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Abstract: The ability to finely control hand grip forces can be compromised by neuromuscular or
musculoskeletal disorders. Therefore, it is recommended to include the training and assessment of
grip force control in rehabilitation therapy. The benefits of robot-mediated therapy have been widely
reported in the literature, and its combination with virtual reality and biofeedback can improve
rehabilitation outcomes. However, the existing systems for hand rehabilitation do not allow both
monitoring/training forces exerted by single fingers and providing biofeedback. This paper describes
the development of a system for the assessment and recovery of grip force control. An exoskeleton
for hand rehabilitation was instrumented to sense grip forces at the fingertips, and two operation
modalities are proposed: (i) an active-assisted training to assist the user in reaching target force
values and (ii) virtual reality games, in the form of tracking tasks, to train and assess the user’s
grip force control. For the active-assisted modality, the control of the exoskeleton motors allowed
generating additional grip force at the fingertips, confirming the feasibility of this modality. The
developed virtual reality games were positively accepted by the volunteers and allowed evaluating
the performance of healthy and pathological users.

Keywords: grip force control; exoskeleton; virtual reality; gamification; tracking task; biofeedback;
hand rehabilitation and assessment

1. Introduction

The occurrence of neuromuscular or musculoskeletal disorders can seriously affect the
ability to finely control and modulate hand grip forces [1,2], and a prompt rehabilitative
treatment is needed to recover the degree of autonomy requested to perform the activities
of daily living (ADLs) [3]. In traditional rehabilitative therapy, the therapists actively
move the patient’s limbs and the patient attempts to initiate movements autonomously.
Many studies demonstrate that quantity, duration, intensity, and content (e.g., task-oriented
exercises) of training sessions considerably influence the mechanism of neuroplasticity and
the relearning of motor skills. However, with this traditional approach, training sessions
are often limited in time, and the potential of a prompt rehabilitative treatment is not
fully exploited [4,5]. Nowadays, technological solutions can be adopted for administering
robot-aided rehabilitation in order to enhance the benefits of traditional therapy [4–8].
Indeed, a robot can move and guide the patient’s hand in executing task-oriented and
repetitive motor exercises, and quantitatively tune the intensity of the therapy according to
the patient’s condition. Regarding the functional assessment of the patient, a robotic device
allows quantitatively and objectively evaluating the observed parameters and reducing
human-related errors [6]. Normative parameter values could be subject-specific and mea-
sured on the contralateral healthy limb (e.g., in case of hemiparesis, and typically done in
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mirror therapy) or relative to the healthy population (normative RoM for a particular joint,
normative movement speed, normative forces, etc.).

In addition, the use of a robotic system combined with virtual reality (VR) can improve
the rehabilitation outcome [4,7,8]. In fact, the use of VR and the gamification of the therapy
(i.e., the incorporation of game principles into the therapy so as to encourage participation)
allows actively engaging with and motivating the patient during the therapy through
various types of feedback, thereby improving therapy outcomes [8,9]. The biofeedback is
an essential factor to be considered for enhancing motor learning, and it can be provided
through the use of VR. It is a technique which allows perceiving voluntary or involuntary
processes occurring in the body to manipulate them through conscious mental control.
Therefore, providing the patient with biofeedback, either during or after the therapy, can
improve the outcome of the treatment and promote neuroplasticity [1,4].

The articular range of motion (RoM) and the force exerted by the hand when grasping
and manipulating objects are two of the most significant parameters in the evaluation of
hand functionality [10–13]. In particular, the ability to finely control and scale the grip
forces can be greatly compromised in patients with neuromuscular or musculoskeletal
disorders [1]. Therefore, an objective and accurate measurement of the sub-maximal grip
forces exerted in grasping tasks is essential to assessing the improvements in the patient
and to evaluate the effects of the treatment [1]. Moreover, the objective of the rehabilitative
therapy is the recovery of the capability to perform ADLs, so it is paramount to train
the patient to perform different types of grasps, promote the interaction with real objects
in task-oriented exercises, and to train and assess the ability of the subject to exert and
modulate sub-maximal grip forces, which are exploited to manipulate objects in ADLs [11].

The training and assessment of grip force control (i.e., the ability to finely control and
modulate the exerted grip forces) can be efficiently performed with tracking tasks. In a
tracking task, the patient applies a force onto a sensorized object, a handle or a robotic
device, and information about the intensity of this force is routed back by means of a simple
desktop environment or a more complex virtual environment. A target trajectory must be
tracked as accurately as possible by controlling the exerted grip force [14]. Previous works
proposed tracking tasks for the evaluation and training of grip force control. In [1], the
authors described and tested a grip force training system that enabled them to improve
grip force control in 8 out of 10 post-stroke patients. In the proposed task, a target blue
ring moved vertically in the screen to generate, as time passed, a reference trajectory to
be tracked. When the force was applied onto a grip force measuring device, a red dot
controlled by the patient’s force input moved upwards. Similarly, when the force was
released, the red dot moved downwards. In this way, the patient could train his/her force
modulation capability trying to reach and track the blue ring with the red dot. In [15], the
authors pointed out that the power grip force tracking tasks developed to assess grip force
modulation proved to be feasible for quantifying grip force control accuracy in mildly to
severely affected hemiparetic stroke patients.

To the best of our knowledge, many devices allow evaluating finger RoM in a very
accurate way [16–19], but only a small number of them provide measurement of the
force exerted by the fingers during the grasping tasks, even though both parameters are
paramount to assessing hand functionality. Moreover, the existing devices mostly consist of
end-effector systems that exploit instrumented objects to measure the force exerted by the
hand. For example, AMADEO® and PABLO System® (Tyromotion GmbH, Graz, Austria)
can be mentioned. AMADEO® supports the flexion/extension of each finger and provides
measures of the finger’s RoM and force, and it was used in the literature to administer
robotic-assisted therapy based on VR games [20]. PABLO System® allows performing
grasping movements and evaluating the force exerted by the whole hand by means of an
instrumented object. It can be used with VR games to engage the patient during therapy.
Other end-effector devices, such as the HapticKnob [21] and the HandCARE [22] were
exploited in research to administer VR-based hand force rehabilitation therapy. However,
the shape of the end-effector, the instrumented object, can constrain the types of grasp
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that can be executed: for example, a cylindrical end-effector with a given diameter only
allows training power grasps and does not allow the possibility of training precision grasps.
Moreover, instrumented objects (e.g., electrical dynamometers) typically do not allow
determining the magnitude of the force exerted by each finger [11].

Exoskeletal devices, instead, do not constrain the palm of the hand and allow monitor-
ing each finger during interactions with real objects of different shapes and dimensions
and to train various types of grasps. Providing exoskeletons with the possibility of sens-
ing forces exerted by each finger could allow training grip force control and modulation
capability in grasping tasks of a variety of objects to simulate ADLs, and enable specific
evaluation and intervention on the impairment [3]. In the literature, some examples of
exoskeletal devices able to measure grip forces exerted by each finger can be found. The
hand exoskeleton developed in [23] for assistive and rehabilitative purposes can identify
and prevent object slippage and adapt grip geometries to the object’s properties thanks to
the information coming from force sensors at the fingertips. The device developed in [24]
monitors the user’s finger movement efforts thanks to force sensors and allows augmenting
the wearer’s force production. However, despite the importance of grip force assessment
and training, the above systems do not exploit the grip force measurement to train the
patient’s grip force control and do not take advantage of any kind of biofeedback to engage
the patient during the rehabilitative treatment.

