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Abstract: Brain tissue oxygen tension (PbtO2) has emerged as a cerebral monitoring modality follow-
ing traumatic brain injury (TBI). Near-infrared spectroscopy (NIRS)-based regional cerebral oxygen
saturation (rSO2) can non-invasively examine cerebral oxygen content and has the potential for
high spatial resolution. Past studies examining the relationship between PbtO2 and NIRS-based
parameters have had conflicting results with varying degrees of correlation. Understanding this
relationship will help guide multimodal monitoring practices and impact patient care. The aim of
this study is to examine the relationship between PbtO2 and rSO2 in a cohort of TBI patients by
leveraging contemporary statistical methods. A multi-institutional retrospective cohort study of
prospectively collected data was performed. Moderate-to-severe adult TBI patients were included
with concurrent rSO2 and PbtO2 monitoring during their stay in the intensive care unit (ICU). The
high-resolution data were analyzed utilizing time series techniques to examine signal stationarity
as well as the cross-correlation relationship between the change in PbtO2 and the change in rSO2

signals. Finally, modeling of the change in PbtO2 by the change in rSO2 was attempted utilizing linear
methods that account for the autocorrelative nature of the data signals. A total of 20 subjects were
included in the study. Cross-correlative analysis found that changes in PbtO2 were most significantly
correlated with changes in rSO2 one minute earlier. Through mixed-effects and time series modeling
of parameters, changes in rSO2 were found to often have a statistically significant linear relationship
with changes in PbtO2 that occurred a minute later. However, changes in rSO2 were inadequate to
predict changes in PbtO2. In this study, changes in PbtO2 were found to correlate most with changes
in rSO2 approximately one minute earlier. While changes in rSO2 were found to contain information
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about future changes in PbtO2, they were not found to adequately model them. This strengthens
the body of literature indicating that NIRS-based rSO2 is not an adequate substitute for PbtO2 in the
management of TBI.

Keywords: traumatic brain injury; brain tissue oxygen tension; regional cerebral oxygen saturation;
near-infrared spectroscopy; multimodal monitoring

1. Introduction

Traumatic brain injury (TBI) is the preeminent form of neurotrauma globally and
is a leading cause of death and disability worldwide [1,2]. Contemporary management
of TBI largely focuses on guideline-based management aimed at global arterial blood
pressure (ABP), intracranial pressure (ICP), and cerebral perfusion pressure (CPP) treatment
thresholds to try to minimize the ongoing brain injury that occurs in the acute period
following the initial event [3,4]. While there have been multiple iterations of this paradigm,
there has been little progress in further improving outcomes following TBI [5]. Given the
large global burden of this disease, different approaches to the management of TBI are
being explored. Attention has shifted towards a precision-medicine-based approach to the
management of TBI that incorporates multi-modal cerebral monitoring [6–9].

The most widely adopted of these a”xili’ry modalities is brain tissue oxygen tension
(PbtO2), with recent guidelines incorporating its use into treatment algorithms [4]. Addi-
tionally, at least three large phase 3 randomized control trials are underway to evaluate the
ability of PbtO2 monitoring to improve outcomes following TBI [10–12]. PbtO2 measures
diffusible oxygen content in the extracellular space through a Clarke-type electrode. As
a result, it is speculated that it has a slower response to physiologic variations than other
monitoring modalities. This also necessitates its invasive placement into viable brain tissue
and results in its ability to only sample a small volume of brain tissue [13].

Near-infrared spectroscopy (NIRS) as a cerebral monitoring modality, in the setting of
TBI, has grown for the past three decades [14]. The non-invasive nature, ease of application,
and potential for high spatial resolution of NIRS monitoring are significant advantages
of this modality. While there is a robust body of evidence supporting its quantitative
relationship with cerebral blood flow, its precise relationship with PbtO2 is much less
clear, with some studies concluding a strong linear correlation between the modalities in
retrospective observational studies [15–19]. Other retrospective observational studies failed
to identify any statistical relationship [20–22].

One possible etiology of this discrepancy is a failure to leverage time series analysis
techniques that allow for the utilization of high-resolution data streams while accounting
for the autocorrelative and hierarchical nature of this type of physiologic data. Without
accounting for hierarchical and autocorrelation structures in the data, the assumptions of
the regression methods utilized in these studies, mainly the independence of samples, is not
entirely valid. It can be hypothesized that this may have resulted in an erroneously strong
correlation between these parameters. Presented here is a study utilizing the Canadian
High-Resolution Traumatic Brain Injury (CAHR-TBI) Research Collaborative database,
which is a multi-institutional database of moderate-to-severe TBI patients. A highly unique
feature of this dataset is its concurrently measured high-resolution PbtO2 and rSO2 data,
the likes of which have not previously been reported in the literature. The primary objective
of this study is to utilize contemporary time series analysis techniques to better characterize
the relationship between PbtO2 and NIRS-based regional cerebral oxygen saturation (rSO2).
The secondary objective of this study is to determine if PbtO2 can be adequately modeled
by rSO2 in the setting of moderate-to-severe TBI.
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2. Materials and Methods
2.1. Study Design

