigned a quality
class label of good or bad. Preference was given to recordings with consistent perceived
signal quality to ensure that the entire recording was labeled correctly. Recordings with
inconsistent signal conditions were discarded. Labels were assigned by the study’s data
engineers based on FECG visibility and perceived SNR of the abdominal channel (hospital
clinicians were consulted for the decision process). A deep learning model was developed
in the literature [16] to automatically identify maternal heart rate (MHR) and more generally
false signals (FS) in FHR recordings. The model can be used to preprocess FHR data prior to
automated analysis or as a clinical alert system to assist practitioners. The training data set
included data annotated by experts on the observed records. These two references also use
deep learning models to classify FECG signals. It is important to note, however, that these
two references are concerned with signal accuracy. Arrhythmia is not only a disturbance of
the signal waveform, but also includes abnormalities in the heartbeat interval. Therefore,
arrhythmias may not be correctly classified as arrhythmias using these methods [15,16].

In this paper, we propose a fetal arrhythmia detection based on deep learning using
FECG signals. A fetal arrhythmia detection method based on deep learning has been
proposed in our paper [17]. In the proposed method, the acquired FECG signals are first
segmented to include several heartbeats. The FECG segment is fed into a deep learning
model that classifies each segment as normal or arrhythmia. The classification results of
the model are used to determine whether each subject is a normal or arrhythmia subject.
Each segment of training data is labeled as a normal segment, an arrhythmia segment, or
a moderate segment that may be associated with both normal and arrhythmia ones, based
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on the estimated heartbeat intervals. To improve the classification accuracy of the model,
only normal and arrhythmia segments are used for training; moderate segments are not
used. This deep learning-based arrhythmia detection is expected to prevent arrhythmia
detection accuracy from being degraded by errors in heartbeat detection, since the ECG sig-
nal waveform itself is segmented as input data for the model. To evaluate the performance
of our proposed method, we carried out the performance evaluation based on the dataset
containing 12 arrhythmia subjects and 14 normal subjects [18]. As a result, the proposed
method achieved at most 96.2% of accuracy, 100% of recall, and 100% of specificity in the
binary classification of healthy and arrhythmia subjects. In addition, the experimental
results showed that our method could outperform the other existing methods [8–10] in
arrhythmia detection accuracy. Here, it is worth mentioning that there are two major
differences between this paper and [17]. First, this paper describes the parameter setting
and segment labeling methods in the proposed method and clarifies the rationale for these
methods through more detailed evaluation and discussion. Specifically, we explain the
impact of different parameter settings on the proposed method and provide the rationale
for the parameter settings. We also give the results of characterization using additional
metrics for different parameter settings and emphasize the justification for the values we set.
Furthermore, a more detailed discussion of the experimental results will describe specific
issues with the method and possible improvements. Second, this paper contains a new
comparison and discussion with the characterization results of a new method that takes into
account the problems of the proposed method. Specifically, the segments are labeled taking
into account the differences in the mean and standard deviation of the heartbeat intervals
for each subject. The subjects are then binarized into healthy subjects and arrhythmia
subjects based on the results of the three-value classification of the segments.

The rest of this paper is organized as follows: In Section 2, we describe related research
on fetal arrhythmia detection. In Section 3, we explain the proposed method. In Section 4,
we evaluate the performance of our method. Finally, we conclude this paper in Section 5.

2. Related Work

In this section, we describe previous research related to fetal arrhythmia detection
via FECG. FECG can be derived from AECG [19,20]. To detect fetal heartbeat based on
abdominal ECG (AECG), the conventional method [19] detects the maternal QRS wave
from the AECG by using the Pan–Tompkins algorithm [21], creates a template of the
maternal ECG (MECG) based on the detected QRS wave, and subtracts the template from
the AECG to extract the FECG. FHR is estimated by detecting peaks due to fetal heartbeat
over the extracted FECG. However, the extracted FECG contains not only fetal heartbeat
components but also noise that could cause wrong peak detection. To improve the accuracy
of FHR extraction, Niida et al. have proposed a fetal heart rate estimation method using
the first derivative of the FECG signal and multiple weighting functions [20]. In this
method, the first derivative of the FECG signal is calculated to acquire R-peak candidates.
To emphasize the actual R-peaks, the amplitudes of the peaks are weighted based on the
assumption that the RR intervals follow a Gaussian distribution.