This paper presents a system for the assessment and recovery of grip force control that
can be fully integrated into a commercial exoskeleton for hand rehabilitation. The main
goals of this work were: (i) To develop and perform preliminary tests of an active-assisted
modality on healthy subjects as a proof-of-concept. This modality is to be further developed
and tested on the clinical population, for administering an active-assisted training in which
the patient can be assisted by the machine to reach target force values. (ii) To develop
and test with healthy and pathological subjects a VR game based on tracking tasks for the
recovery and assessment of grip force control. Both goals used force information recorded
from force sensors embedded at the fingertips of the exoskeleton.

The proposed system has been developed and implemented on the Gloreha Sinfonia
glove (Idrogenet, Italy) [3] for demonstration purposes, but it could be adapted to other
similar exoskeletal machines, thereby enabling grip strength training in addition to motion
training. Moreover, the proposed solution is suitable for both therapy and assessment
purposes, and two different modes of operation are selectable: (i) active-assisted training to
assist the user in reaching target grip force values and (ii) biofeedback with VR games for
the assessment and recovery of grip force control.

The paper is organized as follows: Section 2 describes the materials and methods, i.e.,
the instrumentation of the exoskeletal device, the active-assisted modality and the VR game
modality, the experimental protocol and setup used to test the modalities, the considered
performance indicators, and the statistical analysis. Section 3 reports the results of the
experimental validation, which are discussed in depth in Section 4. Conclusions and future
work are provided in Section 5.

2. Materials and Methods

In this work, an exoskeleton for hand rehabilitation was instrumented, and two differ-
ent modes of operation were developed for the assessment and training of users’ grip force
control. In the modality “active-assisted training”, the actuators of the device are exploited
to generate additional grasp force during the force training and assist the user in reaching
target force values. In the modality “VR game for training and evaluation”, instead, the
exoskeleton with embedded force sensors is used to record the forces exerted by each finger
during the execution of exercises purposely developed to improve and assess the force
modulation capability. For each modality, custom-made software solutions and graphical
user interfaces (GUIs) were developed to control the device and provide biofeedback.
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2.1. The Instrumented Hand Exoskeleton

The exoskeletal device used to develop the force-training experimental system is the
Gloreha Sinfonia (Idrogenet, Italy), which is shown in Figure 1 [25]. It is typically used to
deliver rehabilitative treatment for the recovery of functional hand RoM, which is measured
by means of resistive flex sensors embedded in the glove. The system can also actively assist
the patient in the execution of flexion/extension movements of the fingers according to the
RoM information, thanks to the five supplied linear, permanent magnetic DC motors with
flexible transmissions, which transmit forces, displacements, and velocities to the fingertips.
Transmissions are mounted on the back of the exoskeletal glove and can be inserted into
cloth sleeves that extend from the dorsum of the hand to the fingertips (Figure 2c). Gloreha
Sinfonia motors can be controlled positionally by setting the incremental movement step as
percentage of the motor’s maximum, from 0% (extended hand) to 100% (flexed hand). The
Gloreha Sinfonia glove does not cover the palm, as shown in Figure 2a. Leaving the palm
free to have contact with objects is less constraining for hand movements and lets the glove
holder perceiving sensory feedback. Furthermore, it is useful to avoid any grasping reflex,
which by inducing a force closure of the hand, could favor the hyper tonus insurgence [3].
The visual feedback consisting of interactive games allows engaging the patient during the
therapy (Figure 1).

Figure 1. Gloreha Sinfonia (www.gloreha.com/sinfonia (accessed on 18 June 2020)).

Figure 2. (a) Gloreha sensor glove with force-sensing resistors (FSR®) embedded in the fingertips
of the first, second, and third finger. (b) CAD detail of the sensor interface: the 3D printed PLA
plate allows uniformly distributing the force on the sensitive area of the sensor. (c) Instrumented
glove with flexible transmissions mounted on the back, which transmit forces and displacements to
the fingertips.

However, this system includes neither the monitoring of the grasping force, nor hand
force training. Therefore, we aimed at widening Gloreha Sinfonia’s functions to include
force training and force assessment by embedding force sensors in the glove fingertips.

The following technical specifications were considered for the force sensors:

• Thickness: less than 5× 10−4 m to guarantee flexibility and not to affect acceptability
and usage comfort [26];

• Dimensions: maximum 2× 10−2 m diameter;

www.gloreha.com/sinfonia
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• Force range (comparable to the one detected in hand rehabilitation training): 0–25 N [10].

Force-sensing resistors satisfied the technical specifications. In particular, the piezore-
sistive sensor FSR® Model 402 Short Tail (Interlink Electronics, Camarillo, CA USA) was
selected. It has a thickness of 4× 10−4 m, a diameter of 1.83× 10−2 m, a force sensitivity
range of 0.2–20 N, and continuous force resolution. Moreover, this type of sensor is low
cost, requires very simple conditioning electronics [26], and has a good shock resistance,
thereby being suitable for wearable applications.

Three FSR® were embedded in the fingertips of the thumb, index finger, and middle
finger of the exoskeletal glove, in order to limit the complexity of the prototype. As also
highlighted in research studies that investigated force synergies [27,28], they are the fingers
mostly involved in daily grasping actions. The sensor was positioned on the curved surface
of the fingertip (Figure 2a). In order to uniformly distribute the force on the sensitive
area of the sensor, the interface between the Gloreha sensor glove’s fingertips and the
sensors was modified by inserting a thin 3D printed PLA plate (1× 10−3 m thickness
and 2× 10−2 m diameter), fixed to the sensor by means of double-sided tape (Figure 2b).
Moreover, a PLA support was also printed in 3D and fixed to the connections of the flexible
transmissions (see Figure 2c). The thin PLA plate also allows securing the sensors on the
fingertips by means of an elastic band that can be fastened at the top of the custom-designed
PLA support (Figure 2c).

The sensors attached to the developed PLA plate were calibrated using the Instron®

testing machine by applying forces in the range 0–8 N [29] and recording the corresponding
output voltage by means of a custom made printed circuit board connected to the sensors.

2.2. Operation Mode I: Active-Assisted Training

The active-assisted training was developed with the aim of assisting the user in
reaching a target grip force (i.e., the average force recorded on the three sensors exerted by
the contralateral healthy hand of the patient). In this mode of operation, the actuators of
the system were controlled based on the force information.

A preliminary calibration phase enabled us to acquire the maximum RoMs of fingers,
measured by the flex sensors embedded in the glove, to guarantee that the flexion move-
ments generated by the activation of the robot actuators in the active-assisted modality
did not put the hand in a configuration which exceeded the subject’s functional RoM. In
this calibration phase, the subject wears the glove with flexible transmissions mounted
on the dorsum of the hand. Motors are moved via a custom-designed GUI to generate
flexion of the fingers, and the finger configuration (i.e., the RoM) is measured through the
embedded flex sensors. In this phase, the movement is free, and no object is grasped. The
movement of the motor, which can be controlled by imposing incremental steps from 0 to
100 (i.e., the glove’s full range), is associated with the measured RoM before the subject
starts experiencing discomfort. The measured RoM was used as a safety parameter in the
active-assisted modality to prevent hand configurations that could be painful for a patient
with limited RoM.

The block scheme of the proposed strategy implemented for performing the active-
assisted training is shown in Figure 3: At pre-set timesteps (i.e., every 3 s), the current
force (i.e., the average force measured in real-time by the three sensors) is compared with
the target force value set in the GUI. If the current force is lower than the target one, the
position of the motor is updated with progressive incremental steps set to 5% of the motor’s
maximum in order to provide additional grip force to the user and help to reach the target
force value. Moreover, the RoMs of the fingers are also evaluated every 3 s: if the RoM of
one of the fingers exceeds the maximum RoM recorded in the calibration phase, the exercise
ends. This way, the system can assist the user only if in the predetermined time interval,
he/she is not capable of reaching the target force. The motors provide a force contributing
to the grasp in order to reeducate the user to exert target force levels. The choice of a 3 s
time interval was guided by the fact that, in that interval, the Gloreha Sinfonia motors
should activate, move, and stabilize, and this takes about 2 s. Then, the force applied to the
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fingertips has to be stabilized. Therefore, to ensure an accurate measurement of the force
generated by the motor activation, it was not possible to go below 3 s.