Using data from the Canadian High Resolution TBI (CAHR-TBI) Research Collabora-
tive, a retrospective multicenter cohort study utilizing a prospectively collected database
of critically ill TBI patients was performed, similar to recently published work from this
group. Retrospective analysis was determined to be appropriate based on availability of
data. Additionally, given the exploratory and observational nature of the study, an entirely
prospective study would not be particularly beneficial at this time. Patients included in
this study were admitted to one of the following university-affiliated hospitals: Vancouver
General Hospital (University of British Columbia), Foothills Medical Centre (University
of Calgary), and Health Sciences Centre Winnipeg (University of Manitoba). Institutions
collaborating in this research have committed to prospective collection of high-resolution
physiologic data in TBI patients. Research ethics approval at the University of Manitoba
has been obtained for this database (H2017:181 and H2017:188). Additionally, ethics ap-
proval was obtained for retrospective access to the database, as well as for anonymous data
transfer between centers (H2020:118, H20-03759 and REB20-0482).

2.2. Patient Population

The CAHR-TBI database is composed of moderate-to-severe TBI patients (defined as
having a Glasgow Coma Scale ranging from 3 to 12) treated at an adult intensive care unit
(ICU). All patients in this database had invasive ICP and ABP monitoring and were cared
for using management strategies based on Brain Trauma Foundation (BTF) guidelines [3].
PbtO2 was managed based on local practice norms which varied from aggressive manage-
ment to purely observational. PbtO2 monitors were placed into viable brain tissues based
on CT scans or under direct inspection in the operating room. NIRS-based rSO2 was not ac-
tively used to guide management at any of the institutions. While granular patient-specific
data are not available, similar vasopressor, sedative, and hyperosmolar/hypertonic agents
were utilized at all participating institutions. Patient data were entered into the database
from 2011 to 2022.

Included in this study were all patients in the CAHR-TBI database that had concurrent
invasive PbtO2 monitoring and NIRS-based rSO2 monitoring. Those without PbtO2 or
NIRS monitoring were excluded. Age, biological sex, admission Glasgow Coma Score
(GCS), admission pupil exam, and follow-up Glasgow Outcome Score (GOS) were ex-
tracted. Sample size calculations were not possible and therefore not performed due to the
exploratory nature of this study.

2.3. High-Resolution Physiologic Data Collection

High-resolution physiologic data-streams included ICP, ABP, and PbtO2, as well as
left and right rSO2. ABP was measured utilizing radial arterial lines. ICP was moni-
tored using intra-parenchymal strain gauge probes (Codman ICP MicroSensor; Codman &
Shurtlef Inc., Raynham, MA, USA) placed in the frontal lobe or using external ventricular
drains (Medtronic, Minneapolis, MN, USA). PbtO2 was measured using intra-parenchymal
brain tissue oxygenation probes (Licox Brain Tissue Oxygen Monitoring System; Integra
LifeSciences Corp., Plainsboro, NJ, USA) placed in viable frontal lobe tissue. rSO2 was
measured using NIRS regional cerebral oximetry of both the left and right frontal lobes
(Covidien INVOS 5100C or 7100) when possible.

Data streams were recorded in digital high-frequency time series (≥100 Hz for ABP
and ICP, 1 Hz for PbtO2 and rSO2) using analogue-to-digital signal converters (Data
Translations, DT9804 or DT9826) when required. This digitized data were linked and stored
in time series using Intensive Care Monitoring (ICM+) software (Version 8.5, Cambridge
Enterprise Ltd., Cambridge, UK). For the purposes of this study ICP and ABP were included
for the sake of cohort characterization and were not utilized in subsequent data analysis.
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2.4. Physiologic Data Cleaning and Processing

High-resolution physiologic data were artifact-cleared manually by a qualified clin-
ician utilizing ICM+ software. Artifacts were determined through the examination of
waveforms for ICP and ABP. Additionally, sudden drops in PbtO2 and rSO2 to zero were
deemed artifactual. All data were cleaned without knowledge of patient demographics or
study objectives.

All high-resolution data streams were processed into both 10-seconds-by-10-seconds
and minute-by-minute data utilizing ICM+ software. Data were then exported as comma-
separated value (CSV) files for data analysis. The minute-by-minute data were utilized
throughout the analysis as it is generally considered the standard for cerebral multimodal
monitoring signal analytics as it provides a good balance between data size/computational
time and temporal resolution [23,24]. The exception was the cross-correlative analysis,
where the 10-seconds-by-10-seconds data were also used to confirm the findings from the
minute-by-minute data and in the impulse response function plots to evaluating the data
at a temporal resolution and frequency in keeping with vasomotion [25]. Due to the side
of PbtO2 probe placement not being available for all patients, rSO2 values on the right
were utilized for analysis, unless not available, in which case rSO2 values from the left
were utilized.

