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Abstract: Early diagnosis of Alzheimer’s disease (AD) is an important task that facilitates the de-
velopment of treatment and prevention strategies, and may potentially improve patient outcomes.
Neuroimaging has shown great promise, including the amyloid-PET, which measures the accu-
mulation of amyloid plaques in the brain—a hallmark of AD. It is desirable to train end-to-end
deep learning models to predict the progression of AD for individuals at early stages based on 3D
amyloid-PET. However, commonly used models are trained in a fully supervised learning manner,
and they are inevitably biased toward the given label information. To this end, we propose a self-
supervised contrastive learning method to accurately predict the conversion to AD for individuals
with mild cognitive impairment (MCI) with 3D amyloid-PET. The proposed method, SMoCo, uses
both labeled and unlabeled data to capture general semantic representations underlying the images.
As the downstream task is given as classification of converters vs. non-converters, unlike the gen-
eral self-supervised learning problem that aims to generate task-agnostic representations, SMoCo
additionally utilizes the label information in the pre-training. To demonstrate the performance of
our method, we conducted experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset. The results confirmed that the proposed method is capable of providing appropriate data
representations, resulting in accurate classification. SMoCo showed the best classification perfor-
mance over the existing methods, with AUROC = 85.17%, accuracy = 81.09%, sensitivity = 77.39%,
and specificity = 82.17%. While SSL has demonstrated great success in other application domains of
computer vision, this study provided the initial investigation of using a proposed self-supervised
contrastive learning model, SMoCo, to effectively predict MCI conversion to AD based on 3D
amyloid-PET.

Keywords: Alzheimer’s disease; mild cognitive impairment; amyloid-PET; self-supervised learning;
representation learning

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common form
of dementia. AD symptoms initially include a loss of short-term memory ability, and as the
symptoms become worse, cognitive decline occurs. It is estimated that there are 6.7 million
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individuals aged 65 and older affected by AD in the United States alone in 2023 [1]. Despite
several decades of unsuccessful drug development, recent times have signaled a glimmer
of hope with the full FDA approval of a novel drug, Leqembi [2]. Moreover, another
promising medication, donanemab, is under testing, and showing encouraging early
results [3]. Notably, these groundbreaking pharmaceutical developments herald a new
era in the fight against AD. Yet, their potential to slow disease progression is contingent
upon early administration. There is a strong consensus that the most effective treatment
regime should target the early stages of the disease before irreversible brain damage has
occurred [4]. Thus, the early identification of an individual’s condition is important [5].

Mild cognitive impairment (MCI) is a prodromal phase of AD when individuals
show noticeable signs of memory and cognitive decline, but the symptoms are not severe
enough to disrupt their daily activities. MCI is a high-risk stage that 10∼15% of individuals
progress to AD each year. It is crucial to identify which MCI individuals will convert to AD
(also known as converters), which could provide an opportunity for early intervention to
try to slow down the progression. This has been formulated as a classification problem (i.e.,
classifying MCI individuals into converters vs. non-converters) in the AD literature.

Neuroimaging is an important tool for AD-related assessments, and has demonstrated
great potential for predicting MCI conversion to AD. Volumetric magnetic resonance
imaging (MRI) and positron emission tomography (PET) are two important neuroimag-
ing modalities [6–9]. MRI can provide information about the structural alteration of the
brain [10]. Training end-to-end deep learning models based on 3D neuroimages has focused
more on MRI in past research [7,11]. On the other hand, PET can provide information
about functional and pathological changes in the brain. A commonly used PET imaging
modality is FDG-PET which measures cerebral glucose metabolism. Amyloid-PET is a
promising neuroimaging modality for AD diagnosis, as it measures the accumulation of
amyloid plaques in the brain—a hallmark of AD. It is of great interest to use amyloid-PET
for converter vs. non-converter classification of MCI patients.

There are two limitations of the existing work we want to tackle in this paper: First,
the existing studies using amyloid-PET for MCI conversion classification focused on pre-
defined features [12] (e.g., regional amyloid measurements). Building a deep learning
model that takes the 3D amyloid-PET images as input without feature engineering will
greatly complement the existing studies. Second, most existing approaches are supervised
learning models which are trained using labeled data only. Labeled samples can be quite
limited, especially for training deep learning models with many parameters. Leveraging
other available data sources, such as unlabeled data, has great potential to improve model
training. This is especially important for training with amyloid-PET, because this imaging
modality is not routinely collected for patients, and thus has a much smaller sample size
than MRI.