Figure 3. Block scheme of the strategy implemented for the active-assisted training. Every 3 s, the
current force is compared with the target force. If the current force is lower than the target one, the
position of the motor is updated by providing 5% of the full-scale position increment to generate
additional grasping force. Moreover, the RoMs of the fingers are also evaluated every 3 s: if the RoM
of one of the fingers exceeds the maximum RoM recorded in the calibration phase, the exercise ends.

A progress bar which fills according to the exerted force was also created, to be dis-
played on a desktop during the exercise. The active-assisted modality should be exploited
to reeducate the user to reach target grip force levels in the first stages of the rehabilita-
tion session.

2.3. Operation Mode II: Virtual Reality Game for Training and Evaluation

A non-immersive VR game (Figure 4) was developed with the aim of assessing and
training the user’s ability to (i) finely control the sub-maximal forces exerted in grasping
tasks of real objects, (ii) balance and release grip, and (iii) accurately modulate the grip
force [1]. This modality can be used in combination with the active-assisted training in
a complete rehabilitative treatment or as a stand-alone modality to assess and train grip
force control.

Figure 4. (a) “Ramp”, (b) “Square Wave”, and (c) “Sinusoid”.

In this operation mode, the instrumented glove is passive, and motors are not exploited
to generate additional force. According to the importance of biofeedback, attention was
paid to provide intuitive, clear, and engaging visual feedback to the users. In the proposed
VR game, the user controlled the avatar of the game which moved vertically according to
the average force exerted by the three fingers during the grasping task. The purpose of the
game was to track the proposed waveforms which moved on the screen from the right to
the left, and to collect the maximum number of objects positioned onto them.

The VR game was developed with Unity, a game development platform which uses
Microsoft Visual Studio as the editor and C# as the programming language.

Three different types of exercises were proposed in this work. They differ in the target
waveform to be tracked by controlling the grip force and have different objectives:

1. The “Ramp” waveform was created with the aim of training and assessing the ability
of the user to gradually increase and decrease grip force;
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2. The “Square Wave” waveform was developed with the aim of training and assessing
the ability of the user to exert discrete force levels and stabilize the force;

3. The “Sinusoid” waveform was created to improve the accuracy of the grip force
control and evaluate the force modulation capability.

The “Ramp” (Figure 4a) waveform was composed of ascending and descending ramps
to be tracked to reach 10 different force levels uniformly distributed between the minimum
measured force (i.e., the force corresponding to a mere touch, without squeezing the object)
and the maximum (or sub-maximal) grip force, previously set via the GUI. The 10 force
levels followed each other in a random way.

The “Square Wave” (Figure 4b) was also composed of 10 discrete force levels to be
reached and maintained, uniformly distributed between the maximum and minimum force
and randomly administered.

The “Sinusoid” (Figure 4c) was characterized by a peak-to-peak amplitude which
corresponded to the range between the maximum and minimum measured grip force, and
a different frequency for each level of complexity.

In particular, for each waveform, three levels of complexity could be selected. The
difficulty of the “Ramp” and “Square Wave” was meant to increase with the translation
speed of the wave on the screen, whereas the difficulty of the “Sinusoid” was meant to
increase with the frequency of the waveform.

The main menu screen of the VR game enabled us to set some parameters, such as
the participant’s ID, the duration of the exercise, the level of difficulty, and the exercise to
be administered. A timer on the upper part of the screen measured the duration of the
exercise, and at the end of each trial, a summary of the performance was also shown. Data
regarding the exerted force, the maximum force, and the minimum force were received via
UDP communication from the custom-designed Microsoft Visual Studio application.

2.4. Experimental Validation

The enrolled volunteers provided written informed consent before participating in this
study. The experimental protocol was approved by the local Ethical Committee (Comitato
Etico Università Campus Bio-Medico di Roma, reference number: N. 41/17 OSS ComEt
CBM) and complied with the Declaration of Helsinki.

2.4.1. Operation Mode I: Active-Assisted Training

The experimental setup for the preliminary tests of the active-assisted training modal-
ity is shown in Figure 5a, where the personal computer (PC) showing the GUI, the Gloreha
sensor glove with embedded force sensors and flexible transmissions, the conditioning
electronics, and the DAQ USB—6008 device (National Instruments, Austin, TX USA) con-
nected to the PC to power the conditioning circuit, are highlighted. The DAQ device has
8 analogue input pins (12 Bit, 10 kS/s), 2 analogue output pins, and 12 digital input/output
pins. The output voltage coming from the conditioning circuit was acquired by means
of the same DAQ device. A rate of 1000 Hz was set for the acquisition of the analogue
output voltage.

As a proof-of-concept, the active-assisted modality was tested on three healthy male
volunteers aged 30.3± 1.1 years. The objective of the preliminary experimental tests was to
evaluate the ability of the developed algorithm to control the Gloreha Sinfonia motors to
generate additional grip force at the fingertips.

The participants sat on a chair in front of the monitor displaying the GUI with the
visual feedback and wore the appropriately sized (i.e., M, XL, and XL, respectively,
for the first, second, and third volunteers) Gloreha sensor glove with embedded force
sensors and flexible transmissions on the dominant hand (i.e., right hand). Before exe-
cuting the experimental trial, the maximum and minimum grip forces were computed
by asking the volunteers to exert the maximum grip force on the supplied object three
times. The maximum and minimum forces were calculated by averaging the forces
exerted by the thumb, index finger, and middle finger in the three trials. Then, the
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volunteers were asked to grasp the object with their minimum grip force, without
lifting it, and were instructed to remain passive during the whole trial. The object was
a wood parallelepiped (1.35× 10−1 m × 6.5× 10−2 m × 4× 10−2 m), grasped with a
precision grasp in the direction of its smaller dimension. The object’s dimensions were
chosen to respect the optimal handle diameter to exert the maximum grip force [30].
The maximum force to reach during the experiment was set to 90% of the maximum
recorded value. The maximum reachable positions of the motors were set to values
which simulated limited RoMs (i.e., 60%). In fact, the maximum positions of the motors
of this exoskeleton can be controlled using percentages of the maximum.

Figure 5. (a) Experimental setup for the active-assisted training; (b) experimental setup for the virtual
reality game: electromyographic (EMG) sensors are positioned on the flexor digitorum superficialis
and extensor digitorum communis muscles.

The trial started with the volunteer lightly gripping the supplied object. The partici-
pant was also instructed not to spontaneously increase the exerted grasp force during the
trial, to take into account only the force increments provided by the actuation mechanism
and measured by the force sensors on the fingertips. Every 3 s, the exerted force measured
by the force sensors was compared to the target force. The positions of the motors were
updated when the recorded force was lower than the target one. Motor position incre-
ments are expressed as percentages of the motor maximum position. In order to test the
control strategy, increments of 5% every 3 s and a maximum reachable position of 60%
were set. The progress bar shown in the GUI filled according to the force, providing visual
feedback. The active-assisted training stopped when the maximum position of the motor
was reached and/or the maximum target force was exerted either with or without the
assistance provided by the motors. Once the exercise ended, the motors were moved to the
home position and the volunteer could release the object. Six trials were executed for each
volunteer, to evaluate whether the developed control algorithm could allow the motors to
generate additional grip force during the exercise, with the participant being passive and
not providing a spontaneous increase in grip force.