2.5. Physiologic Data Analysis and Statistical Methods
2.5.1. Overview

The data analysis was performed using R statistical software (Version 4.2.2, R Founda-
tion for Statistical Computing, Vienna, Austria) with the following packages: astsa, blandr,
forecast, lmtest, nlme, tidyverse, tseries, and zoo. The Intel oneAPI Math Kernel Library (Intel
Corp., Santa Clara, CA, USA) was utilized for the Basic Linear Algebra Subprograms
(BLAS) and the Linear Algebra Package (LAPACK) to improve computational performance.
Data streams were further filtered to exclude PbtO2 values less than 0 mmHg and greater
than 60 mmHg, as these values were felt likely to be erroneous based on clinical expertise.
rSO2 values less than 25% were excluded, as this is the lower limit of output for the INVOS
devices used. This, along with the previously mentioned manual artifact clearing, resulted
in discontinuities in the data streams. As subsequent time series analysis required contin-
uous data streams, discontinuities were filled through basic linear interpolation through
the approx() function. For all models, alpha was set to 0.05 without correction for multiple
comparisons. Additionally, no sample size or power calculations were performed. This
was due to the exploratory nature of this study, which leveraged available data sets.

In this study, the relationship between PbtO2 and rSO2 was characterized through time
series analysis and inferential statistical modeling. Linear regression assumes independent
sampling. In the setting of frequent resampling from individual subjects, as is the case in all
high-frequency cerebral physiologic monitoring, this assumption is invalid in two regards.
Resampling from the same subject in a cohort leads to a hierarchical structure, as samples
from the same subject are likely to be more similar than those taken between subjects. This
is because intrasubject sampling has random unaccounted-for effects held constant that are
not constant in intersubject sampling. Beyond this, when samples are taken with a high
frequency, there is a tendency for samples to be correlated with previously taken samples
from the same subject. This is known as autocorrelation. The simplest means by which to
reinstitute the validity of these assumptions of linear regression is to average the data over
large epochs of time (i.e., such as daily or over the entire recording period) for each subject
and then regress over these averages. In the dynamic setting of the critically ill TBI patient,
this can result in a significant loss of information.

Fortunately, there are statistical methods to account for these deviations from the
assumption of independent sampling. In this study, two such methodologies were utilized.
First, hierarchical linear modeling, also known as linear mixed-effects modeling, can help
account for the random effects experienced by each subject. Additionally, time series-
based autoregressive integrative moving average (ARIMA) modeling can account for the
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autocorrelative structure of the modeled data stream, in this case PbtO2. The details of this
analysis are described further in the subsequent sections. However, an in-depth review of
the theoretical background of these methodologies is beyond the scope of this paper. We
refer the interested reader to previous works on this subject [26–29], and literature applying
such methodologies to cerebral physiologic data [30].

2.5.2. Determination of Stationarity of Physiologic Data

Prior to performing time series modeling and analysis, it was necessary to determine if
the response data streams of interest, PbtO2, were stationary. This is necessary, as there is an
assumption of signal stationarity in the utilized time series modeling techniques. If signals
are not stationary, they must be transformed to be made stationary prior to any modeling.
Testing of signal stationarity was accomplished through examination of the autocorrelative
function (ACF) plots for each patient’s PbtO2 data. For all ACF plots, significance levels
were set to a correlation level of +/−(2/N1/2), where N is the number of samples. Generally,
for each patient, there was no rapid drop off to zero in lag significance, indicative of non-
stationarity of the series. This was confirmed with the Augmented Dicky–Fuller (ADF) and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) testing for stationarity.

To make the series stationary, the first difference was taken for each data series. Follow-
ing first differencing, the stationarity of the data streams was confirmed through inspection
of the ACF plots which now showed rapid decay in the significance of subsequent lags.
Additionally, ADF and KPSS testing both confirmed stationarity of the first differenced
signals. Physiologically, the data streams can now be thought of as the change in PbtO2
(∆PbtO2) and the change in rSO2 (∆rSO2). While this is not the same as PbtO2 and rSO2,
it was felt that the data obtained from examining how ∆PbtO2 relates to ∆rSO2 would
provide insight into the relationship between these physiologic parameters.

2.5.3. Cross-Correlative Relationship between ∆PbtO2 and ∆rSO2

Given that PbtO2 samples the extracellular fluid of brain parenchyma and NIRS-
based rSO2 reflects changes in the brain microvasculature, it is conceivable that changes
in these parameters would be asynchronous [31,32]. To identify and examine this poten-
tial asynchrony, a cross-correlative analysis was carried out between ∆PbtO2 and ∆rSO2,
utilizing the minute-by-minute data over the entire cohort. The cross-correlation function
(CCF) of the minute-by-minute data shows the largest correlative magnitude at a lag of
1 (∆rSO2Lag1). This can be interpreted as ∆rSO2 being most strongly correlated with
∆PbtO2 a minute later. The CCF plot of the 10-seconds-by-10-seconds data reinforces this
conclusion, as the most significant lag is seen at lag 6, corresponding to a one-minute delay
between ∆rSO2 and ∆PbtO2. Since ∆rSO2Lag1 was found to contain the most information
about ∆PbtO2, it was used in subsequent linear modeling.