Self-supervised learning (SSL) is a new machine learning paradigm in which a model
is trained to learn general representations of input data (e.g., semantic representations
of images) with no label information needed. SSL has gained much popularity recently
because of its superior capability of learning representations that are broadly transferable
to various downstream tasks by fine-tuning, such as image segmentation, object detection,
and classification. Using SSL in a pre-training step, the model trained to perform the down-
stream task can be less biased to the limited labeled data, thus having better generalizability.
SSL has resulted in remarkable improvements in various domain applications, including
but not limited to natural images [13], histopathology images [14], autonomous driving [15],
and medical images [16,17]. Recent studies have especially focused on medical images.
The hybrid architecture of UNet and vision transformer, UNETR, was introduced to learn
the sequence representations of 3D input for medical image segmentation. It achieved
considerable performance gains for multi-organ, brain tumor, and spleen segmentation
tasks [18]. Furthermore, UNETR was improved by adopting the Swin Transformer ar-
chitecture for efficient training. It also introduced several tailored proxy tasks for proper
self-supervised learning in the medical domain [19]. However, only a few studies using
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SSL in radiology related to AD have been conducted [20]. Furthermore, no study has been
performed to predict MCI conversion to AD using 3D amyloid-PET, which motivated our
work in this paper.

This study proposes a self-supervised contrastive learning framework, Semi Momen-
tum Contrast (SMoCo), to predict MCI conversion to AD. To the best of our knowledge,
it is the first study to leverage the SSL approach for predicting MCI conversion based on
3D amyloid-PET images. We hypothesize that using SSL to obtain general representations
from a large amount of unlabeled data can help the model achieve better performance. Ac-
quiring fully labeled datasets in AD research is challenging. The diagnostic process, which
requires clinicians evaluating a complex array of information, is both resource-intensive
and time-consuming. We address this challenge by employing SSL. Our model is built
upon Momentum Contrast (MoCo), a representative existing SSL model that learns rep-
resentations to minimize a contrastive loss in instance discrimination. To improve MoCo
when the downstream task is classification, which is the focus of this paper, we propose
SMoCo, which aims to learn more suitable representations for the downstream classifica-
tion. SMoCo not only leverages unlabeled data, but also exploits label information in the
pre-training step. To demonstrate the effectiveness of SMoCo, we conducted experiments
on the ADNI dataset and compared it with alternative methods.

2. Materials and Methods
2.1. Data

This retrospective study was conducted on the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) dataset. ADNI is one of the largest datasets for AD studies to date, with the
primary goal being to test whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of MCI
and early AD. ADNI (http://adni.loni.ucla.edu, accessed on 31 October 2022) was launched
in 2003 by the NIH, FDA, private pharmaceutical companies, and nonprofit organizations,
as a $60,000,000, 5-year public-private partnership. The primary goal of ADNI has been to
test whether MRI, PET, other biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of MCI and early AD. Determination
of sensitive and specific markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of California-San Francisco. ADNI is the
result of efforts of many co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over 50 sites across the US and
Canada. For up-to-date information, please see http://www.adni-info.org/, accessed on
31 October 2022.

We downloaded 1064 3D amyloid-PET images from 612 individuals. If an individual,
with multiple images taken at different times, converts from MCI to AD within 36 months
of an image being captured, that image is labeled as converter. Otherwise, it is labeled
as non-converter. There were 158 converters and 463 non-converters, and additionally
443 unlabeled MCI images. The unlabeled MCI refers to images that the AD conversion
cannot be determined because there are no records at or after 36 months. The demographic
and clinical information of the data are demonstrated in Table 1 and Figure 1.

We also downloaded the T1-weighted MR image corresponding to each PET image.
The T1-weighted MR images were spatially normalized using the Computational Anatomy
Toolbox 12 [21] with Statistical Parametric Mapping [22] and a standard brain atlas from
the Montreal Neurological Institute. Then, each PET image was co-registered with the
corresponding MRI. The spatially normalized PET images have a size of 121× 145× 121 and
a voxel size of 1.5 mm in depth, height, and width. We applied zero padding and resized the
images to a size of 72× 72× 72 using nearest-neighbor interpolation. The labeled images
were split into 80%, 10%, and 10% for training, validation, and testing. All unlabeled images
were included in training. The ratio between the labeled and unlabeled data in training is

http://adni.loni.ucla.edu
http://www.adni-info.org/
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about 1:0.82. After training and validation, the model was applied to the test set to compute
performance metrics. The train/validation/test split was repeated 30 times with different
random seeds so that the average and standard deviation of test performance metrics could
be reported.