2.4.2. Operation Mode II: Virtual Reality Game

The experimental setup for the VR game modality is shown in Figure 5b. It was similar
to the setup used for the active-assisted training, but for this modality, the system was
passive, and the instrumented Gloreha sensor glove was used without flexible transmissions
because it only had to record grip forces exerted by the participant. Moreover, in this
modality the PC was used to display the VR game. The analogue output voltage coming
from the conditioning electronics was acquired at 1000 Hz using the previously described
DAQ device. Acquired data were sent using the UDP protocol to Unity game development
platform. Force and RoM data were sent and stored with a rate of 10 Hz to reduce the
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amount of data to be exchanged, still enabling us to finely control the VR game and store
an informative amount of data for functional evaluation purposes. Moreover, as evidenced
in [31], the briefest interval over which visual information could be integrated and used to
correct errors in motor output is approximately 150 ms.

Superficial electromyographic (sEMG) data were acquired with the Delsys Trigno
wireless sensors at 1000 Hz during the execution of the assigned tasks. sEMG were filtered
with a sixth-order Butterworth bandpass filter with cutoff frequencies (30, 450) Hz and
then with a second-order Butterworth notch filter (50 Hz), and normalized with respect
to the maximum voluntary contraction (MVC). sEMG signals from the flexor digitorum
superficialis and extensor digitorum communis were acquired, as these represent the pair
of agonist-antagonist muscles most involved in the assigned grasping task, as already
confirmed in the literature [32]. sEMG signals were acquired with the aim of monitoring
the level of muscle activation between the beginning and the end of the trial and of
understanding whether the execution of the tasks did influence the muscular amplitude,
due to muscular fatigue effects. In addition, the monitoring of muscular fatigue onset could
also be used in future works to modify the percentage of maximum force to be reached by
the patients during the execution of multiple exercises in a rehabilitation session, to further
improve the proposed system.

In order to perform a preliminary validation of the proposed system for the training
and assessment of grip force control and evaluate the developed VR games in terms of
the possibility of extracting meaningful performance indicators to assess the user’s force
control, 10 healthy volunteers (3 males and 7 females aged 26.1± 1.8 years) were enrolled.
All the volunteers wore a size M of the instrumented Gloreha sensor glove on the dominant
hand (9 participants were right-handed and 1 left-handed). The glove was also regulated
to comfortably fit the hand. The volunteers sat on a chair in front of a table on which the
PC, showing the VR game, was placed. To perform the grasping task, the participants were
asked to grasp, without lifting it, the same wood parallelepiped used in the active-assisted
training validation.

Before running the VR game, the maximum and minimum grip forces were evaluated
for each volunteer for the hand used to perform the exercise, with the same protocol
followed for the active-assisted training. The maximum force to be reached in the VR game
was set to 90% of the maximum recorded value to prevent the participant from being too
tired when reaching and/or maintaining the highest force value during the trial. Similarly,
the MVC was evaluated for each volunteer, by asking them to perform three maximal
contractions of the two monitored muscles.

Once the maximum and minimum forces were set, the volunteers were asked to play
the VR game. They were required to dynamically adapt the grip force exerted on the
supplied object to track the three different waveforms moving on the screen and collect
the greatest number of objects positioned on them, by vertically moving the avatar of the
game according to the exerted force. In particular, to track the "Ramp" waveform, the
volunteers had to gradually increase and decrease the exerted force and reach the peaks of
the ramp. For the "Square Wave" waveform, the participants had to reach discrete force
levels and stabilize the force, whereas the aim of the "Sinusoid" was to track the waveform
by gradually modulating the force.

Before starting the trial, the volunteers performed an initial phase of familiarization in
which they executed a one-minute repetition of each type of exercise with the lowest level of
difficulty. After the familiarization, they performed 4 repetitions of each of the three levels
of complexity for the proposed waveforms. Each repetition lasted 1 min. The different
waveforms and levels of complexity were administered randomly to reduce habituation.
Between each repetition, the participants rested a few seconds according to their needs.
The entire trial lasted about 1 hour per volunteer.

At the end of the trial, the NASA TASK LOAD INDEX (TLX) questionnaire was
administered to each volunteer, to evaluate the usability of the proposed VR games through
the computation of Overall Workload (OW) of the task [33]. The participants assigned a
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weighted rating in the range 0–100 with 5-point steps to each of the six subscales (Mental
Demand, Physical Demand, Temporal Demand, Performance, Effort, Frustration). The
ratings were then combined to obtain the OW, which is represented by a score from 0 (low
OW) to 100 (high OW) [34]. Moreover, in order to collect the subjective impressions of the
participants with respect to the performed experiment, an additional questionnaire was
administered to each volunteer at the end of the trial. Participants had to assign a rating
from 1 to 5 to each of the following questions:

(Q1) How much did you enjoy your experience with the VR game? (1 not at all–5
very much);

(Q2) How would you rate the level of intuitiveness of the VR game, i.e., the mechanism
which transduces forces to the avatar movement? (1 not intuitive–5 very intuitive);

(Q3) How much did the VR game involve you? (1 I did not feel involved at all–5 I was really
involved and the VR game maintained high my attention during the experiment);

(Q4) How would you rate the level of comfort of the instrumented glove?—i.e., was the
device comfortable when worn? (1 not comfortable–5 comfortable);

(Q5) How natural was the mechanism which controlled movement through the environ-
ment? (1 extremely artificial–5 completely natural);

(Q6) How responsive was the environment to actions that you performed? (1 not responsive–5
completely responsive).

In addition to the validation on healthy volunteers, the VR game was tested on a
pediatric patient (i.e., a 10-years old girl) with right-hand hemiparesis following ischemic
stroke [35]. The grip force control capability of the patient was assessed two times in
three months, before and after robot-mediated therapy with Gloreha Sinfonia. In each
evaluation session, the maximum and minimum grip forces were measured according to
the previously explained protocol. Then, the patient was asked to perform the tracking
tasks of the three proposed waveforms. The maximum force to reach was set to 90% of the
maximum recorded value. In particular, she performed multiple one-minute repetitions
of the different exercises (i.e., 5 repetitions of "Ramp" and 3 repetitions of "Square Wave"
and "Sinusoid" in the first session, and 3 repetitions of "Ramp" and 2 repetitions of "Square
Wave" and "Sinusoid" in the second session).

2.4.3. Performance Indices

For the active-assisted modality, the force variation generated by the activation of the
motors of the thumb, index finger, and middle finger, and measured by the three sensors
positioned at the fingertips, was saved for each trial together with the incremental steps of
each motor’s position. The average force exerted by the motors on the three sensors was
then computed, and the mean force in each 3 s interval corresponding to a given motor
activation step was calculated, so as to obtain 13 force values (i.e., one for each motor step
from 0% to 60%). The correlation between the average force values and the motor steps
was considered as a performance index (PI) for this modality, to understand whether the
actuators of the device were able to generate additional grasping force.

The following PI were evaluated to assess the volunteers’ performance in the VR game:

1. Performance (P) (%) of each volunteer in every repetition for the three waveforms
with three levels of complexity (C), computed as the number of collected objects with
respect to the total number of objects.

2. Peak Performance (PP) (%) of each participant in every repetition at each level of
complexity (C) of the three waveforms. It considers the upper peaks of the waveforms
reached for the "Ramp" and "Sinusoid" waveforms, and the reached and held force
levels for the "Square Wave" (i.e., the constant discrete force levels). It is computed
as the number of collected objects over the total number of objects on the peaks and
discrete force levels.

3. Normalized tracking error (TE) (-), computed as the average force error between the
target force pattern to be tracked and the force exerted by the volunteer during the
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trial, and extracted for each repetition of the three levels of the waveforms for all
the participants.

4. Normalized root mean-square error (RMSE) (-) between the target waveform and
the volunteer’s force pattern, calculated for each participant in every one-minute
repetition of the task.