With these FHR estimation methods, some researchers have proposed fetal arrhythmia
detection [8–10]. All of these conventional methods use PhysioNet’s public database [18].
The conventional method [8] firstly detects the characteristic points of the FECG signal,
namely Q, R, S, and T points, and calculates the average values of RR, SS, QQ, ST, and TT
intervals. Furthermore, the QRS interval reflects the electrical activity of the heart during
ventricular contraction and is the most important segment of the ECG signal [22]. Therefore,
the average amplitude and width of the QRS interval for each ECG are calculated and used
as features as well. In addition to that, the nonlinear operator of energy tracking Teager
Energy Operator (TEO), which includes the nonlinear behavior of the RR interval, is also
extracted as a feature [23]. Using these features, a support vector machine (SVM) classifier
is trained to classify a subject as healthy or arrhythmia. The Leave One Out (LOO) cross-
validation method is used to evaluate the learning model. The experimental results have
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shown that this method achieves a specificity of 91.7%, a recall of 75.0%, and an accuracy
of 83.3%. In the conventional method [9], independent component analysis (ICA) and
singular value decomposition (SVD) are used to estimate the FHR by removing the maternal
ECG components, and the FHR is segmented. Next, the entropy-based features, which
represent the similarity between adjacent segments, are calculated from the FHR variation.
A threshold is set for the entropy-based features, and a subject is classified as healthy or
arrhythmia. A specificity and a recall of this method are 100% and 91.0%, respectively. The
conventional method [10] also uses ICA to remove the maternal ECG component to obtain
the FECG. Features are then extracted using a peak detection algorithm to identify the
extracted FECG signal. Specifically, the peak detection algorithm using the state machine
logic is used to extract features such as the RR interval, ST interval, the width of the QRS
wave, and the amplitudes of QRS and T waves from the FECG. Binary classification of the
subjects with healthy and arrhythmia is performed using a naive Bayes classifier. The naive
Bayes classifier has the advantage of requiring fewer inputs of feature values. Through
the experiments, this method has been shown to achieve a specificity of 96.3%, a recall
of 74.8%, and an accuracy of 93.7%. However, the fetal heartbeat components can be
easily distorted by maternal heartbeat components and fetal body motion, which tends to
degrade the accuracy of fetal heartbeat detection. Nevertheless, these conventional fetal
arrhythmia methods [8–10] are based on fetal heartbeat detection from the FECG, and the
accuracy of arrhythmia detection depends on the heartbeat detection accuracy. Therefore,
it is necessary to develop a fetal arrhythmia detection method that is less dependent on
fetal heartbeat detection.

3. Proposed Method

In this section, we explain the proposed fetal arrhythmia detection using deep learning.

3.1. Framework of Proposed Arrhythmia Detection

First, FECG is extracted from AECG, and the RRI (RR-Interval) is estimated using the
fetal heartbeat detection method [20]. In this method, since the output of the A/D converter
is contaminated by fetal body motion, the preprocessing is performed to remove saturated
data and invalid data from the raw AECG. Next, the maternal R-peaks are extracted from
the preprocessed AECG. After the locations of maternal R-peaks are detected, the maternal
cycles are removed from the AECG, and FECG is extracted. In addition, to detect the fetal
heart rate, the candidates of the R-peak are generated. By designing a weighting function,
we can detect the fetal R-peaks from the candidates. Figures 1 and 2 show examples of
the AECG and the extracted FECG, respectively. The acquired FECG signal is then down-
sampled to 500 Hz. The FECG signal is then segmented by a 3 s-time window that contains
several heartbeats. In addition, the step size of the window is set as 1 s.

Figure 1. The part of AECG waveform when signal accuracy is relatively good.
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Figure 2. The part of the extracted FECG from AECG when the signal accuracy is relatively good.

The segments of FECG are classified as normal or arrhythmia segments based on
deep learning. Here, note that it is still challenging to detect arrhythmia by using only
RRIs, since the RRIs have some estimation errors. Therefore, for more accurate arrhythmia
detection, we utilize the deep learning technique that performs the classification using the
FECG waveform itself as input data. As a deep learning model, we use CNN which has
been successfully applied for the classification task [24,25]. Figure 3 shows the structure of
the CNN model used in the proposed method. The convolution layer with the activation
function ReLU highlights the features of the input FECG signal, and then the pooling layer
reduces the feature dimension. The combination of the convolution and pooling layers is
repeated twice, which is followed by the affine layer. Finally, the input FECG segment is
classified into normal or arrhythmia ones.

input data

Convolutional layer

+

ReLU function

filter size : 128

filter number : 32

Convolutional layer

+

ReLU function

filter size : 128

filter number : 32

Pooling layer

pool_size : 2

Pooling layer

pool_size : 2

Affine layer

Units : 512

Affine layer

+

Sigmoid fuction

Units : 2

3-second  

FECG signal

Binary classification as 

normal or arrhythmia

Figure 3. The structure of CNN model in the proposed method including layers, each parameter
value, and input/output data.

