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Abstract: The reconstruction of visual stimuli from fMRI signals, which record brain activity, is a
challenging task with crucial research value in the fields of neuroscience and machine learning. Previous
studies tend to emphasize reconstructing pixel-level features (contours, colors, etc.) or semantic features
(object category) of the stimulus image, but typically, these properties are not reconstructed together.
In this context, we introduce a novel three-stage visual reconstruction approach called the Dual-
guided Brain Diffusion Model (DBDM). Initially, we employ the Very Deep Variational Autoencoder
(VDVAE) to reconstruct a coarse image from fMRI data, capturing the underlying details of the
original image. Subsequently, the Bootstrapping Language-Image Pre-training (BLIP) model is
utilized to provide a semantic annotation for each image. Finally, the image-to-image generation
pipeline of the Versatile Diffusion (VD) model is utilized to recover natural images from the fMRI
patterns guided by both visual and semantic information. The experimental results demonstrate
that DBDM surpasses previous approaches in both qualitative and quantitative comparisons. In
particular, the best performance is achieved by DBDM in reconstructing the semantic details of the
original image; the Inception, CLIP and SwAV distances are 0.611, 0.225 and 0.405, respectively. This
confirms the efficacy of our model and its potential to advance visual decoding research.

Keywords: visual reconstruction; diffusion model; brain decoding; fMRI

1. Introduction

Mind reading has been a captivating concept often depicted in movies, and recent
advancements in deep learning technology have brought us closer to the possibility of
interpreting brain activity. The human visual system, as a critical organ for perceiving
external information, has been a central focus of neuroscience research, particularly in
functional studies. The investigation of brain vision can be broadly categorized into
two distinct tasks: visual encoding and visual decoding. Visual encoding involves the
transformation of external visual stimuli into neural activity signals in the brain, which
aids in understanding the brain’s mechanisms of encoding visual information and also
contributes to the advancement of machine vision research. On the other hand, visual
decoding aims to extract characteristic information of visual stimuli from collected brain
activity signals, such as location, direction, and stimulus category [1–4]. Visual decoding can
further be classified into three sub-tasks: classification, recognition, and reconstruction [5].
Among these, visual reconstruction poses the most challenging problem, requiring the
retrieval of all the information of the visual stimulus from brain activity. This task becomes
particularly difficult due to the complexity of brain signal characterization and the inherent
limitations of functional magnetic resonance imaging (fMRI) [6], such as its low signal-to-
noise ratio, high dimensionality, and limited sample size, making the reconstruction of
natural images perceived by the human brain an extremely challenging endeavor.

In the early stages, traditional visual image reconstruction methods predominantly
relied on hand-made features [7] and regression models [8,9] to reconstruct simple ge-
ometries from fMRI signals [10–12]. Although these early explorations demonstrated the
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feasibility of decoding perceptual image semantic information from brain signals, the
limitations of linear methods became apparent, resulting in reconstructions that were fuzzy
and even lacking in meaningful content. The advent of deep learning methods, especially
the emergence of advanced deep generative models, has revolutionized the field of visual
decoding. Several studies have leveraged the powerful generative capabilities of large
pre-trained networks, such as GAN [13,14], VAE [15,16], and diffusion models [17–20] to
enhance the quality of reconstructed images, yielding impressive results. These models
often involve mapping fMRI voxels to image feature spaces and fine-tuning pre-trained
generative models to generate images based on predicted features. As a result, more
complex visual stimulus reconstructions, including faces [21,22] and natural images [23]
and complex scenes [24,25] have been successfully explored. Reconstruction methods for
natural images can be broadly classified into two categories. The first category empha-
sizes achieving pixel-level similarity with the original image. For example, Shen et al. [26]
integrated a deep generative network with a deep neural network (DNN) to optimize
the pixel values of the input image using the DNN’s feature loss to generate a realistic
reconstruction. Beliy et al. [27] constructed an encoding–decoding network based on a
convolutional neural network (CNN), which was jointly trained on unpaired data to ad-
dress the problem of scarcity in {fMRI image} samples. Gaziv et al. [28] further improved
reconstruction quality by introducing perceptual loss for image reconstruction, building
upon the work of Beliy et al. [27]. Ren et al. [29] proposed a dual VAE-GAN model and a
three-stage learning strategy that combined adversarial learning and knowledge distillation.
The second category of reconstruction methods aims to generate reconstructions that are
semantically close to the stimulus image. Mozafari et al. [13] proposed the first semantic-
related reconstruction model using BigBiGAN [30]. Ozcelik et al. [31] further advanced this
approach by reconstructing images with accurate semantics from fMRI using Instance Con-
dition GAN. Ferrante et al. [19] employed a latent diffusion model guided by text semantics
to recover images that were perceptually similar to visual stimuli.