2.5.4. Vector Autoregressive Modeling and Impulse–Response Function Plots

To further provide insights into the relationship between ∆rSO2 and ∆PbtO2, impulse–
response function (IRF) plots were created based on a multivariate vector autoregressive
(VAR) model. These plots examine the modeled response of ∆rSO2 and ∆PbtO2 to a
sudden impulse of ∆ABP. The high-frequency 10-seconds-by-10-seconds data streams
of interest (∆ABP, ∆ICP, ∆PbtO2, and ∆rSO2) were utilized as the cerebral vasoactive
response was being examined in this analysis and acts on a frequency scale of approximately
0.1 Hz [23,33]. Given the non-stationarity of the original data streams, the differenced data
were used. These parameters were used going forward for VAR modeling and generation
of the IRF plots.

To determine the appropriate autoregressive order of the VAR model, the Akaike
Information Criterion (AIC) was determined for vector autoregressive models of order 1 to
15. There was diminishing marginal improvement in AIC as model order increased past 6.
As such, following the principle of parsimony, a VAR model of order 6 was constructed
utilizing the VAR() function in R. Finally, using the irf() function in R, this VAR model
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was utilized to model and plot the response in ∆PbtO2 as well as ∆rSO2 of an orthogonal
impulse in ∆ABP over the subsequent 10 lags.

2.5.5. Hierarchical Linear Modeling of ∆PbtO2 from ∆rSO2Lag1

Given the hierarchical nature of this dataset, a linear mixed-effects model with ran-
dom slope and intercept, utilizing the lme() function, was performed with ∆PbtO2 as the
dependent variable and ∆rSO2Lag1 as the independent variable. Next, to evaluate whether
there was any autocorrelation of the model’s residuals, ACF and partial autocorrelative
function (PACF) plots were made of these residuals. As with the ACF plots, for all PACF
plots, significance levels were set to a correlation level of +/−(2/N1/2), where N is the
number of samples. There was an autocorrelative structure to the residuals, indicating that
there was unaccounted for autocorrelation in the response variable, ∆PbtO2.

2.5.6. Modeling of ∆PbtO2 from ∆rSO2Lag1 Accounting for Autocorrelative Structure

Population-level linear mixed-effects models that incorporated the autocorrelative
structure of ∆PbtO2 were constructed, as has been done in previous cerebral physiology
studies [34]. However, given the size of this dataset, the computational times were un-
acceptably long, with models failing to converge even after weeks of computation. As a
result, it was determined that the next best option was to construct a linear model that
accounted for the autocorrelative structure of ∆PbtO2 for each individual subject and make
inferences about the relationship between PbtO2 and rSO2 based on the general findings of
these models.

For each subject, an initial simple linear regression was performed with ∆PbtO2 as
the dependent variable and ∆rSO2Lag1 as the independent variable. In order to account
for the autocorrelative nature of ∆PbtO2, the ARIMA structure of the residuals needed
to be determined. This was done through the auto.arima() function for the residuals of
the linear model in each subject. Next, the autoregressive and moving average orders
were utilized in the arima() and sarima() functions, with ∆PbtO2 as the response variable
and ∆rSO2Lag1 as the external regressor, to produce a linear model that accounted for
the autocorrelative structure of ∆PbtO2. For each subject, the significance the ∆rSO2Lag1
coefficient was determined. Additionally, for each model, ACF and PACF plots of the
residuals were examined to determine if there was any remaining autocorrelative structure.

2.5.7. Evaluating Model Correlation and Agreement

To examine the correlation between the predicted values of ∆PbtO2 and actual values
of ∆PbtO2 for each subject, a Pearson correlation coefficient was obtained. Next, a Bland–
Altman plot was produced to evaluate agreement between the predicted values of ∆PbtO2
and actual values of ∆PbtO2.

3. Results
3.1. Cohort Demographics

A total of 20 subjects were included in the study, with a total of 114,136 min of time with
concurrent PbtO2 and rSO2 measurements without interpolation. The full demographic
data of the cohort can be found in Table 1.
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Table 1. Patient demographics for the cohort.

Demographic Parameter Median or Number of Subjects

Age (IQR) 41 (34.8–49.3)

Gender
Male subjects (%) 15 (75)
Female subjects (%) 4 (20)
N/A (%) 1 (5)

Admission GCS

Eye (IQR) 1 (1–1)
Verbal (IQR) 1 (1–1)
Motor (IQR) 2 (1–4)
Total (IQR) 6 (3–7)

Admission Pupils

Bilaterally Reactive (%) 13 (65)
Unilaterally Reactive (%) 3 (15)
Bilaterally Unreactive (%) 3 (15)
N/A (%) 1 (5)

Marshall CT Classification

I (%) 0 (0)
II (%) 5 (25)
III (%) 8 (40)
IV (%) 0 (0)
V (%) 4 (20)
VI (%) 0 (0)
N/A, n (%) 3 (15)

Follow-up GOS

1 (%) 4 (20)
2 (%) 0 (0)
3 (%) 1 (5)
4 (%) 8 (40)
5 (%) 3 (15)
N/A, n (%) 4 (20)

ABP (IQR) 87.0 mmHg (78.6–96.70)
ICP (IQR) 11.0 mmHg (6.7–15.0)
PbtO2 (IQR) 24.2 mmHg (17.3–32.3)
rSO2 (IQR) 69.6% (63.6–76.8)
PaO2 (IQR) * 108 mmHg (88.5–141)
PaCO2 (IQR) * 38 mmHg (36–41)

ABP = Arterial Blood Pressure, CT = Computerized Tomography, GCS = Glasgow Coma Scale, GOS = Glasgow
Outcome Scale, ICP = Intracranial Pressure, IQR = Interquartile range, N/A = Not available, PbtO2 = Brain Tissues
Oxygen Tension, and rSO2 = Regional Cerebral Oxygen Saturation. * PaO2 and PaCO2 values were only available
for 10 patients.