After the classification, a subject is judged based on the multiple results of the classifi-
cation. Specifically, a threshold th is set for the ratio of the segments classified as arrhythmia
by the CNN. A subject is judged as an arrhythmia one, when the ratio is greater than th;
otherwise, a subject is judged as a healthy one.

3.2. Training Dataset

Arrhythmia is mainly determined by abnormal heartbeat intervals in ECG signals.
However, since arrhythmia does not always occur, normal waveforms are considered to be
included in the ECG signal data of arrhythmia subjects. Therefore, to train the CNN, the
training data are labeled based on the estimated RRI. Figure 4 shows the distributions of
the estimated RRIs for all the arrhythmia and normal subjects in the database used in this
study. As can be seen from Figure 4, the distribution of the estimated RRIs of the healthy
subjects is clustered around 400 ms, whereas those of the arrhythmia subjects are relatively
widely distributed. The standard deviations of the respective estimated RRIs are 33.94 ms
for the healthy subjects and 71.73 ms for the arrhythmia subjects. In the proposed method,
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the estimated RRIs are classified into three categories, i.e., (i) normal, (ii) moderate, and
(iii) arrhythmic RRIs, by a 25 ms-RRI range as shown in Figure 4. When the RRI range
has more RRIs of healthy subjects than those of arrhythmia subjects, the RRIs within the
RRI ranges are defined as normal RRIs. When the ratio of the number of healthy subjects’
RRI to that of the arrhythmia one exceeds x, the RRIs within the RRI ranges are defined as
moderate RRIs. Here, it is worth mentioning that moderate RRIs might be associated with
both healthy and arrhythmia subjects. When such a ratio is lower than or equal to x, the
RRIs within the RRI ranges are defined as arrhythmic RRIs.

Figure 4. The distributions of the estimated RRIs for all the arrhythmia and normal subjects in the
database used in this paper.

The FECG segments are then labeled based on the three types of RRIs. Specifically,
each segment is labeled as a normal segment, when the segment contains only normal
RRIs. In addition, each segment is labeled as a moderate segment, when the segment
contains at least one moderate RRI without arrhythmic RRIs. Each segment is labeled as
an arrhythmia segment, when the segment contains at least one arrhythmic RRIs. Figure 5
shows examples of the three types of the FECG segments. To improve the classification
accuracy of the CNN, moderate segments that could be associated with both normal or
arrhythmic RRIs are not used to train the CNN model, meaning that only normal and
arrhythmia segments are used for the training. The arrhythmia segment generated from
a normal subject is then treated as a moderate segment.

(a) (b) (c)

Figure 5. The labeled segments. (a) normal FECG segment; (b) moderate FECG segment; and
(c) arrhythmia FECG segment.
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4. Performance Evaluation
Evaluation Setup

In this study, we used the AECG database containing fetal arrhythmias provided
on the PhysioNet website [18]. Table 1 lists the experimental specification. Each of the
subjects’ AECG recordings consists of four or five channels, and one maternal thoracic
channel. The database contains about 10 min of AECG signals from 12 arrhythmia and
14 healthy subjects. The sampling frequency of the AECG signal is 500 Hz or 1 kHz. The
data set is also labeled as healthy or arrhythmic for each subject. The loss function for the
network is binary cross-entropy, and the optimizer is Adam with lr = 0.0003. The model
was implemented using Keras v1.1.2 on TensorFlow v2.4.0.

Table 1. Experimental specification.