Although the above methods have achieved significant progress in visual reconstruc-
tion, they all suffer from certain limitations. For the approaches that focus on pixel-level
similarity, their reconstructed images tend to be blurry and hardly identifiable. While
those approaches emphasize generating semantically meaningful images, the obtained
reconstructions often lack semantic consistency with the objects in the original images.
Therefore, achieving the perfect reconstruction of visual stimuli remains to be explored
continuously. Recent advancements in image generation models, notably the diffusion
model, have demonstrated the capability to reconstruct intricate images with high resolu-
tion. Based on the above analysis, we propose a novel visual reconstruction framework,
termed the Dual-guided Brain Diffusion Model (DBDM), which aims to reconstruct images
with the original image’s semantic content and underlying features from brain activity. The
DBDM model utilizes a Versatile Diffuser (VD) [32] with powerful generative capabilities,
conditioning the image generation on both visual and semantic features from Contrastive
Language–Image Pre-Training (CLIP) [33]. Specifically, we first utilize the Very Deep VAE
(VDVAE) [34] to obtain a rough image representation of the visual stimulus. Subsequently,
we employ the Bootstrapping Language–Image Pre-training (BLIP) [35] model to generate
text descriptions for all training images in the fMRI dataset. Considering the complexity of
characterizing brain signals, we design a deep neural network with residual connections
(BrainMlp) as the neural decoder for the accurate estimation of visual and semantic features
from fMRI data. Finally, the image-to-image pipeline in the pre-trained versatile diffusion
model is utilized to accurately reconstruct perceptual images guided by the predicted
visual and textual features and using the initial guess images generated in the first stage as
input. Our contributions are summarized as follows:

• We introduce the Dual-guided Brain Diffusion Model (DBDM), which leverages the
powerful generative capabilities of VD to reconstruct brain-perceived images that are
semantically consistent with real images while retaining precise details, guided by
both visual and semantic features;
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• We generate text descriptions for each training image using BLIP to introduce semantic
content. Additionally, we design the BrainMlp model with residual connections to
learn the mapping of fMRI data to CLIP-extracted visual and semantic features,
employing the well-trained model to predict the corresponding feature vectors from
test fMRI data. Subsequently, we use the predicted visual and semantic features
to modulate the inverse diffusion process of VD, providing sufficient guidance for
reconstructing images similar to the original stimulus;

• We conduct comprehensive experiments on a publicly available dataset to evaluate
the effectiveness of our proposed method. The experimental results demonstrate that
DBDM achieves advanced results in both qualitative and quantitative comparisons
with existing methods, enabling the reconstruction of high-resolution and high-fidelity
images from fMRI signals.

2. Materials and Methods

This section presents an overview of the three phases of the Dual-guided Brain Diffu-
sion Model (DBDM) and provides details regarding the dataset used in this study. The raw
fMRI data used in the experiments are publicly available at https://openneuro.org/datase
ts/ds001246/ (accessed on 7 October 2022). The experiments were conducted on a server
equipped with an NVIDIA 3090 GPU and 4 TB of RAM.

2.1. Dataset

For this study, we utilized the widely used Generic Object Decoding (GOD) dataset [11],
which serves as a benchmark dataset for visual decoding research and stimulus recon-
struction. The GOD dataset comprises fMRI recordings from 5 subjects during image
presentation and imaging trials. All stimulus images presented in the dataset were ran-
domly selected from the ImageNet database. The training set of the image presentation
experiment consisted of 150 categories with 8 images per category, resulting in a total of
1200 stimulus images. Additionally, 50 images of different classes were chosen to form the
test set. It is important to emphasize that the categories of the test set images do not overlap
with those in the training set. During the image presentation experiments, two different
acquisition schemes were employed: for the training data, each of the 1200 images was
presented once, whereas for the test data, each of the 50 images was presented 35 times,
with each stimulus image being presented for 9 seconds. To ensure subjects’ attention was
focused on the presented images, they were asked to press a button when they saw two
identical images. Moreover, the dataset includes masks for different regions of interest
(ROI) to facilitate further analysis.

2.2. Overview

We use {X, Y} to represent the {fMRI, Image} sample pairs. The training and test images
are denoted by Ytrain and Ytest, respectively, and the fMRI training and test samples are
denoted by Xtrain and Xtest, respectively. The reconstruction framework we propose is
shown in Figure 1, which consists of three different stages: the initial guessing stage, the
image caption generation stage, and the image reconstruction stage.

Initial guessing stage. First, Ytrain was fed into the encoder of VDVAE to extract the
latent variables at different levels and connect them into a one-dimensional feature vector
ztrain. The BrainMlp model was then trained using { Xtrain, ztrain} to learn the fMRI-to-
latent-vector transformation, and the well-trained model was used to predict the latent
vector ztest based on Xtest. Finally, ztest was fed into the VDVAE decoder component to
obtain the initial guess Ŷinit of the perceived image Ytest.