Table 1. Demographic and clinical characteristics of the dataset. The ‘Gender’ column represents the
proportion of females, while other values denote the mean with standard deviation in parentheses.

Gender Age Education Years Mini-Mental State Examination

Converter 42.41% 75.34 (7.51) 15.82 (2.81) 26.97 (2.01)
Non-Converter 42.12% 72.45 (7.59) 16.32 (2.73) 28.33 (1.62)

Unlabeled 39.73% 75.79 (8.16) 16.06 (2.63) 27.82 (2.12)

Figure 1. Distributions of demographic and clinical variables in ADNI dataset.

2.2. Proposed SMoCo

We propose a self-supervised contrastive learning method to predict MCI conversion
to AD based on 3D amyloid-PET. It is based on the MoCo, a popular SSL method that
has recently set a milestone with its great computational efficiency [23,24]. MoCo aims
to capture the semantic representations of images in the pre-training step where no label
information is needed. Then, the pre-trained network can be fine-tuned to perform various
downstream tasks. To further improve MoCo for classification downstream tasks, we intro-
duce SMoCo. SMoCo refines pre-training representations for classification by leveraging
a contrastive loss function that incorporates label information. In the following, we will
briefly review MoCo and then introduce SMoCo.

Let D = DL ∪ DU be a training dataset, where DL and DU denote the labeled and
unlabeled amyloid-PET images, respectively. In the pre-training step, MoCo trains a
network by discarding the label information and learning semantic representations of the
images through instance discrimination. Formally, given an image xi ∈ D, a stochastic
data augmentation t(·) is applied to the same image twice to generate two different views,
xa

i = t(xi) and x+i = t(xi), called the anchor and a positive instance, respectively. By putting
xa

i and x+i through a query network fθ(·) and a key network fφ(·) with shared structure, we
can obtain their respective representation vectors, za

i = fθ(xa
i ), z+i = fφ(x+i ), respectively.

We should train the network to make za
i and z+i similar, i.e., to “pull” the positive instance

toward the anchor because both of them are generated from the same image. In addition,
we can draw K images other than xi from the training set and apply augmentation t(·) to
these images to obtain {x−ik}

K
k=1, which are called negative instances. By putting each x−ik

through fφ(·), we can obtain its representation vector, z−ik = fφ(x−ik ). We should train the
network to make za

i and z−ik dissimilar, i.e., to “push” each negative instance away from the
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anchor because they are different images. To realize the ideas of the “pull” and “push”,
MoCo uses the following loss function:

LMoCo
i = − log

exp(za
i · z

+
i /τ)

exp(za
i · z

+
i /τ) + ∑K

k=1 exp(za
i · z

−
ik /τ)

. (1)

τ is a temperature hyperparameter for scaling. Under this loss function, MoCo trains
the query network fθ(·) and the key network fφ(·) with the same structure, but updating
parameters φ by an exponential moving average of θ. Also, MoCo uses a memory queue to
store past representations of negative instances to save computational costs.

Note that MoCo does not use label information, even though the training set D in-
cludes a subset of labeled samples DL. Leveraging the label information has the potential
to learn semantic representations that are more appropriate for the downstream classi-
fication task. To achieve this, we propose SMoCo, which “pulls” additional instances
toward the anchor. These are instances in the memory queue with the same label as the
anchor. Formally, for each labeled image xi ∈ DL, recall that the anchor is obtained by
applying augmentation to the image, i.e., xa

i = t(xi). {z−im}
Mi
m=1 ⊂ {z

−
ik}

K
k=1 denote a subset

of Mi instances in the memory queue of length K which have the same label as the anchor.
To “pull” these instances toward the anchor, we propose the following loss:

LLabel
i = − 1

|M(i; t)| log ∑
m∈Mi

exp(za
i · z

+
i /τ)

exp(za
i · z

+
i /τ) + ∑K

k=1 exp(za
i · z

−
ik /τ)

. (2)

The final SMoCo loss function is defined as a combined loss of (1) and (2):

LSMoCo = ∑
i∈D
LMoCo + α ∑

i∈DL

LLabel
i , (3)

where α is a balancing hyperparameter. It is worth mentioning that, although it may be
possible to pull more instances toward the anchor, e.g., by relying on some pseudo-labels
of unlabeled images, we chose a more conservative approach in SMoCo based only on
labeled images. This is to avoid introducing labeling noise to the learning of semantic
representations. Figure 2 provides a graphical overview of SMoCo.