Item Value

The number of AECG 4 or 5
channels for each subject
Sampling frequency of AECG recording 500 Hz or 1000 Hz
Measurement time About 10 min
The number of subjects Healthy subjects: 14

Arrhythmia subjects: 12
Threshold x used to categorize RRI ranges. 0.63
Threshold th 0.00, 0.05, 0.10, . . . , 1.00

To demonstrate the accuracy of the proposed method in detecting fetal arrhythmia,
we evaluated the binary classification accuracy of healthy and arrhythmia subjects to the
proposed and conventional methods [8–10]. In the conventional method [8], the subject
is classified using SVM based on features extracted from the FECG. In the conventional
method [9], the subject is classified by using threshold values based on the entropy features
extracted from fetal heart rate variability. In the conventional method [10], the features are
extracted from FECG based on the peak detection algorithm using the state machine logic,
and the subject is classified by using a naive Bayes classifier. As the performance metrics,
we calculated a specificity, a recall, and an accuracy using the following equations:

speci f icity =
TN

TN + FP
, (1)

recall =
TP

TP + FN
, (2)

accuracy =
TP + TN

TP + FP + TN + FN
, (3)

where TN represents the number of healthy subjects that are correctly classified as healthy
subjects. FN represents that of arrhythmia subjects that are incorrectly classified as healthy
subjects. FP represents that of healthy subjects that are incorrectly classified as arrhythmia
subjects. TP represents that of arrhythmia subjects that are correctly classified as arrhythmia
subjects. As the experimental parameters, the threshold x for RRI classification was set
as 0.63 based on the results of the search, and the threshold th for the ratio of arrhythmia
segments was varied from 0.00 to 1.00 in increments of 0.05.

5. Results

Table 2 shows the ratio of the number of RRIs of healthy subjects to that of RRIs of
arrhythmic subjects in Figure 4, and the classification results of each RRI range when each
value of the threshold x for RRI classification is applied to it. Each column of Table 2 is
described below. “RRI range” indicates the value of RRI representing each range in Figure 4.
“RRI ratio” indicates the ratio of the number of healthy subjects’ RRI to that of arrhythmia
one in each range in Figure 4. “The classification result” indicates the classification result
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for each range when the threshold x for the RRI ratio is varied. “A” represents arrhythmic
RRI, “M” represents moderate RRI, and “N” represents normal RRI. When the RRI ratio is
lower than or equal to x, the RRIs within the RRI ranges are defined as arrhythmic RRIs.
When the RRI ratio exceeds x, the RRIs within the RRI ranges are defined as moderate
RRIs. When the RRI range has more RRIs of healthy subjects than those of arrhythmia
subjects, the RRIs within the RRI ranges are defined as normal RRIs. The comparison is
made for x = 0.50, 0.60, 0.63, 0.65, 0.70. The values of x are set so that the three classification
groups of arrhythmic RRI, moderate RRI, and normal RRI, which are assigned to each
range of the histogram shown in Figure 4, are different from each other. From Table 2, it
can be seen that the number of RRI ranges classified as moderate RRIs and arrhythmic RRIs
changes when the threshold x is varied. The more RRIs classified as Moderate RRIs, the
more FECG segments are labeled as moderate segments and the fewer segments are used
to train the deep learning model. Figures 6–8 respectively show the recall, the specificity,
and the accuracy of the subject classification when segments are labeled by varying the
threshold x used for RRI classification. A subject is judged as an arrhythmia one, when the
ratio is greater than th; otherwise, a subject is judged as a healthy one.

Table 2. The classification results of each RRI range.

RRI Range [ms]
The Classification Result

RRI Ratio *
x = 0.50 x = 0.60 x = 0.63 x = 0.65 x = 0.70

100–125 0.2000 A A A A A
125–150 0.4000 A A A A A
150–175 0.3846 A A A A A
175–200 0.0870 A A A A A
200–225 0.2000 A A A A A
225–250 0.2113 A A A A A
250–275 0.2541 A A A A A
275–300 0.1312 A A A A A
300–325 0.0427 A A A A A
325–350 0.1233 A A A A A
350–375 0.6093 M M A A A
375–400 4.2561 N N N N N
400–425 3.3120 N N N N N
425–450 1.1848 N N N N N
450–475 0.6470 M M M A A
475–500 0.2834 A A A A A
500–525 0.1530 A A A A A
525–550 0.1506 A A A A A
550–575 0.1387 A A A A A
575–600 0.2712 A A A A A
600–625 0.1389 A A A A A
625–650 0.3571 A A A A A
650–675 0.2105 A A A A A
675–700 0.2353 A A A A A
700–725 0.1111 A A A A A
725–750 0.6667 M M M M A
750–775 0.0000 A A A A A
775–800 0.0000 A A A A A
800–825 0.0000 A A A A A
825–850 0.0000 A A A A A
850–875 0.5000 M A A A A

*: The ratio of the number of healthy subjects’ RRI to the number of arrhythmia one.