3.2. Determination of the Stationarity of the Physiologic Data

The ACF plots, as well as the ADF and KPSS test results for each patient’s PbtO2
data, can be found in Supplementary File S1. ACF plots did not show a rapid drop-off
of significant lags, indicating non-stationarity. An example of an ACF plot can be seen
in Figure 1A. KPSS testing for each patient’s PbtO2 data also uniformly indicated non-
stationarity. In most patients, ADF testing indicated no presence of a unit root. As such,
a transformation to the data was required before the assumption of stationarity could be
fulfilled and time series models of the data constructed. This pattern of ACF plots and
KPSS and ADF testing results is consistent with a difference stationary series, and so the
first-order difference of the data was taken to transform the data.

The ACF plots, as well as the ADF and KPSS test results for each patient’s ∆PbtO2
data, can be found in Supplementary File S1. Once the first difference was taken, each
patient’s ACF plots showed a rapid decline in the significance of lags, indicating stationarity.
An example of an ACF plot can be seen in Figure 1B. Consistent with this, KPSS testing
indicated stationarity of the ∆PbtO2 data for each patient. This indicated that the first-
order-differenced data fulfilled the assumptions of stationarity. As a result, subsequent
analysis was carried out using both ∆PbtO2 and ∆rSO2 data.
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for the same subject shows a rapid decline in the significant lags, indicating stationarity. The dashed
blue line represents the significance levels which were set to a correlation level of +/−(2/N1/2),
where N is the number of samples. ACF = Autocorrelative Function, ∆PbtO2 = Change in brain tissue
oxygen tension, PbtO2 = Brain tissue oxygen tension.

3.3. Cross-Correlative Relationship between ∆PbtO2 and ∆rSO2

Cross-correlation analysis between ∆PbtO2 and ∆rSO2, over the entire cohort, indi-
cated the ∆PbtO2 was most strongly correlated with ∆rSO2 one minute earlier. In other
words, ∆PbtO2 and ∆rSO2Lag1 shared the strongest cross-correlation. In the 10-seconds-
by-10-seconds data, a similar pattern was seen with ∆PbtO2 correlating with ∆rSO2 six lags
earlier, equivalent to one minute earlier. The CCF plots of the minute-by-minute data and
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10-seconds-by-10-seconds data can be seen in Figures 2A and 2B, respectively. As a result
of this finding, ∆PbtO2 and ∆rSO2Lag1 were utilized for modeling.
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Figure 2. In Panel (A), the plot of the cross-correlative function (CCF) of ∆PbtO2 vs. ∆rSO2 for the
minute-by-minute data of the cohort can be seen, with the most significant lag occurring at lag 1
(i.e., 1 min). In Panel (B), the plot of the cross-correlative function of ∆PbtO2 vs. ∆rSO2 for the
10-seconds-by-10-seconds data for the data of the cohort can be seen, with the most significant lag
occurring at lag 6 (i.e., at 1 min). The dashed blue line represents the significance levels, which were
set to a correlation level of +/−(2/N1/2), where N is the number of samples. CCF = Cross-correlative
function, ∆PbtO2 = Change in brain tissue oxygen tension, ∆rSO2 = Change in region cerebral
oxygen saturation.
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3.4. Vector Autoregressive Modeling and Impulse–Response Function Plots

The AIC for the multivariate VAR models from order 1 to 15 can be seen in Figure 3. It is
clear that there is a clear drop off in marginal improvements in AIC for VAR models with an
order greater than 6. As such, a VAR model incorporating ∆ABP, ∆ICP, ∆PbtO2, and ∆rSO2 with
an order of 6 was utilized to construct the IRF plots. The IRF plots of the modeled response in
∆rSO2 and ∆PbtO2 to a sudden impulse in ∆ABP can be seen in Figures 4A and 4B, respectively.
The modeled response of ∆rSO2 indicates an almost instantaneous response to an impulse in
∆ABP followed by a sharp decrease and eventual return to equilibrium by approximately lag 6.
This is in contrast to ∆PbtO2, where an impulse in ∆ABP results in a delayed and prolonged
response that only peaks at approximately lag 6 or 7.
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Figure 3. A plot of Akaike information criterion (AIC) versus autoregressive order of the multi-variate
vector autoregressive (VAR) model. There is limited improvement in AIC beyond an order of 6.