Image caption generation stage. We used the image caption generation pipeline in
the BLIP pre-trained model provided by Li et al. [35] to generate text descriptions for the
training images. Specifically, Ytrain was fed into the BLIP decoder to obtain the image
caption Ycaption with its visual encoding and text decoding modules.

https://openneuro.org/datasets/ds001246/
https://openneuro.org/datasets/ds001246/
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Figure 1. The overall reconstruction framework, which consists of three distinct stages.

Image reconstruction stage. We utilized the CLIP model trained on large-scale image-
text paired data to extract the visual and textual features of the training images. As illustrated
in Figure 1, stage III, the visual features cvision were obtained by feeding the training image
Ytrain into the CLIP image encoder, and the semantic features ctest were extracted by feeding
the image caption Ycaption into the CLIP text encoder. We constructed two different BrainMlp
models to learn the mapping of Xtrain to cvision and ctest, respectively, and then used the
well-trained models to predict the corresponding ĉvision and ĉtest based on the fMRI test
pattern Xtest. In the generation stage, we took the initial guess image Ŷinit generated by
VDVAE as the input of the VD image-to-image pipeline to obtain the latent vector through
the AutoKL encoder and then performed a diffusion process on this latent vector. The
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resulting latent noise vector was employed as the initial noise of the reverse diffusion
process, and the ĉvision and ĉtest obtained above were used as conditional guidance. Finally,
the obtained denoised vector was used as the input of the AutoKL decoder to generate the
final reconstruction Ŷtest.

2.3. Stage I: Obtain the Initial Guess Using VDVAE

VAE is actually a variant of Autoencoder (AE), and the motivation for its use is to
transform AE into a generative model. In VAE, we need to model the true distribution
p(x) of the data in order to generate new samples. VAE avoids the challenge of directly
modeling p(x) and instead constructs a transformation from the prior distribution p(z)
of a given hidden variable to the distribution p(x) of the real data. For this, we can
model p(x | z) with a decoder. When the model is well-trained, a new sample can be
generated by sampling on the prior Gaussian distribution p(z) and then entering the result
into the decoder. Although VAE is theoretically capable of modeling any complex data
distribution, it is practically impossible to characterize p(x) perfectly due to computational
constraints and optimization difficulties. In particular, when the input data have a complex
distribution, latent variables with more complex distributions are required; thus, a simple
VAE is not enough. In order to alleviate this problem, hierarchical VAE (HAVE) has been
proposed to increase the expression ability of the approximate posterior distribution and
prior distribution. Its hierarchical dependencies are shown in the following formula.

pθ(z) = pθ(z1)
L

∏
i=2

pθ(zi | z<i) (1)

qφ(z | x) = qφ(z1 | x)
L

∏
i=2

qφ(zi | x, z<i) (2)

pθ(x | z) = pθ(x | zL)pθ(z) = pθ(x | zL)pθ(z1)
L

∏
i=2

pθ(zi | z<i) (3)

where z = (z1, z2, . . . , zL) denotes the latent vectors, which have different dimension sizes;
e.g., z1 has a lower dimension (corresponding to the top feature map of the network), and
zL has a higher dimension (corresponding to the bottom feature map of the network). x is
the input variable, q(z | x) denotes the approximate posterior distribution learned by the
encoder, and p(z) denotes the prior distribution.

In this research, we employed the Very Deep Variational Autoencoder (VDVAE) [34],
which consists of 75 layers and was pretrained on the ImageNet dataset [36] with image
sizes scaled to 64× 64, as the generative model for initial image estimation. The VDVAE
utilizes a hierarchical VAE architecture and addresses the issues of instability and high
computational cost in HVAE training. For the purpose of initial image estimation, we
utilized the hidden variables of the first 31 layers as the encoding features for the image,
as these latent variables are considered sufficient to adequately encode complex natural
images. As illustrated in Figure 1, Stage I, the fMRI training set images were fed into the
encoder of VDVAE to extract latent vectors from various layers. Given that the latent vectors
from different layers have distinct dimensional sizes, we combined the latent vectors of
the first 31 layers to create a 91168-dimensional feature vector. Subsequently, we utilized
the BrainMlp model to learn the mapping of fMRI voxels to their corresponding feature
vectors. During the inference phase, the test fMRI samples were inputted into the trained
BrainMlp to predict the feature vectors corresponding to the stimulus images, and the
predicted vectors were reshaped into latent variables of different layers of VDVAE. These
reshaped latent variables were then fed into the decoder of VDVAE to obtain the initial
reconstructed images.
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2.4. Stage II: Generate Text Description Using BLIP

In the realm of human life, textual descriptions are commonly employed to convey
visual information, serving as a significant complement to image features. Hence, the
incorporation of textual descriptions of images within the reconstruction framework proves
beneficial in enhancing the quality of the reconstructions. Moreover, recent research has
demonstrated that large language models exhibit a certain correlation with brain activ-
ity signals, rendering them suitable for neural decoding tasks [37]. However, the visual
stimuli used in the Generic Object Decoding (GOD) dataset are derived from ImageNet
and lack corresponding textual descriptions. To address this, we employed the state-of-
the-art (SOTA) Vision and Language Pre-training (VLP) model known as BLIP to generate
captions for the training images, as depicted in Figure 1, Stage II. The BLIP model inte-
grates visual–language understanding and generation tasks, achieving SOTA performance
in image caption generation through the utilization of the MED structure and CapFilt
data augmentation approach. The BLIP model employs a visual transformer [38] as its
image encoder, encoding the input image into embedding sequences. Subsequently, it
generates a corresponding text description based on these embeddings via a text decoder.
The generated image captions are employed in the subsequent stage to extract seman-
tic features, thereby guiding the diffusion model in generating reconstructions that are
semantically meaningful.