Figure 6 shows that, for x = 0.63, 0.65, 0.70, th ≤ 0.75 gives the highest recall compared
to other threshold x. The lower the threshold x used for RRI classification, the more RRIs
are classified as moderate RRIs. Correspondingly, the more segments are tentatively labeled
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as moderate segments and the number of arrhythmia segments is reduced. Based on this,
the number of segments used to train and test the deep learning model is reduced, and
segments needed for subject classification may also be excluded. Therefore, the accuracy of
arrhythmia subject classification is considered to have deteriorated. Figure 7 shows that
the highest specificity is obtained at x = 0.63 for almost all the thresholds th. When the
threshold x used for RRI classification is high, the number of RRI data classified as moderate
RRI decreases and that of RRI data classified as arrhythmic RRI increases. Based on this, the
number of moderate segments would decrease and segments that could be both normal and
arrhythmia could be used as arrhythmia segments. Therefore, the classification accuracy of
the normal segments would be degraded, resulting in a degradation of the classification
results for normal subjects. From Figure 8, it can be seen that, at x = 0.60, 0.63, 0.65, 0.70,
0.6 ≤ th ≤ 0.7, the highest accuracy is obtained compared to other threshold values of
x. It can also be seen that, for x = 0.63, high accuracy is obtained in the case of th ≤ 0.35
compared to the other x values. This may be due to the same reason as for recall and
specificity. Based on these results, x = 0.63 was considered optimal for the proposed
method for the data set used in this study.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold th

𝑥 = 0.50

𝑥 = 0.60

𝑥 = 0.63

𝑥 = 0.65

𝑥 = 0.70

Figure 6. The recall of the proposed method when the threshold x used for RRI classification is varied.
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Figure 8. The accuracy of the proposed method when the threshold x used for RRI classification
is varied.

Figures 9–11 respectively show the recall, the specificity, and the accuracy of the
proposed method for the threshold x = 0.63 used for RRI classification and conventional
methods [8–10]. In addition, for a better comparison, these figures include the result of our
method with the simple labeling algorithm: the FECG segments of healthy and arrhythmia
subjects are labeled as normal and arrhythmia ones, respectively. First, we compare the
recall of the proposed method with those of the other methods.

From Figure 9, it can be seen that the proposed method outperforms the conventional
ones [8,9] and provides almost the same recall as the conventional ones [10] in the range
where 0.40 ≤ th ≤ 0.70. In these conventional methods, the arrhythmia subject is detected
based on heart rate estimation and feature detection of the FECG signal. In contrast, our
method classifies healthy and arrhythmia subjects based on the FECG signal waveforms
using deep learning. Therefore, our method reduces the effect of errors induced by the
heart rate estimation and the feature detection. In addition, our method achieves high
recall, compared to the conventional one [10] in the range where th ≤ 0.40. This is because
the arrhythmia is determined when the ratio of the segments classified as arrhythmia
exceeds the threshold th, and thus the smaller th makes it easier to judge that the subject
has arrhythmia. Furthermore, our proposed method achieves a higher recall than our
method with the simple labeling algorithm, which is brought by labeling the training data
based on the RRI distribution.
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Figure 9. The recall of the conventional methods [8–10], the proposed method with the simple
labeling algorithm, and the proposed method.
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Figure 10. The specificity of the conventional methods [8–10], the proposed method with the simple
labeling algorithm, and the proposed method.
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Figure 11. The accuracy of the conventional methods [8,9], the proposed method with the simple
labeling algorithm, and the proposed method.

In terms of specificity, as can be seen from Figure 10, the proposed method improves
the specificity of the conventional ones [8,9], and achieves 100% specificity in the range
where th ≥ 0.6. As aforementioned, these results are brought by the arrhythmia detection
that does not depend on heart rate estimation and the feature detection of the FECG signal.
In addition, the larger th makes it easier to determine that the subject is healthy, since
the subject is judged as normal when the ratio of the segments classified as arrhythmia
is lower than the threshold th. In addition, as well as the result of the recall, we can see
that our proposed method based on the RRI distribution outperforms our method with
the simple labeling algorithm that labels all segments of arrhythmia subjects as arrhythmia
segments and all segments of healthy subjects as normal segments. Therefore, it can be said
that labeling segments based on the RRI resulted in higher classification accuracy for both
normal and arrhythmia subjects. This may be because the effect of the estimation error of
the RRI was reduced.