3.5. Hierarchical Linear Modeling of ∆PbtO2 from ∆rSO2Lag1

The linear mixed-effects model (population level model) with random slope and
intercept did find ∆rSO2Lag1 to be a significant positive linear regressor of ∆PbtO2 (0.35,
S.E. 0.10, p = 0.0002). However, the ACF and PACF plots can be seen in Figures 5A and 5B,
respectively. There is a clear demonstration of autocorrelation of the residuals, indicating an
unaccounted-for autocorrelative structure of ∆PbtO2. This indicates that the autocorrelative
structure of ∆PbtO2 needs to be accounted for, prior to valid inferences being made about
the relationship between ∆PbtO2 and ∆rSO2Lag1.
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Figure 4. Panel (A) shows the modeled resulting response in change in regional cerebral oxygen
saturation (∆rSO2) to an orthogonal impulse in change in arterial blood pressure (∆ABP); black solid
line. Panel (B) shows the modeled resulting response in change in regional cerebral oxygen saturation
(∆PbtO2) to an orthogonal impulse in change in arterial blood pressure (∆ABP); black solid line. The
95% confidence intervals are indicated by the red dashed line. Note that in both plots there is an
initial rise followed by subsequent decline; however, this is prolonged in the response of ∆PbtO2.

3.6. Modeling of ∆PbtO2 from ∆rSO2Lag1 Accounting for Autocorrelative Structure

Attempts to create a linear mixed-effects model that adequately incorporated the
autocorrelative structure of ∆PbtO2 at the population level were unsuccessful. This was
due to computational complexity with failure to converge. Creating independent inferential
linear models for each patient was more successful. The details of these models can be
found in Table 2. Of note, ∆rSO2 was found to be a significant regressor in 16 of the
20 patients. However, in three of these patients, the coefficient was negative, which is not
consistent with the expected relationship between rSO2 and PbtO2. Examination of the
ACF and PACF plots, found in Supplementary File S2, showed minimal autocorrelative
structure remaining in the residuals of these models. This confirms model adequacy.
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Figure 5. In Panel (A), the autocorrelative function (ACF) plot for the residuals of the linear mixed-
effects (LME) model (∆PbtO2~∆rSO2Lag1) with random slope and intercept are seen. In Panel
(B), the partial autocorrelative function (PACF) plot is seen. In both plots, a significant correlation
is seen. This is in keeping with a model that has not accounted for the autocorrelative structure
of its response variable. The dashed blue line represents the significance levels which were set to
a correlation level of +/−(2/N1/2), where N is the number of samples. CCF = Cross-correlative
function, ∆PbtO2 = Change in brain tissue oxygen tension, ∆rSO2Lag1 = The one-minute lagged
change in regional cerebral oxygen saturation.

3.7. Evaluating Model Correlation and Agreement

The results of the correlation analysis between actual and predicted values of ∆PbtO2
are also summarized in Table 2. Notably, correlation coefficients were generally poor for
each subject-based model ranging from 0.04 to 0.57. Scatter plots of actual and predicted
values of ∆PbtO2 for each subject can be found in Supplementary File S3.

An example of a Bland–Altman plot for a single model can be seen in Figure 6, with the
full series available in Supplementary File S4. Uniformly, agreement was poor throughout
all individual subject models of ∆PbtO2 from ∆rSO2Lag1.
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Table 2. Summary of the linear ∆PbtO2~∆rSO2Lag1 models with autocorrelative structure ac-
counted for.

Subject ID Side of rSO2

Model
Autoregressive

Order

Model Moving
Average Order

Coefficient of
∆rSO2Lag1 as a

Regressor
(Standard Error)

p-Value of ∆rSO2Lag1
as a Regressor

Pearson Correlation
Coefficient of Actual
vs. Predicted ∆PbtO2

(95% CI)

1 Right 0 3 −0.012 (0.007) 0.089 0.11 (0.05–0.17)
2 Right 5 1 0.392 (0.017) <0.001 0.28 (0.25–0.30)
3 Right 6 0 0.080 (0.052) 0.125 0.08 (0.02–0.13)
4 Right 2 2 0.246 (0.034) <0.001 0.12 (0.10–0.15)
5 Right 3 3 0.242 (0.019) <0.001 0.19 (0.16–0.21)
6 Right 1 2 1.065 (0.081) <0.001 0.45 (0.40–0.49)
7 Right 5 1 −0.101 (0.015) <0.001 0.04 (0.01–0.07)
8 Right 4 3 −0.059 (0.031) 0.055 0.10 (0.05–0.16)
9 Right 2 1 0.131 (0.031) <0.001 0.10 (0.7–0.14)

10 Right 3 2 −0.059 (0.018) 0.001 0.09 (0.05–0.12)
11 Right 0 2 −0.112 (0.032) <0.001 0.03 (−0.03–0.09)
12 Right 4 3 1.072 (0.019) <0.001 0.57 (0.56–0.59)
13 Right 1 3 0.003 (0.002) 0.159 0.14 (0.12–0.15)
14 Left 1 4 0.555 (0.031) <0.001 0.47 (0.43–0.50)
15 Right 2 2 0.055 (0.015) <0.001 0.13 (0.11–0.17)
16 Right 3 2 0.168 (0.017) <0.001 0.13 (0.12–0.16)
17 Right 2 2 0.051 (0.013) <0.001 0.08 (0.06–0.10)
18 Right 3 1 0.134 (0.001) <0.001 0.18 (0.16–0.20)
19 Right 1 3 0.760 (0.028) <0.001 0.40 (0.38–0.41)
20 Right 2 2 0.353 (0.020) <0.001 0.27 (0.25–0.29)