2.5. Stage III: Image Reconstruction

As illustrated in Figure 1, Stage III, the initial image reconstructed by VDVAE captures
the layout information of the original image but may lack high-level characteristics, leading
to challenges in recognizing the image content. To refine the results further and obtain
a final reconstruction, we utilized the recently proposed Latent Diffusion Model (LDM).
The LDM effectively guides the inverse diffusion process through visual and semantic
representations, resulting in high-quality reconstructions with semantic consistency and
faithful low-level details akin to the original image. We took the initial guess of the brain-
perceived image obtained in Stage I as input to the Versatile Diffuser (VD) image-to-image
pipeline, encoding it as latent variables. Subsequently, by progressively introducing noise
to the latent variables, we obtained the latent noise vector, which served as the initial noise
for the VD. This approach enables the constraint of the position and shape of objects in the
generated image, promoting greater consistency with the stimulus image while ensuring
high-quality reconstruction.

Incorporating visual and semantic guidance, we employed the visual encoder and text
encoder within the pre-trained CLIP model to extract CLIP visual features and CLIP text
features of the stimulus images, respectively. Two BrainMlp decoders were then trained: a
visual decoder and a semantic decoder, which were responsible for learning the mapping
of fMRI voxels to CLIP visual features and CLIP semantic features, respectively. During
the inference phase, the initial noise was utilized as input, guiding the denoising process of
the diffusion network based on the CLIP visual and CLIP semantic features predicted by
the decoders. Finally, the latent denoising vector was fed into the Autoencoder’s decoder
to invert it into an image, yielding a high-quality reconstruction.

2.6. Statistical Analysis

In this section, we present a comprehensive overview of the statistical analysis con-
ducted to rigorously assess the performance of our novel visual decoding approach, the
Dual-guided Brain Diffusion Model. While our study does not involve the comparison of
distinct groups, we employed a set of key statistical metrics to quantitatively evaluate the
effectiveness of our method. These metrics encompass:

• Pixel-wise correlation (PixCorr): This metric is used to measure the pixel-level similar-
ity between the reconstructed and original images.

• Structural similarity index measure (SSIM): This provides a metric for the structural
similarity between the reconstructed and original images.
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• Inception distance: This metric evaluates the quality of generated images through
feature space statistics.

• CLIP distance: This metric assesses the consistency between the reconstructed images
and textual descriptions using the CLIP model.

• SwAV distance: This metric quantifies the alignment of image embeddings with
respect to semantic content using SwAV.

To provide a holistic view of our approach, we compared the results obtained using
DBDM with those achieved by the state-of-the-art (SOTA) methods in the field. This
comparative analysis allows us to evaluate the relative performance of DBDM and its
contributions to advancing visual decoding research.

The outcomes of our statistical analysis, in conjunction with the SOTA comparison,
offer valuable insights into the performance of our DBDM model. This comparative
evaluation highlights the strengths and advantages of our approach in relation to existing
methods, reinforcing its potential to advance the state of the art in visual decoding from
fMRI data.

3. Results
3.1. Implementation Details

The Versatile Diffuser (VD) utilized in this study was trained on the Laion2B-en
dataset [39] with the inference step set to 50; the generated image size was set to 512× 512.
The CLIP network architecture employed to extract image visual features and text features
was ViT-L/14, which leverages a substantial amount of image–text data for comparative
learning. The dimension of the visual features extracted by CLIP is 257× 768, while the
text features of the subtitles are 77× 768. Moreover, the intensities of visual and semantic
guidance were set to 0.7 and 0.3, respectively. The pre-training weights of the BLIP model
can be accessed at https://github.com/salesforce/BLIP (accessed on 8 Jun 2023).

BrainMlp, a deep network with residual connections, is composed of fully connected
layers, as depicted in Figure 2. The “linear block” consists of a linear layer, LayerNorm layer,
GELU activation layer, and Dropout layer. During the process of training BrainMlp, the
AdamW optimizer was employed with an initial learning rate of 1× 10−4. The learning rate
is an important hyperparameter; when it is large, the model will find it difficult to converge
to the optimal solution, but when it is small, the model will converge slowly. Experimental
results indicate that our model can converge to the loss function minimum faster when
the initial learning rate is 1× 10−4. In addition, we introduced a cosine annealing learning
rate decay strategy, where the learning rate decreases as the number of iterations increases,
which ensures that the model does not fluctuate dramatically during the training process
and thus is closer to the optimal solution. The batch size was set to 64, and the training
process spanned 240 epochs. The loss function used in the training was a combined loss of
mean squared error and cosine similarity.