Finally, from Figure 11, it can be seen that the proposed method improves the accuracy
of the conventional methods [8,9] by 16.7% and 2.44%, respectively, in the range where
0.6 ≤ th ≤ 0.7. Furthermore, our method achieves a higher accuracy than our method with
the simple labeling algorithm for almost all the threshold values. In our method with the
simple labeling algorithm, all the segments of arrhythmia subjects are labeled as arrhythmia
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one. However, arrhythmia does not necessarily happen all the time, meaning that some
segments of arrhythmia subjects are not arrhythmia ones but normal ones. In contrast, our
proposed method performs segment labeling based on the RRI distribution, and does not
use the segments that might be the normal and arrhythmia ones. Therefore, our proposed
method provides a high classification accuracy of the CNN, compared to our method with
the simple labeling algorithm. Note that the proposed method requires threshold setting.

We focus on the classification results for the segments of healthy subjects. Table 3
shows the number of arrhythmia segments and normal segments when the segments of
three healthy subjects in the database are labeled based on the estimated RRI and classified
using CNN, and the ratio of segments classified as arrhythmia out of all segments. From
Table 3, it can be seen that even segments from healthy subjects can be misclassified as
arrhythmia segments. Therefore, if the threshold th used for subject classification for this
percentage of arrhythmia segments is too low, the accuracy and the specificity deteriorate.

Table 3. The results of labeling and classification of segments of healthy subjects.

Labeling Classification by CNN The Ratio of

Arrhythmia Normal Arrhythmia Normal Arrhythmia Segments

subject1 0 521 200 321 0.384
subject2 0 81 32 49 0.395
subject3 0 136 42 94 0.309

Based on this fact, in our future work, it is necessary to make our method robust to
the threshold setting. In particular, since the lower th makes it easier to detect arrhythmia
subjects, we will improve the accuracy for lower th.

Next, we consider how to take into account the differences of the mean and standard
deviation of the RRI among subjects in order to improve the accuracy of a subject classi-
fication and increase versatility. Figure 12 shows a scatter plot of the mean and standard
deviation of the RRI for each subject. From Figure 12, it seems that the mean and standard
deviation of RRI vary widely among normal subjects. In the proposed method, RRIs were
classified and segments were labeled for all normal subjects and all arrhythmia subjects
collectively based on the histogram shown in Figure 4. In this method, the differences in
the mean and standard deviation of RRIs for each subject could not be taken into account.
Therefore, we will compare the proposed method with the method that takes into account
differences in the mean and standard deviation of RRIs per subject in the following.

Figure 12. The scatter plot of the mean and standard deviation of the RRI for each of the subjects.
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5.1. Method Based on 3-Value Classification Considering Differences in Mean and Standard
Deviation of RRI

Each arrhythmia subject has a different mean and standard deviation of RRIs. The
proposed method of labeling based on the RRI distributions of arrhythmia and healthy
subjects compared above does not take this into account. Therefore, we describe a method
that takes into account the differences in the mean and standard deviation of the RRI for
each subject.

5.1.1. Segment Labeling

Based on the mean and standard deviation of the RRI for each subject, the RRI is
classified according to the following definition for arrhythmia subjects:

moderate_min = Mean_RRI − y × RRI_std
moderate_max = Mean_RRI + y × RRI_std

(4)

RRIs between moderate_min and moderate_max are defined as moderate RRIs; all others
are defined as arrhythmic RRIs. Mean_RRI is the mean value of RRI for each subject, and
RRI_std is the standard deviation of RRI for each subject. The percentage of data classified
as moderate RRI among the RRI data changes depending on the value of y. Specifically, the
larger y is, the greater the percentage of RRI data are classified as moderate RRI, and the
smaller y is, the smaller the percentage becomes. The value of y is set so that the percentage
of data classified as medium RRI is 50, 60, 70, 80, or 90%. After classifying the RRI data
as moderate RRI or arrhythmic RRI for each arrhythmia subject based on Equation (4),
we label the segments using the same definition as in the proposed method. Specifically,
each segment is labeled as a moderate segment, when the segment contains at least one
moderate RRI without arrhythmic RRIs. Each segment is labeled as an arrhythmia segment,
when the segment contains at least one arrhythmic RRIs. Label all segments of normal
subjects as normal segments.