5. OW of the task for each volunteer.

In order to allow comparison among the results obtained for different volunteers,
the TE and the RMSE for each participant were normalized by the difference between the
maximum and minimum force acquired for each volunteer, according to [11], to obtain a
number between 0 and 1. Therefore, these indicators are dimensionless.

Finally, to compare the amplitudes of the muscular contraction between the beginning
and the end of the trial and investigate the possible onset of muscular fatigue, the root
mean-square level (rms) of the EMG signal of the two monitored muscles was computed
for each volunteer at the beginning and at the end of the trial, in the same conditions
(i.e., same limb configuration, same force level to be exerted, and same type of task) [36]. In
fact, for the same experimental conditions, an increase in the amplitude of the EMG signal
means that a greater number of muscular fibers is recruited for the desired contraction.
This could be related to the onset of muscular fatigue [37]. This type of analysis was
conducted to understand whether the onset of muscular fatigue affected the performance
of the participant.

2.4.4. Statistical Analysis

The data collected on healthy volunteers were used to carry out a statistical analysis, in
order to investigate the existence of correlations between the indices defined in Section 2.4.3
and to verify if the implemented exercises and indicators allowed assessing the improve-
ments of the participant in controlling and modulating the grasping force. Table 1 presents
the pairs of variables considered for the correlation and statistical analysis.

Table 1. Correlation between pairs of variables.

Pair Reason for the Investigation

OW and average total P To understand whether who scored lower P perceived a higher OW

OW and average total TE To understand whether who perceived a higher OW also made greater TE

Maximum grip force and average total PP To investigate whether higher forces to reach could decrease the capability of
reaching peak force values and hold force

Maximum grip force and average total P To understand whether higher forces were correlated to an increase or a decrease in P

Maximum grip force and average total TE To investigate whether higher forces were correlated to higher or lower TE made by
the volunteers

C and average communal P To understand whether, overall, the increasing level of complexity could lead to a
diminution of P

C average communal TE To understand whether, overall, the increasing level of complexity could lead to an
increase in the TE

Force increment and motors position To assess whether the system motors could generate grip force increments starting
from resting conditions

Specifically, the following expressions were used to represent the averages of the P,
PP, and TE considered to perform the analysis: average total denotes the mean of the
considered PI over the entire trial consisting of 4 repetitions of each waveform for each
of the 3 levels of complexity, computed for each volunteer, whereas average communal
denotes the mean of the considered PI for all the 10 healthy volunteers for each one-minute
repetition, computed for each level of complexity of each waveform.

The correlations between OW and average total P, OW and average total TE, maximum
grip force and average total P, maximum grip force and average total PP, maximum grip
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force and average total TE (for the VR game modality), and force increments and motors
positions (for the active-assisted modality) were investigated through the computation
of the Spearman’s rank correlation coefficient (ρ). This test is suitable for non normally
distributed data (as in this case) and assesses how well an arbitrary monotonic function can
describe the relationship between two variables (i.e., the pairs of arrays of the PIs obtained
by the 10 volunteers). The correlation is considered “very weak” if 0.0 ≤ |ρ| ≤ 0.19, “weak”
if 0.20 ≤ |ρ| ≤ 0.39, “moderate” if 0.40 ≤ |ρ| ≤ 0.59, “strong” if 0.60 ≤ |ρ| ≤ 0.79, and
"very strong" if 0.80 ≤ |ρ| ≤ 1.0 [38]. The Spearman’s rho is equivalent to Pearson’s linear
correlation coefficient applied to the rankings of the two variables arrays. The test also
returns the p-value (p): if p < 0.05 the correlation is significantly different from zero.

Given that the level of complexity C is a 3-level categorical variable, the relationship
between C and average communal P, and that between C and average communal TE, were
investigated through the Kruskal–Wallis test, a nonparametric version of classical one-way
ANOVA, which is suitable for the data collected in this experiment, as they exhibit a non
normal distribution. This test evaluates the medians of the groups of data to determine
whether the samples (i.e., the scores of the considered PI for each complexity level) come
from the same population—that is, whether the factor (i.e., the level of complexity C) has a
significant effect on the computed PI. The significance level was set to 0.05. This analysis
was performed for each proposed waveform in order to understand whether different
levels of complexity entailed different performance.

3. Results

In this section, results about the two tested operation modes are provided. The data
post-processing and analysis were performed in MATLAB (R2021b).

3.1. Operation Mode I: Active-Assisted Training

The average force increments (i.e., difference between maximum and minimum mean
force on the six trials) generated by the motors at the fingertips of the thumb, index finger,
and middle finger, and the total force increments (i.e., the sum of the three forces), together
with the range of the correlation coefficients obtained on the six trials, which express the
strength of the monotonic relationships between the motor step and the average force
increment for the three fingers, are shown in Table 2 for the three volunteers. For all the
trials, p < 0.05 were obtained.

Table 2. Force increments generated by the motors and correlation coefficients for each volunteer.

Volunteer Thumb
Force [N]

Index
Force [N]

Middle
Force [N]

Total
Force [N] ρ

1 1.88 1.05 2.14 5.1 0.96–0.99
2 2.35 1.60 2.80 6.75 0.94–0.99
3 3.38 1.94 1.99 7.31 0.85–0.99

Figure 6 shows the increasing trend of the average force exerted on the three fingers
by the motors, together with the motor step, for each volunteer. In particular, the blue line
represents the mean of the average force in the six trials, and the shaded area represents
the standard deviation.

3.2. Operation Mode II: Virtual Reality Game
3.2.1. Experimental Tests on Healthy Volunteers

As a graphical example of the executed task, Figure 7 shows the average force pattern
superimposed on the target force pattern for one representative healthy volunteer.

The average total P, average total PP, average total TE, and OW scores for the 10 vol-
unteers, with the maximum grip force values, are given in Table 3. Results about the RMSE
obtained by the volunteers are similar to the average total TE results and are not reported
for brevity.



Bioengineering 2023, 10, 63 13 of 20

The Spearman’s rank correlation coefficients and p-values obtained from the statistical
analysis are given in Table 4.

Figure 6. Average force increment (blue line) ± standard deviation (shaded area) for the 6 trials for
each volunteer. The percentages in the red squares indicate the motors’ steps with respect to the
maximum value.
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Table 3. ATP (%), ATPP (%), ATTE (-), OW (-), and maximum grip force F (N) for each volunteer (V).

ATP ATPP ATTE OW F

V1 91.0 ± 6.9 93.7 ± 9.5 0.16 ± 0.17 34 3.93
V2 82.3 ± 9.3 71.8 ± 19.0 0.22 ± 0.24 50 3.34
V3 83.9 ± 9.7 78.3 ± 19.2 0.16 ± 0.18 43.3 2.91
V4 89.0 ± 8.2 84.9 ± 12.0 0.13 ± 0.14 77.3 4.45
V5 82.3 ± 8.8 73.2 ± 13.9 0.67 ± 0.71 66 1.45
V6 85.1 ± 8.5 76.1 ± 23.7 0.16 ± 0.17 49.7 3.49
V7 80.3 ± 10.0 69.6 ± 23.3 0.21 ± 0.22 58.7 3.15
V8 93.5 ± 5.9 95.3 ± 7.6 0.14 ± 0.16 43 4.72
V9 86.1 ± 8.7 85.2 ± 13.8 0.15 ± 0.17 56 1.97
V10 70.9 ± 13.7 48.2 ± 29.0 0.24 ± 0.26 61.7 4.13

Figure 7. Average force pattern (red line) ± standard deviation (shaded area) and target force pattern
(black dotted line) for the “Ramp”, “Square Wave”, and “Sinusoid”, level 1, for one representative
volunteer who obtained average performances among the enrolled volunteers. The average force and
standard deviation were computed for the 4 repetitions of level 1 for each exercise.

Table 4. Spearman’s rank correlation coefficients and p-values.