Lmlp = α1
1
N

N

∑
i=1
‖zi − ẑi‖2

2 + α2
1
N

N

∑
i=1

cos∠(zi − ẑi) (4)

where N is the number of samples, zi is feature vector, and ẑi is the prediction result of
BrainMlp. We set α1 = 0.9 and α2 = −0.1.
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Figure 2. The structure diagram of BrainMlp.

https://github.com/salesforce/BLIP
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Prior to utilizing the feature vectors (ztest, ĉvision, and ĉtext) predicted by BrainMlp,
a renormalization trick was applied. Specifically, we computed the mean and standard
deviation of the extracted feature sequences from the training images. These statistics
were then employed to replace the mean and standard deviation of the predicted features,
facilitating normalization and thereby bringing the predicted features closer to the true
feature distribution. This renormalization process aims to enhance the accuracy and
reliability of the predicted features, aligning them more effectively with the underlying
feature distribution of the training data.

3.2. Examples of Visual Reconstruction

We present several reconstruction examples of our proposed Dual-guided Brain Dif-
fusion Model (DBDM) in Figure 3. The first row showcases real stimulus images, while
the second row illustrates the reconstructed images using ground-truth cvision and ctext as
conditional guidance, representing the optimal performance achievable by our model. The
subsequent five rows exhibit reconstructions obtained from fMRI recordings of different
subjects. As our method emphasizes reconstructing images that are semantically similar to
the original stimuli, there might be some variations in pixel space. Nevertheless, owing to
the dual guidance of vision and text and the provision of an initial guess image to constrain
the generated image’s randomness, the details of the objects in the original images are
predominantly preserved.

Stimuli

Ceiling

Subject1

Subject2

Subject3

Subject4

Subject5

Stimuli

Ceiling

Subject1

Subject2

Subject3

Subject4

Subject5

Figure 3. Perceptual images reconstructed by DBDM. The first row is the real visual stimulus.
The second row is the ceiling of the model. The remaining rows are the reconstructed results for
different subjects.

For instance, in the fifth column, our method accurately reconstructs images with
the semantic meaning of an airplane, maintaining semantic consistency across all subjects,
which stands as a noteworthy achievement. Although the reconstructed aircraft may exhibit
some variations, their positions and layout within the images remain similar; they are
typically centered in the picture with the sky as the background. Similarly, observations of
the first to fourth columns reveal that when the object in the original image is an animal, all
reconstructions also represent animals. This observation indicates that DBDM effectively
captures high-level semantic information from the stimuli. Furthermore, we notice that
the images reconstructed by DBDM also successfully retain the shape, contour, and other
low-level details of the real image. For example, the shape of the reconstructed image in
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the twelfth column is consistent with the real image (all circular contours) and the texture is
also restored. For the reconstructed image in the eighth column, similar outlines and colors
to the original image are retained. In summary, our proposed method adeptly preserves
low-level details while generating semantically meaningful images. Through the visual
comparisons in Figure 3, we can observe that the reconstructions obtained using the fMRI
signals of subject 3 are more similar to the stimulus images in terms of semantics and
low-level details, thus obtaining the best results.

3.3. Comparison with Other Methods
3.3.1. Visual Comparison

The reconstruction results of our proposed Dual-guided Brain Diffusion Model (DBDM)
were visually compared with those of other advanced methods, as presented in Figure 4. For
a fair and uniform comparison, we carefully selected the reconstructions provided by all the
methods under evaluation. These methods can be categorized into two groups: those empha-
sizing pixel similarity (Shen et al. [26], Beliy et al. [27], Gaziv et al. [28], and Ren et al. [29])
and those focusing on semantic content matching (Ozcelik et al. [31], Mozafari et al. [13],
and Liu et al. [20]).

As evident from Figure 4, the reconstructions produced by our method exhibit su-
perior naturalness and semantic meaningfulness compared to those of Shen et al. [26] ,
Beliy et al. [27], Gaziv et al. [28], and Ren et al. [29]. This distinction can be attributed to the
fact that their approaches primarily concentrate on recovering objects with similar shapes,
colors, and contours as the original images, often leading to blurry reconstructions and
a lack of clear semantics. While Ozcelik et al. [31], Mozafari et al. [13], and Liu et al. [20]
share similar objectives with our method, but by prioritizing the recovery of semantic con-
tent in the stimulus images, our approach achieves better semantic fidelity in reconstructing
the original images and preserves more pixel-level details. For example, our method more
accurately reconstructs an image of a large airplane flying in the sky compared to the meth-
ods of Ozcelik et al. [31], Mozafari et al. [13], and Liu et al. [20], which demonstrates the better
semantic fidelity achieved by DBDM. For the bowling ball in the third row, DBDM more suc-
cessfully reconstructs the spherical object compared to other methods, which simultaneously
demonstrates the superiority of our method in reconstructing low-level features.