5.1.2. Classification of the Subject

Based on the results of the three-value classification of the segments, the subjects
are binary classified as either arrhythmia subjects or normal subjects. The segments of
arrhythmia subjects are labeled considering the mean and standard deviation of the RRI
for each subject. All segments of normal subjects are labeled as normal segments. These
segments are classified into three values, arrhythmia segment, medium segment, and
normal segment, using a deep learning model as in the proposed method. The subject is
then classified based on the ratio of arrhythmia segments to the total number of normal
and arrhythmia segments among the classification results. This ratio is calculated based on
the following equation:

ARR_NR_ratio =
ARR_segments

ARR_segments + NR_segments
(5)

ARR_segments represents the number of segments classified as arrhythmia, and
NR_segments represents the number of segments classified as normal. ARR_NR_ratio
represents the ratio of arrhythmia segments to the total number of normal and arrhythmia
segments. For this ARR_NR_ratio, a threshold th is set as in the proposed method: if
ARR_NR_ratio is greater than th, the subject is determined to be arrhythmic; otherwise,
the subject is determined to be normal.
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5.1.3. Comparison of the Proposed Method with the Method Based on
Three-Value Classification

Figures 13–15 show the recall, specificity, and accuracy calculated by the method based
on the three-value classification and the proposed method, respectively. However, in the
method based on the three-value classification, the percentage of RRI data classified as
moderate RRI is varied to 50, 60, 70, 80, and 90%. Figure 13 shows that the proposed
method achieves the highest recall at almost all threshold th. Comparing the methods
based on three-value classification, the highest recall is achieved when the percentage of
classification to moderate RRI is 50%. However, looking at the overall value trends, it is
not necessarily the case that the recall improves with a lower percentage of classification to
moderate RRI. Next, Figure 14 shows that the method based on three-value classification
achieves greater specificity than the proposed method for 0.2 ≤ th ≤ 0.55, when 90% of
the methods are classified as moderate RRI. Similarly, when the ratio is 80%, the method
based on three-value classification achieves greater specificity than the proposed method
when 0.35 ≤ th ≤ 0.55. Consider this: the greater the percentage of data classified as
moderate RRI, the fewer the number of data classified as arrhythmic RRI. In other words,
fewer segments are labeled as arrhythmia segments. This is expected to reduce the number
of segments learned as arrhythmia segments in the deep learning model, and therefore
the number of segments classified as arrhythmia segments will also decrease. Therefore,
it is believed that a subject is more likely to be determined to be a normal subject when
the percentage of segments classified as moderate RRI is increased. Finally, Figure 15
shows that the proposed method achieves the highest accuracy at almost all thresholds.
It also seems that the highest accuracy is achieved for 0.35 ≤ th ≤ 0.4 when 50% of
the methods are classified as moderate RRI among the methods based on three-value
classification. However, looking at the overall trend of values, as in the discussion for
recall, it can be considered that specificity does not necessarily improve with a lower
percentage of classification to moderate RRI. This result suggests that there is no significant
relationship between the percentage of subjects classified as moderate RRI and the accuracy
of their classification.
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Figure 13. The recall of the method based on three-value classification (the percentage classified as
moderate RRI = 50, 60, 70, 80, 90%) and the proposed method.
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Figure 14. The specificity of the method based on three-value classification (the percentage classified
as moderate RRI = 50, 60, 70, 80, 90%) and the proposed method.
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Figure 15. The accuracy of the method based on three-value classification (the percentage classified
as moderate RRI = 50, 60, 70, 80, 90%) and the proposed method.

Based on the above results, we believe that the proposed method is the most capable
of correctly classifying subjects.

6. Conclusions

In this paper, we proposed the fetal arrhythmia detection method based on deep
learning using FECG signals. The proposed method uses the CNN that classifies FECG
signal segments as normal or arrhythmia ones. Since the classification is based on the
FECG signal itself, it could be possible to reduce the effects of errors in FHR estimation
and feature detection. In addition, by removing the FECG signal segment that might be
associated with both the normal and arrhythmia ones, our proposed method improves
the classification accuracy of the CNN. The experimental results show that the proposed
method achieves 96.2% accuracy, 100% specificity, and 100% recall, improving the values of
conventional methods based on heartbeat detection and feature detection. In our future
work, we will consider improving the sensitivity to the threshold used in our method for
more practical arrhythmia detection.
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