Pair ρ p

OW and average total P −0.50 0.14
OW and average total TE 0.24 0.51

Maximum grip force and average total PP 0.27 0.45
Maximum grip force and average total P 0.42 0.23

Maximum grip force and average total TE −0.49 0.15

Figure 8 shows the average communal P and average communal TE scores obtained by
the 10 volunteers in each one-minute repetition at each of the three levels of complexity, for
the three proposed waveforms. For the C/average communal P pair, the Kruskal–Wallis test
returned p-values of 0.01, 0.01, and 0.06 for the “Ramp”, “Square Wave”, and “Sinusoid”,
respectively, whereas for the C/average communal TE pair, the test returned p-values of
0.02, 0.02, and 0.01 for the “Ramp”, “Square Wave”, and “Sinusoid”, respectively.

The analysis conducted on the rms of the EMG signals did not report statistically
significant differences in the amplitude of the signal for all the participants, for the same
experimental conditions. Figure 9 shows the boxplot of the computed indices for the
10 volunteers.

Finally, results about the mean and standard deviations of the subjective questionnaire
administered to the 10 healthy volunteers are shown in Table 5.
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Table 5. Mean and standard deviation of the subjective questionnaire given to the 10 volunteers.

Question Mean ± Standard Deviation

Q1 4.20 ± 0.63
Q2 5.00 ± 0.00
Q3 4.10 ± 0.74
Q4 3.80 ± 0.79
Q5 4.80 ± 0.42
Q6 4.90 ± 0.31

Figure 8. Boxplot of the average communal P and average communal TE for the three waveforms
at each level of complexity. The central line is the median of the scores of the 10 volunteers in
each one-minute repetition for every level of complexity, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the most extreme data points not considered outliers.

Figure 9. Root mean-square level (rms) of EMG signals for each volunteer (V). Fbeg and Fend are the
indices computed on flexor digitorum superficialis (in magenta), and Ebeg and Eend were computed
on extensor digitorum communis (in light blue), at the beginning and the end of the trial, respectively.
The middle line is the median of four trials in the same experimental conditions, the edges of the
box are the 25th and 75th percentiles, and the whiskers extend to the most extreme data points not
considered outliers.
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3.2.2. Hemiparetic Patient

To assess the grip force control and modulation capability of the patient, the normal-
ized RMSE, the P, and the PP were calculated for each exercise. In particular, the RMSE
was normalized with respect to the maximum force applied by the patient in each session.

To evaluate the improvement of the patient in grip force control, results were compared
between the two assessment sessions (i.e., before and after the robot-mediated therapy) by
applying the Wilcoxon signed-rank test, with a 5% significance level.

Figure 10 shows the normalized RMSE, the P, and the PP obtained for each of the three
waveforms, before and after the therapy (T0 and T1, respectively). The three waveforms
are highlighted with different colors.

Figure 10. Normalized RMSE expressed as a percentage of the maximum force, P, and PP of the
patient for each waveform. The middle line is the median computed for the executed repetitions of
each waveform, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the
most extreme data points not considered outliers.

The p-values obtained from the Wilcoxon signed-rank test were p = 0.016, p = 0.922,
and p = 0.031 for RMSE, P, and PP, respectively.

4. Discussion

The results presented in Section 3.1 demonstrated that the force increments produced
by the motors and the motor steps in each trial are “very strongly” positively correlated
in a statistically significant manner. Therefore, the developed control strategy for the
active-assisted modality could drive the motors of the Gloreha Sinfonia system to generate
additional grasping force when they are moved of fixed steps, to assist the participant in
reaching a target force level. The absolute force increments from the resting condition in
the first, second, and third finger were in the order of 2 N, and the total force generated by
the motors ranged from 5 to 7 N for the three volunteers. Given that the masses of the most
common objects used in ADLs are below 1 kg, which translates to ∼10 N, the generation of
a force in the order of about 2 N per finger is enough for grasping most of the objects used
in ADLs [39,40].

The maximum grip forces exerted by the volunteers in the VR game were below 5 N
(see Table 3). These forces were not particularly demanding to be reached, and matched the
range of forces typically used in ADLs (i.e., around 10 N [39,40]). In addition, the maximum
duration for which the maximum grip force should be maintained among all the proposed
exercises is less than 3 s, and this occurred in the “Square Wave” exercise, level 1.

As highlighted in Table 4, the “moderate” negative correlation between average total
P and OW showed that the performance decreased when the perceived OW of the task
was higher. The “weak” positive correlation between average total TE and OW supported
the previous result. The "moderate" positive correlation between maximum grip force and
average total P could imply that when the maximum grip force recorded for each volunteer
was higher, the performance also increased. This suggests that regulating the force within a
wider range could be easier for the participants, resulting in better performance. Similarly,
the “moderate” negative correlation between maximum grip force and normalized average
total TE supported the previous assumption. In fact, lower tracking errors were recorded if
the maximum grip force was higher, and this suggested that scaling the force in a wider
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range could be simpler, also considering the fact that only healthy volunteers, who did
not report any problem in exerting high grip forces, were tested. Moreover, the "weak"
positive correlation between the maximum grip force and average total PP suggested that
the capability of reaching and holding discrete force levels did increase when the measured
maximum grip force was higher, accordingly to the easiness of regulating the force in a
wider range.

The relationship between the average communal P and average communal TE scores
for the different levels of complexity is presented in Figure 8. The average communal
P scores tended to decrease as the level of complexity increased. This is evident for the
“Square Wave” exercise, whereas for “Ramp”, the performance decreased between level
1 and 2 ,and increased again between level 2 and 3. For the “Sinusoid”, there is no visible
decreasing trend of performance. However, these differences for the "Sinusoid" were not
statistically significant. As expected, in the developed exercises, the increasing complexity
of the levels caused diminution of the performance for the “Square Wave” exercise, and
partially for the “Ramp” exercise. It is worth highlighting that P, as a PI, considers only the
number of collected objects with respect to the total number of objects in the scene. This
entails that objects could be collected even though the target force pattern is not followed,
and the avatar of the game is moved randomly. Therefore, besides the P, more precise PI
should be always analyzed to provide exact information about the difference between the
target and executed force pattern as a continuous signal over time. These indicators are
the TE and RMSE. In fact, the same type of analysis performed on the average communal
TE showed a general increasing trend of the TE with the level of complexity, for the three
exercises. The differences in the scores between the levels of complexity were statistically
significant for all the exercises. This result strengthens the hypothesis that an increasing
level of complexity entails higher tracking errors for all the volunteers. Therefore, the
design choice of increasing the complexity of the task based on translation speed (for the
“Ramp” and “Square Wave”) and frequency (for the “Sinusoid”) was a correct way of
defining exercises and difficulty levels.

The high standard deviations obtained for average total TE, reported in Table 3, could
be explained by the fact that the difficulty is different among the levels and increases with
an increasing level of complexity; this entails an increase in TE, as also confirmed by the
results obtained for average communal P.

The analysis conducted on the EMG amplitude for each participant implied that there
is no evidence that the onset of muscular fatigue altered the performance of the volunteers.
This aspect was also confirmed by the conducted statistical analysis.

In general, all the volunteers assigned high scores in the subjective questionnaire. All
the participants rated with high scores the level of intuitiveness of the VR game and the
responsiveness of the environment. The first question received a score of 3 from volunteer 3,
who also reported that one hour of the experiment was particularly demanding. However,
this trial lasted one hour to test all the proposed exercises, but patients are not required to
execute all of them. They only perform the exercises with the waveform, level of complexity,
and percentage of maximum grip force to be reached that are most appropriate for their
conditions. Nevertheless, patients could perform the complete trial by including pauses
between the exercises, and the monitoring of muscular fatigue onset could be used to
modify the percentage of maximum force to be reached to prevent overexertion. The level
of involvement was rated with an average score of 4.1/5 for the volunteers; therefore, the
participants maintained high their attention throughout the trial. Q4, related to the level
of comfort of the glove, received the lowest cumulative score (3.8/5 on average) from the
participants. Anyhow, the integration of the force sensing resistors on the device was stable,
and the participants only reported a bit of discomfort because they had to wear the device
for about one hour.