Stimuli Ours Ozcelik 

et al.

Ren 

et al.

Beliy

 et al.

Shen

 et al.

Mozafari

 et al.

Gaziv

 et al.

Liu 

et al.
Stimuli Ours Ozcelik 

et al.

Ren 

et al.

Beliy

 et al.

Shen

 et al.

Mozafari

 et al.

Gaziv

 et al.

Liu 

et al.

Figure 4. Visual comparison with different methods (Ozcelik et al. [31], Shen et al. [26], Beliy et
al. [27], Gaziv et al. [28], Mozafari et al. [13], Ren et al. [29] and Liu et al. [20]). The images presented
here were reconstructed using fMRI data of subject 3 because these data have the highest signal-to-
noise ratio.
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3.3.2. Quantitative Comparison

To objectively compare our method with others, we employed five different evaluation
indicators to assess the reconstruction quality, as displayed in Table 1. PixCorr was em-
ployed to measure the linear correlation between the reconstructed image and the original
image in pixel space given two images, X and Y. It is computed as follows:

ρX,Y =
cov(X, Y)

σXσY
(5)

where σX , σY and cov(X, Y) are the standard deviation and covariance of X, Y respectively.
SSIM is utilized to evaluate the structural similarity between images. It can be calculated
using the following formula:

SSIM =
(2µXµY + c1)(2σXY + c2)(

µ2
X + µ2

Y + c1
)(

σ2
X + σ2

Y + c2
) (6)

where µX, µY, and σ2
X, σ2

Y denote the mean and variance of X and Y, respectively. σXY is
the covariance, while c1 and c2 are constants. These two indicators were used to evaluate
the low-level similarity between the reconstructions and the real images. Additionally, to
evaluate semantic correlation in the reconstructed images, we employed three different
networks (Inception-V3 [40], CLIPViT-B/32 [33] visual encoder, and SwAV-ResNet50 [41])
as feature extractors to calculate the distance between images in the feature space. The
formula is as follows:

d = 1− (µ− µ̄) · (ν− ν̄)

‖(µ− µ̄)‖2‖(ν− ν̄)‖2
(7)

where µ and ν represent one-dimensional feature vectors and µ̄, ν̄ represent mean values.
It is important to note that since not all methods reported these indicators, we recalculated
them using the images provided in the respective papers. Furthermore, as different methods
reconstruct the images in varying sizes, we scaled them to a uniform size during the
indicator calculations. All metrics in Table 1 were calculated based on the reconstructed
images of subject 3, as some authors only reported reconstructions for this specific subject.

As shown in Table 1, Ren et al.’s [29] method achieves the best performance on PixCorr
due to the better preservation of color and texture in the original images. Gaziv et al.’s [28]
method, with clearer outlines in their reconstructions, obtains the best results on the
SSIM metrics. As our approach emphasizes reconstruction matching the semantic con-
tent of the perceptual image, it may lag behind approaches that emphasize pixel simi-
larity in terms of low-level metrics (Shen et al. [26], Beliy et al. [27], Gaziv et al. [28], and
Ren et al. [29]). However, DBDM excels in achieving the best performance on all high-level
metrics. It is noteworthy that our method outperforms other semantic-focused approaches
(Ozcelik et al. [31], Mozafari et al. [13], and Liu et al. [20]) in both low-level and high-level
metrics. In particular, compared to the method that also uses a diffusion model for visual
reconstruction (Liu et al. [20]), DBDM improves the low-level assessment metrics PixCorr
and SSIM by 32% and 5.6%, respectively, and reduces the Inception distance, CLIP distance,
and SwAV distance by 32.7%, 25.2%, and 23.1%, respectively. This superiority is further un-
derscored by quantitative comparisons, highlighting the efficacy of our proposed method.
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Table 1. Quantitative evaluation of the reconstructed image quality, which is calculated using the
images in Figure 4. For low-level evaluation metrics (PixCorr and SSIM), the higher their values, the
better. For high-level semantic metrics (Inception, CLIP, and SwAV distances), the lower their values,
the better. The best results are shown in bold.

Quantitative Measures

Low-Level ↑ High-Level ↓Methods
PixCorr SSIM Inception Distance CLIP Distance SwAV Distance

Beliy et al., 2019 [27] 0.351 0.575 0.896 0.415 0.690
Gaziv et al., 2022 [28] 0.459 0.607 0.871 0.389 0.592

Ozcelik et al., 2022 [31] 0.223 0.453 0.846 0.340 0.510
Mozafari et al., 2020 [13] 0.103 0.431 0.932 0.346 0.577

Ren et al., 2021 [29] 0.657 0.605 0.838 0.393 0.617
Shen et al., 2019 [26] 0.339 0.539 0.933 0.379 0.581
Liu et al., 2023 [20] 0.175 0.448 0.908 0.301 0.527

Ours 0.231 0.473 0.611 0.225 0.405

3.4. Ablation Studies

In this section, we conduct ablation experiments to investigate the individual contribu-
tions of different components in the proposed model. The quantitative comparison results
are presented in Table 2.