CI = confidence interval, ∆PbtO2 = change in brain tissue oxygen tension, rSO2 = regional cerebral oxygen
saturation, and ∆rSO2Lag1 = the one-minute lagged change in regional cerebral oxygen saturation.
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Figure 6. An example from a single subject of the Bland-Altman plot comparing actual and predicted
values of ∆PbtO2 from the linear ∆PbtO2~∆RSO2Lag1 model with autocorrelative structure accounted
for. Generally poor agreement can be seen. PbtO2 = Brain tissue oxygen tension, ∆PbtO2 = Change
in brain tissue oxygen tension, and ∆rSO2Lag1 = The one-minute lagged change in regional cerebral
oxygen saturation.
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4. Discussion

A statistically rigorous exploration of the relationship between the change in PbtO2
and change in NIRS-based rSO2 was performed in this multi-institutional cohort of 20
moderate-to-severe TBI patients. There are three key insights brought about by this study.
First, changes in PbtO2 are correlated with changes in rSO2 that occur one minute earlier.
Second, changes in rSO2, in a linear way, contain information about changes in PbtO2 that
occur one minute later. Finally, while changes in rSO2 have this delayed linear relationship
with changes in PbtO2, changes in rSO2 are not adequate for predicting changes in PbtO2.

In this study, changes in PbtO2 are often best correlated with changes in rSO2 one
minute earlier. This finding is both consistent with the theoretical mechanisms of each
modality and previous findings in the literature. In a study of 42 TBI patients, Budohoski
and colleagues noted that NIRS reacted earlier to changes in ABP and ICP as compared
to PbtO2 [35]. This was recapitulated here in the findings of the VAR-modeled IRF plot.
From these plots it can be seen that the response in change in PbtO2 is both delayed and
prolonged. In the case of change in rSO2, it is probable that the initial step rise, subsequent
overcorrection, and eventual return to equilibrium may be reflective of cerebrovascular
reactivity. The delayed and prolonged nature of the change in PbtO2 may explain why
continuous cerebrovascular reactivity metrics based on PbtO2 have been found to be
so dissimilar to those based on more responsive surrogates of cerebral blood flow or
volume [36]. As for the mechanism of this delay, PbtO2 is a measure of the extracellular
content of oxygen in brain tissue as it only measures dissolved oxygen in the interstitial
fluid of the brain. NIRS-based rSO2 measures microvascular oxygen saturation over a
volume of brain as it utilizes deoxyhemoglobin (DeOxHgB) and oxyhemoglobin (OxHgB)
as chromophores to scatter and the NIR light [31,32]. Oxygen is primarily delivered to the
brain in the form of OxHgB through the brain’s microvasculature. An increase in OxHgB
in the brain’s microvasculature would be detected through the absorption of near-infrared
light. However, prior to observing a change in oxygen content of the extracellular space of
the brain, and therefore PbtO2, oxygen would need to disassociate from the OxHgB and
diffuse into this extracellular space. A similar delay in decreases in cerebral oxygen content
might also be explained by this mechanism. This mechanism is consistent with the findings
of changes in PbtO2 being correlated with changes in rSO2 that occurred one minute earlier.
This is a significant finding that may help guide further research into the flow of oxygen
through the cerebral microenvironment.

This study found that changes in rSO2 may, in a linear way, contain information
about a change in PbtO2 approximately one minute later. The statistical significance of this
relationship held true even when the autocorrelative structure of PbtO2 was accounted
for. While this was not found in every patient, there are several reasons why this may be
the case, the most obvious of which is that NIRS-based rSO2 is prone to interference from
extravascular blood collections, such as those seen in subgaleal, epidural, and subdural
hematomas, as well as intraparenchymal hematomas. In the setting of TBI, these forms of
interference are common.

Finally, this study indicates that changes in NIRS-based rSO2 are inadequate on their
own to predict upcoming changes in PbtO2. Despite using a methodology that may tend
towards overfitting of the models, measures of change in rSO2 were unable to reasonably
predict changes in PbtO2. This was primarily evident when examining the degree of
agreement between actual values of change in PbtO2 and predicted values. This adds to
the body of evidence that indicates rSO2 is not an adequate alternative to PbtO2 [20–22].
Once again, while rSO2 and PbtO2 are in some ways measures of cerebral oxygenation,
they interrogate entirely different compartments. There are likely several factors that
influence changes in PbtO2 that were not utilized in the models in this study. Hemoglobin
concentrations (HgB), cerebral metabolic rate of oxygen (CMRO2), partial pressure of
oxygen in the arterial blood (PaO2), and microvascular cerebral blood flow velocity (CBFV)
are all factors that may modulate how changes in rSO2 relate to changes in PbtO2. It is
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understandable why, despite containing information about upcoming changes in PbtO2,
changes in rSO2 could not adequately predict changes in PbtO2 in this cohort.