The results obtained for the hemiparetic patient allowed quantifying the improvements
in grip force control and modulation capability after robot-mediated therapy. The improve-
ments were in agreement with the functional scales (i.e., Fugl–Meyer Assessment—Upper
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Extremity) administered to the patients [35]. In particular, the RMSE significantly decreased
(p = 0.016) and the PP significantly increased (p = 0.031) between the two evaluation
sessions. The RMSE allowed quantifying improvements in the modulation of grip force
control, whereas the PP allowed quantifying the amelioration of the capability of reaching
and holding discrete force levels and the force stabilization. On the other hand, results
on the P were not statistically significant. In fact, as previously highlighted, P considers
only the number of collected objects, whereas the RMSE provides more precise information
about the tracking error executed during the whole trial. These results suggest that the TE
and the RMSE are the most reliable indicators to be considered for quantifying the users’
performance. In addition, the young patient reported enjoying the VR game and feeling
engaged during the assessment session.

5. Conclusions

This paper described the development and validation of a system for the assessment
and recovery of grip force control. A commercial exoskeleton for hand rehabilitation was
instrumented to sense the grip force exerted by the fingers when grasping real objects. VR
games for the training and assessment of grip force control were developed and tested on
healthy volunteers and a hemiparetic patient. A force-based, active-assisted modality was
also proposed and preliminarily validated on healthy subjects.

The preliminary tests of the active-assisted modality showed that the motors could gen-
erate force increments in an order of magnitude which allows grasping and manipulating
objects used in ADLs. This preliminary validation proves the feasibility of implementing
an active-assisted training in force with Gloreha Sinfonia and paves the way for a further
refinement of this modality. Additional tests will be conducted on healthy subjects and
patients in future works.

The VR game proved to be intuitive and engaged the volunteers during the training
session. The experimental validation allowed verifying whether the proposed PIs were able
to quantitatively assess the performance of the user during the treatment. The choice of
increasing the level of complexity of the VR games by increasing the speed and frequency of
the waveforms proved to be successful. Therefore, different complexities could be selected
when administering the exercises to patients, according to their conditions.

Future works will be devoted to refining the active-assisted training modality. To
evaluate the clinical utility of the proposed grip force training system, additional tests on
patients will be conducted in the future. In addition, the aspects related to force synergies
theory and motor control strategies in grasping tasks will be further investigated.
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1. Kurillo, G.; Gregorič, M.; Goljar, N.; Bajd, T. Grip force tracking system for assessment and rehabilitation of hand function.

Technol. Health Care 2005, 13, 137–149. [CrossRef] [PubMed]
2. Nowak, D.A.; Grefkes, C.; Dafotakis, M.; Küst, J.; Karbe, H.; Fink, G.R. Dexterity is impaired at both hands following unilateral

subcortical middle cerebral artery stroke. Eur. J. Neurosci. 2007, 25, 3173–3184. [CrossRef] [PubMed]
3. Borboni, A.; Mor, M.; Faglia, R. Gloreha—Hand robotic rehabilitation: Design, mechanical model, and experiments. J. Dyn. Syst.

Meas. Control 2016, 138, 111003. [CrossRef]
4. Clark, W.E.; Sivan, M.; O’Connor, R.J. Evaluating the use of robotic and virtual reality rehabilitation technologies to improve

function in stroke survivors: A narrative review. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319863557. [CrossRef] [PubMed]
5. Micera, S.; Carrozza, M.C.; Guglielmelli, E.; Cappiello, G.; Zaccone, F.; Freschi, C.; Colombo, R.; Mazzone, A.; Delconte, C.;

Pisano, F.; et al. A simple robotic system for neurorehabilitation. Auton. Robot. 2005, 19, 271. [CrossRef]
6. Tamantini, C.; Cordella, F.; Lauretti, C.; di Luzio, F.S.; Bravi, M.; Bressi, F.; Draicchio, F.; Sterzi, S.; Zollo, L. Patient-tailored

Adaptive Control for Robot-aided Orthopaedic Rehabilitation. In Proceedings of the 2022 International Conference on Robotics
and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5434–5440.

7. Tamantini, C.; Lapresa, M.; Cordella, F.; Scotto di Luzio, F.; Lauretti, C.; Zollo, L. A Robot-Aided Rehabilitation Platform for
Occupational Therapy with Real Objects. In Proceedings of the International Conference on NeuroRehabilitation, Online,
13–16 October 2020; pp. 851–855.

8. Mubin, O.; Alnajjar, F.; Jishtu, N.; Alsinglawi, B.; Al Mahmud, A. Exoskeletons with virtual reality, augmented reality, and
gamification for stroke patients’ rehabilitation: Systematic review. JMIR Rehabil. Assist. Technol. 2019, 6, e12010. [CrossRef]

9. Kim, W.S.; Cho, S.; Ku, J.; Kim, Y.; Lee, K.; Hwang, H.J.; Paik, N.J. Clinical application of virtual reality for upper limb motor
rehabilitation in stroke: Review of technologies and clinical evidence. J. Clin. Med. 2020, 9, 3369. [CrossRef]

10. De Pasquale, G.; Mastrototaro, L.; Pia, L.; Burin, D. Wearable system with embedded force sensors for neurologic rehabilitation
trainings. In Proceedings of the 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Rome,
Italy, 22–25 May 2018; pp. 1–4.

11. Kurillo, G.; Zupan, A.; Bajd, T. Force tracking system for the assessment of grip force control in patients with neuromuscular
diseases. Clin. Biomech. 2004, 19, 1014–1021. [CrossRef]

12. McPhee, S.D. Functional hand evaluations: A review. Am. J. Occup. Ther. 1987, 41, 158–163. [CrossRef]
13. Marx, R.G.; Bombardier, C.; Wright, J.G. What do we know about the reliability and validity of physical examination tests used to

examine the upper extremity? J. Hand Surg. 1999, 24, 185–193. [CrossRef]
14. Naik, S.K.; Patten, C.; Lodha, N.; Coombes, S.A.; Cauraugh, J.H. Force control deficits in chronic stroke: Grip formation and

release phases. Exp. Brain Res. 2011, 211, 1–15. [CrossRef]
15. Lindberg, P.G.; Roche, N.; Robertson, J.; Roby-Brami, A.; Bussel, B.; Maier, M.A. Affected and unaffected quantitative aspects of

grip force control in hemiparetic patients after stroke. Brain Res. 2012, 1452, 96–107. [CrossRef]
16. Oña, E.D.; Garcia-Haro, J.M.; Jardón, A.; Balaguer, C. Robotics in health care: Perspectives of robot-aided interventions in clinical

practice for rehabilitation of upper limbs. Appl. Sci. 2019, 9, 2586. [CrossRef]
17. Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb

rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [CrossRef]
18. Brackenridge, J.; VBradnam, L.; Lennon, S.; JCosti, J.; AHobbs, D. A review of rehabilitation devices to promote upper limb

function following stroke. Neurosci. Biomed. Eng. 2016, 4, 25–42. [CrossRef]
19. Oña, E.D.; Cano-de La Cuerda, R.; Sánchez-Herrera, P.; Balaguer, C.; Jardón, A. A review of robotics in neurorehabilitation:

Towards an automated process for upper limb. J. Healthc. Eng. 2018, 2018, 9758939. [CrossRef]
20. Stein, J.; Bishop, L.; Gillen, G.; Helbok, R. A pilot study of robotic-assisted exercise for hand weakness after stroke. In Proceedings

of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–4.
21. Lambercy, O.; Dovat, L.; Yun, H.; Wee, S.K.; Kuah, C.W.; Chua, K.S.; Gassert, R.; Milner, T.E.; Teo, C.L.; Burdet, E. Effects of a

robot-assisted training of grasp and pronation/supination in chronic stroke: A pilot study. J. Neuroeng. Rehabil. 2011, 8, 1–12.
[CrossRef]

22. Dovat, L.; Lambercy, O.; Salman, B.; Johnson, V.; Milner, T.; Gassert, R.; Burdet, E.; Leong, T.C. A technique to train finger
coordination and independence after stroke. Disabil. Rehabil. Assist. Technol. 2010, 5, 279–287. [CrossRef]

23. Lee, B.J.; Williams, A.; Ben-Tzvi, P. Intelligent object grasping with sensor fusion for rehabilitation and assistive applications.
IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1556–1565. [CrossRef]

24. Triolo, E.R.; Stella, M.H.; BuSha, B.F. A force augmenting exoskeleton for the human hand designed for pinching and grasping. In
Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Honolulu, HI, USA, 18–21 July 2018; pp. 1875–1878.

25. Villafañe, J.H.; Taveggia, G.; Galeri, S.; Bissolotti, L.; Mullè, C.; Imperio, G.; Valdes, K.; Borboni, A.; Negrini, S. Efficacy of
short-term robot-assisted rehabilitation in patients with hand paralysis after stroke: A randomized clinical trial. Hand 2018,
13, 95–102. [CrossRef]

26. Giovanelli, D.; Farella, E. Force sensing resistor and evaluation of technology for wearable body pressure sensing. J. Sens. 2016,
2016, 9391850. [CrossRef]

http://doi.org/10.3233/THC-2005-13301
http://www.ncbi.nlm.nih.gov/pubmed/15990417
http://dx.doi.org/10.1111/j.1460-9568.2007.05551.x
http://www.ncbi.nlm.nih.gov/pubmed/17561831
http://dx.doi.org/10.1115/1.4033831
http://dx.doi.org/10.1177/2055668319863557
http://www.ncbi.nlm.nih.gov/pubmed/31763052
http://dx.doi.org/10.1007/s10514-005-4749-0
http://dx.doi.org/10.2196/12010
http://dx.doi.org/10.3390/jcm9103369
http://dx.doi.org/10.1016/j.clinbiomech.2004.07.003
http://dx.doi.org/10.5014/ajot.41.3.158
http://dx.doi.org/10.1053/jhsu.1999.jhsu24a0185
http://dx.doi.org/10.1007/s00221-011-2637-8
http://dx.doi.org/10.1016/j.brainres.2012.03.007
http://dx.doi.org/10.3390/app9132586
http://dx.doi.org/10.1186/1743-0003-11-3
http://dx.doi.org/10.2174/2213385204666160303220102
http://dx.doi.org/10.1155/2018/9758939
http://dx.doi.org/10.1186/1743-0003-8-63
http://dx.doi.org/10.3109/17483101003719037
http://dx.doi.org/10.1109/TNSRE.2018.2848549
http://dx.doi.org/10.1177/1558944717692096
http://dx.doi.org/10.1155/2016/9391850


Bioengineering 2023, 10, 63 20 of 20

27. Starke, J.; Chatzilygeroudis, K.; Billard, A.; Asfour, T. On force synergies in human grasping behavior. In Proceedings of the
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, ON, Canada, 15–17 October 2019;
pp. 72–78.

28. Kuo, L.C.; Chen, S.W.; Lin, C.J.; Lin, W.J.; Lin, S.C.; Su, F.C. The force synergy of human digits in static and dynamic cylindrical
grasps. PLoS ONE 2013, 8, e60509. [CrossRef] [PubMed]

29. Romeo, R.A.; Lauretti, C.; Gentile, C.; Guglielmelli, E.; Zollo, L. Method for automatic slippage detection with tactile sensors
embedded in prosthetic hands. IEEE Trans. Med. Robot. Bionics 2021, 3, 485–497. [CrossRef]

30. Seo, N.J.; Armstrong, T.J. Investigation of grip force, normal force, contact area, hand size, and handle size for cylindrical handles.
Hum. Factors 2008, 50, 734–744. [CrossRef]

31. Slifkin, A.B.; Vaillancourt, D.E.; Newell, K.M. Intermittency in the control of continuous force production. J. Neurophysiol. 2000,
84, 1708–1718. [CrossRef]

32. Jarque-Bou, N.J.; Sancho-Bru, J.L.; Vergara, M. A Systematic Review of EMG Applications for the Characterization of Forearm and
Hand Muscle Activity during Activities of Daily Living: Results, Challenges, and Open Issues. Sensors 2021, 21, 3035. [CrossRef]

33. Lauretti, C.; Cordella, F.; di Luzio, F.S.; Saccucci, S.; Davalli, A.; Sacchetti, R.; Zollo, L. Comparative performance analysis of
M-IMU/EMG and voice user interfaces for assistive robots. In Proceedings of the 2017 International Conference on Rehabilitation
Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1001–1006.

34. Hart, S.G. NASA Task load Index (TLX); Paper and Pencil Package; NASA Ames Research Center: Mountain View, CA, USA, 1986;
Volume 1.

35. Bressi, F.; Santacaterina, F.; Cricenti, L.; Campagnola, B.; Nasto, F.; Assenza, C.; Morelli, D.; Cordella, F.; Lapresa, M.; Zollo, L.;
et al. Robotic-Assisted Hand Therapy with Gloreha Sinfonia for the Improvement of Hand Function after Pediatric Stroke: A
Case Report. Appl. Sci. 2022, 12, 4206. [CrossRef]

36. Lauretti, C.; Cordella, F.; Tamantini, C.; Gentile, C.; di Luzio, F.S.; Zollo, L. A surgeon-robot shared control for ergonomic pedicle
screw fixation. IEEE Robot. Autom. Lett. 2020, 5, 2554–2561. [CrossRef]

37. Arjunan, S.P.; Kumar, D.K.; Naik, G. Computation and evaluation of features of surface electromyogram to identify the force of
muscle contraction and muscle fatigue. BioMed Res. Int. 2014, 2014, 197960. [CrossRef]

38. Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences; Houghton Mifflin College Division: Boston, MA,
USA, 2003; Volume 663.

39. Matheus, K.; Dollar, A.M. Benchmarking grasping and manipulation: Properties of the objects of daily living. In Proceedings of
the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 5020–5027.

40. Low, J.H.; Ang, M.H.; Yeow, C.H. Customizable soft pneumatic finger actuators for hand orthotic and prosthetic applications.
In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015;
pp. 380–385.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0060509
http://www.ncbi.nlm.nih.gov/pubmed/23544151
http://dx.doi.org/10.1109/TMRB.2021.3060032
http://dx.doi.org/10.1518/001872008X354192
http://dx.doi.org/10.1152/jn.2000.84.4.1708
http://dx.doi.org/10.3390/s21093035
http://dx.doi.org/10.3390/app12094206
http://dx.doi.org/10.1109/LRA.2020.2972892
http://dx.doi.org/10.1155/2014/197960

	Introduction
	Materials and Methods
	The Instrumented Hand Exoskeleton
	Operation Mode I: Active-Assisted Training
	Operation Mode II: Virtual Reality Game for Training and Evaluation
	Experimental Validation
	Operation Mode I: Active-Assisted Training
	Operation Mode II: Virtual Reality Game
	Performance Indices
	Statistical Analysis


	Results
	Operation Mode I: Active-Assisted Training
	Operation Mode II: Virtual Reality Game
	Experimental Tests on Healthy Volunteers
	Hemiparetic Patient


	Discussion
	Conclusions
	References