Several interesting findings emerge from the experimental results. When the initial
guess image is not utilized, the reconstruction performance of the model is inferior in terms
of low-level metrics (PixCorr and SSIM declined by 41.9% and 18.1%, respectively) but
relatively strong in high-level metrics. This suggests that the introduction of an initial
guess image in DBDM facilitates the preservation of underlying details from the original
image, thereby enhancing reconstruction performance. However, even in the absence of
an initial guess, our model can accurately capture the semantic content of the stimulus
images. For the example of the airplane in Figure 5, DBDM still accurately reconstructed the
image containing the airplane object when the initial guess image was missing. Moreover,
when there is no semantic guidance (without CLIP text), the high-level metrics of the
reconstructed images experience a significant decline; Inception distance, CLIP distance
and SwAV distance increased by 0.229, 0.171 and 0.168, respectively. This underscores the
importance of semantic information in optimizing the quality of reconstructions. Similarly,
when visual guidance is omitted, the high-level metrics of the reconstructions also decrease,
since CLIP visual features inherently encompass the semantic content of the original
images. Surprisingly, the model without CLIP visual achieves the best performance in
low-level metrics. This discrepancy may be attributed to limitations in the diffusion process,
resulting in the retention of most of the details from the initial guesses in the reconstructed
images (Figure 5). Overall, the most effective performance is achieved when employing the
full model.

For visual comparison, we present our qualitative results in Figure 5. The reconstructed
images using VDVAE retain the layout of the original images but appear blurry and
challenging to identify. The reconstructed images without CLIP text struggle to capture the
semantic information of the objects in the stimulus images. Additionally, we observed that
the partially reconstructed images without CLIP visual resemble the initial guesses, and
some even exhibit blurriness. This can be seen, for example, in the horse in the third row of
Figure 5.
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Figure 5. Examples of reconstructed images from ablation studies, all from subject 3.

Table 2. DBDM ablation studies. All reported results were calculated on the 50 reconstructed images
of Subject 3, and the best results are bolded.

Quantitative Measures

Low-Level ↑ High-Level ↓Model
PixCorr SSIM Inception Distance CLIP Distance SwAV Distance

without initial guess 0.136 0.316 0.789 0.337 0.522
without CLIP-text 0.222 0.376 0.977 0.476 0.636

without CLIP-vision 0.248 0.446 0.827 0.345 0.542
full method 0.234 0.386 0.748 0.305 0.468

3.5. Effectiveness of BrainMlp for Neural Decoding

In this section, we examine the efficacy of using BrainMlp as a neural decoder for
decoding feature vectors from fMRI patterns. Specifically, we employ the traditional ridge
regression model to replace BrainMlp, wherein VDVAE-regression, CLIP text regression,
and CLIP vision regression refer to the use of ridge regression to predict the correspond-
ing ztest, ĉtext, and ĉvision from the test fMRI data, respectively. The results in Table 3
demonstrate that BrainMlp outperforms the simple ridge regression model in learning
the mapping from the fMRI data to the image feature space owing to the complexity of
the brain’s visual encoding mechanism. For instance, the initial reconstructions obtained
using BrainMlp to predict VDVAE encoder hierarchical features exhibit superior low-level
metrics compared to the simple regression model (PixCorr: 0.254 vs. 0.213; SSIM: 0.447 vs.
0.434). Moreover, when employing the regression model instead of BrainMlp to predict
ĉtext and ĉvision from the fMRI patterns, both high-level metrics of the reconstructed images
experience a significant decline. Among them, the CLIP text regression model demonstrates
a more pronounced performance drop, with Inception distance, CLIP distance, and SwAV
distance increasing by 23.3%, 40.9%, and 20.9%, respectively, emphasizing the substantial
influence of accurate semantic decoding on the reconstruction quality of DBDM. This
further substantiates the effectiveness of employing BrainMlp as a neural decoder, which
greatly impacts the performance of our model.
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Table 3. Quantitative comparisons between BrainMlp and ridge regression in terms of reconstructed
image quality. All reported results were calculated on 50 reconstructed images using the test data
from subject 3. The best results are shown in bold.