The findings of this study have significant clinical implications. The first is that rSO2
and PbtO2 provide related but not equivalent information about brain physiology, and as
such, rSO2, as a raw parameter, is not a viable non-invasive alternative to PbtO2 for the
monitoring of TBI patients. Further work is needed to better elucidate the potential role of
rSO2 in the multimodal monitoring of critically ill TBI patients. The related nature of rSO2
and PbtO2 may be leveraged in the future to improve care, such as in the prehospital setting
where invasive monitoring is not possible. Secondly, given the identifiably delayed reaction
of PbtO2 to changes in ABP as compared to rSO2, as demonstrated in the CCF analysis and
IRF plots, it is likely that rSO2 is better suited for continuous indices of cerebrovascular
reactivity. These indices require response parameters that react quickly to changes in ABP.
There is a significant degree of interest evolving in the area of continuous cerebrovascular
reactivity indices in the monitoring and management of moderate-to-severe TBI.

4.1. Limitations

There are limitations to this study that need consideration when interpreting its
findings. The first is the relatively small size of the cohort in this study, with only 20 patients
included. This necessitates the validation of these findings in a larger cohort before the
findings can be fully incorporated into patient care as generalizability might be limited.
However, concurrent NIRS-based rSO2 and PbtO2 monitoring is relatively uncommon,
with this study being the first such analysis of high-resolution concurrent recordings in the
literature. This cohort represents less than 7% of the full CAHR-TBI database indicating the
rarity of simultaneous recordings of these parameters. This likely reflects both the relatively
recent global adoption of PbtO2 as a means of cerebral monitoring in TBI and the paucity
of evidence for the use of NIRS in monitoring moderate-to-severe TBI.

A second limitation, brought on by the type of analysis performed, was the need to
interpolate data. This, obviously, injects some inherent uncertainty into the study findings.
Another limitation of this study is that information about factors that may interfere with
rSO2 measurements, such as extravascular blood collections, was not available. Addi-
tionally, the side of PbtO2 monitor placement needed to be assumed, as this was also not
available for all patients.

Finally, the models utilized in this analysis assumed a linear relationship between
changes in rSO2 and changes in PbtO2. This was done due to the lack of evidence sug-
gesting a more appropriate alternative structure to this relationship. It is possible that a
mathematically more complex model may prove more suited to describing this relationship.
Complex supervised machine learning algorithms might be an obvious method to map this
relationship better. While more complex mathematical models might provide an accurate
prediction of PbtO2 values based on rSO2 levels, they are likely to increase computational
complexity. This may limit utility at the bedside if computations are not possible in real
time due to this increased complexity.

4.2. Future Work

The findings of this work lay the groundwork for additional research. First, these
findings need to be validated in a larger multi-institutional cohort, where information about
sources of NIRS interference is also available. Ideally, additional parameters, including
CMRO2, PaO2, HgB concentration, and microvascular CBFV, would also be concurrently
measured to fully elucidate the relationship between these two modalities. With a larger
cohort and better characterized physiology, the complexity of this relationship may be
better captured.

While NIRS-based rSO2 has not gained traction as a stand-alone parameter in the
management of TBI, there is increased interest in leveraging NIRS as a means of non-
invasively interrogating cerebrovascular reactivity in TBI [37–40]. This may mean larger
datasets with concurrent rSO2 and PbtO2 monitoring may become available in the future. In
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such complex multimodal monitoring datasets, supervised and unsupervised classification
and regression machine learning algorithms may provide additional insights into how
these parameters interact with one another. While complex computational models may not
be deployable at the bedside, they may act as inferential models to drive our understanding
further. This may ultimately lead to new treatment paradigms in the management of
moderate and severe TBI in the acute phase, including specific molecular targets.

5. Conclusions

In this multi-institutional exploratory analysis of a cohort of 20 TBI patients with
concurrent rSO2 and PbtO2 monitoring, changes in PbtO2 were found to correlate most
significantly with changes in rSO2 approximately one minute earlier. Through mixed-
effects and time series modeling, changes in rSO2 were found to often have a statistically
significant linear relationship with changes in PbtO2 that occurred one minute later. This
was the case even when the hierarchical and autocorrelative structure of the data was
considered. However, changes in rSO2 were inadequate on their own to predict changes in
PbtO2 based on the poor agreement between modeled and actual changes in PbtO2. Given
the uniqueness of this dataset, only a small number of subjects were available for analysis,
limiting the confidence of these findings. In the future, a larger cohort, with additional
parameters that influence cerebral oxygenation, is required to validate and better explain
these findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10101124/s1, Supplementary File S1: Evalua-
tion of Stationarity of PbtO2 Signals, Supplementary File S2: Evaluation of residuals of the linear
∆PbtO2~∆rSO2Lag1 models to ensure autocorrelative structure was accounted for, Supplementary
File S3: Scatter plots of actual vs. predicted values of ∆PbtO2 for each subject, Supplementary File S4:
Bland–Altman plots to evaluate model agreement.
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