Quantitative Measures

Low-Level ↑ High-Level ↓Model
PixCorr SSIM Inception Distance CLIP Distance SwAV Distance

CLIP text regression 0.204 0.348 0.922 0.430 0.566
CLIP vision regression 0.222 0.357 0.880 0.398 0.536

VDVAE regression 0.213 0.434 0.962 0.433 0.644
VDVAE–BrainMlp 0.254 0.447 0.960 0.435 0.631

full method 0.234 0.386 0.748 0.305 0.468

4. Discussion

In this study, we introduced the Dual-guided Brain Diffusion Model (DBDM) to
address the challenge of reconstructing visual stimuli from fMRI signals. By dividing the
visual reconstruction process into three stages, we aimed to gradually recover the visual
information perceived by the brain. In the first stage, we employed VDVAE to generate
coarse reconstructions of the visual stimuli. Subsequently, in the second stage, we utilized
BLIP to obtain text annotations for each image, which were used to extract semantic features
in the next stage. Finally, in the third stage, we used the predicted CLIP vision and CLIP text
features by BrainMlp as conditional bootstraps to guide the diffusion model in generating
the final reconstructions.

We performed qualitative (Figure 3) and quantitative analyses (Table 1) of the re-
construction results. Figure 3 illustrates that the reconstructed images produced by our
model may not be identical to the original images, but they successfully retain the primary
semantic content and preserve most pixel-level details of the original images. This aligns
with the emphasis of our method on recovering the semantic content of the perceptual im-
ages. Compared to previous methods that emphasize pixel similarity, DBDM-reconstructed
images are more natural, while for methods that focus on semantic restoration, DBDM
reconstructions have more consistent semantics with the original images (Figure 4). In
the quantitative comparisons, although our approach may not perform as strongly as
methods that focus solely on pixel space similarity in low-level metrics, our reconstructions
consistently outperform them in high-level metrics and surpass other semantic-focused
methods. In particular, DBDM reduced the Inception distance, CLIP distance, and SwAV
distance by 32.7%, 25.2%, and 23.1%, respectively, compared to the SOTA reconstruction
approach (Liu et al. [20]). The reason why our method outperforms previous models is
mainly attributed to the following facts: (1) we employed the Versatile Diffuser (VD) with
its powerful generative capabilities as a generator; (2) we used VDVAE to reconstruct
the initial guess image to capture the underlying details of the original image; (3) we
constructed semantic annotations for the images using BLIP and double-conditioned the
inverse diffusion process using the CLIP vision and CLIP text features; and (4) we used the
construction of neural decoders with residual connections to learn the mapping of fMRI
data to visual and semantic features.

Notably, our reconstructed images have higher resolution compared to previous low-
quality reconstructions owing to the powerful generative capability of the latent diffusion
model. This observation inspires us to explore more powerful deep generative models that
can potentially lead to even higher quality reconstructions. We are optimistic that, with
the continued advancement of generative models, visual reconstruction techniques will
improve significantly and achieve remarkable levels of accuracy and fidelity. Regarding
fMRI decoding, our experiments reveal that using a deep neural network with residual
connections, such as BrainMlp, outperforms traditional ridge regression models. BrainMlp
is able to learn the complex mapping between fMRI signals and deep neural network
features more effectively without encountering the issue of overfitting. This highlights the
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potential of utilizing advanced neural decoding techniques to enhance the performance of
fMRI-based reconstructions.

However, there are still areas that require further refinement in our model. For instance,
the current BrainMlp model may not accurately predict the expected feature vectors from
fMRI data, resulting in imperfect replications of the original stimulus images. As seen
in Figure 3, the model may successfully reconstruct an airplane, but the image may not
precisely match what the subject actually saw. Such discrepancies could be attributed
to inherent variations in the way subjects perceive and process stimuli. To improve the
accuracy of fMRI decoding, acquiring more paired samples and higher signal-to-noise ratio
fMRI data becomes imperative. Unfortunately, fMRI data acquisition is time-consuming
and costly, making it challenging to obtain sufficient samples for comprehensive training.
Additionally, training different decoders for each subject, as done in our study due to
the varying dimensions of fMRI data, can lead to redundancy and inefficiency. As such,
developing a neural decoder that can generalize across different subjects would be a
valuable avenue of research.

Furthermore, with the advancement of neural decoding techniques, ethical considera-
tions must be addressed. The application of image reconstruction methods has the potential
to raise privacy concerns, as it could be used to invade the privacy of individuals or create
misleading content. As this technology progresses, responsible and transparent practices
should be adhered to in order to ensure the ethical use of such tools.

5. Conclusions

In this paper, our proposed Dual-guided Brain Diffusion Model (DBDM) presents
a promising solution for reconstructing visual stimuli from fMRI data. By dividing the
reconstruction process into three phases and leveraging image generation models, DBDM
effectively captures semantic content and preserves pixel-level details. Our experimen-
tal results demonstrate superior performance in high-level metrics compared to pixel
similarity-focused methods and other semantic-focused approaches. Despite its strengths,
improvements are needed in fMRI decoding accuracy, and ethical considerations must be
taken into account for responsible use. With continued research, DBDM holds potential for
advancing neuroscience and related fields by enhancing our understanding of the human
brain’s visual perception.
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