Each image in 
training set

Augmentation

𝑥𝑥𝑖𝑖𝑎𝑎

𝑥𝑥𝑖𝑖+ 𝑧𝑧𝑖𝑖+

Memory 
queue

𝑧𝑧𝑖𝑖𝑎𝑎
if 𝑥𝑥𝑖𝑖 ∈ 𝒟𝒟𝐿𝐿
has label  

𝑓𝑓𝜙𝜙

𝑓𝑓𝜃𝜃

Pull

ℒ𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑧𝑧𝑖𝑖𝑖−

𝑧𝑧𝑖𝑖𝑖−

⋮
𝑧𝑧𝑖𝑖𝑖𝑖−

𝑧𝑧𝑖𝑖𝑖−

𝑧𝑧𝑖𝑖𝑖−

⋮
𝑧𝑧𝑖𝑖𝑖𝑖−

ℒ𝑖𝑖𝐿𝐿𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿

ℒ𝑖𝑖𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
Combined Loss𝑥𝑥𝑖𝑖 ∈ 𝐷𝐷

Pull

Push

𝑧𝑧𝑖𝑖𝑎𝑎
Push

Figure 2. Graphical overview of SMoCo. For a given image xi, two augmentations are applied to
generate a positive instance x+i and an anchor xa

i . Both instances are fed into 3D ResNet-50 encoders fφ

and fθ to obtain representations z+i and za
i , respectively. LMoCo

i aims to pull z+i toward za
i because they

are created from the same image, while pushing other instances in the memory queue away from za
i .

LLabel
i leverages label information from the memory queue, ensuring the representations from the same

class are pulled closer to za
i . LMoCo

i and LLabel
i are combined as the final loss in SMoCo, LSMoCo

i .



Bioengineering 2023, 10, 1141 6 of 13

2.3. SMoCo Implementation Details and Fine-Tuning

Inspired by recent works [23–25], a 3D ResNet-50 encoder [26] with the fully con-
nected layers replaced by a two-layer multilayer perceptron was chosen for the key and
query networks. For the encoder, we replaced the first 7× 7× 7 convolution layer by a
3× 3× 3 convolution layer with a stride of one and zero padding of one. The architecture
of the 3D ResNet-50 encoder is depicted in Figure 3. The output dimension of the multilayer
perceptron was set to 128.

We set τ = 0.2, K = 1024, and the exponential moving average coefficient as 0.95.
Pre-training was performed for 100 epochs with a batch size of 16. The network was
optimized using the AdamW [27] optimizer with a momentum of 0.9 and a learning rate of
0.0001. The learning rate is gradually dropped to zero by following a half-cosine schedule.
For the proposed SMoCo loss function, values in 0.25, 0.5, 1, 2, 3, 5 were used to investigate
the effect of the balancing hyperparameter α.

After the pre-training is finished, the next step is fine-tuning. Specifically, the multi-
layer perceptron of the query network was substituted with a single-layer softmax classifier.
Then, the network was trained using the pre-trained weights as initial values to minimize
the cross-entropy loss for classification based on DL. During inference, this fine-tuned
network was used to predict the conversion status of each new patient based on their 3D
amyloid-PET. All models were implemented with Pytorch [28] and scikit-learn [29].

Input Image
(72 × 72 × 72)

Residual Block
(64, 64, 256) × 3

Residual Block
(128, 128, 512) × 4

Residual Block
(256, 256, 1024) × 6

Residual Block
(512, 512, 2048) × 3

Global Average
Pooling

Representation
(2048)

(a) 3D ResNet-50 Encoder

Conv (1 × 1 × 1)
𝐾𝐾1 kernels

Batch Normalization

ReLU

Conv (3 × 3 × 3)
𝐾𝐾2 kernels

Batch Normalization

ReLU

Conv (1 × 1 × 1)
𝐾𝐾3 kernels

Batch Normalization

ReLU

+

(b) 3D Residual Block

Figure 3. (a) Structure of ResNet-50 encoder used for SMoCo (the same encoder is used for fφ and
fθ). The numbers in a bracket denote K1, K2, and K3 of a 3D residual block, respectively. (b) Structure
of 3D residual block in the encoder.
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3. Results
3.1. Representation Quality Evaluation for Pre-Training Step

In SSL, high-quality representations learned in the pre-training step are important for
the downstream task. Here, we compared the representation quality of SMoCo and MoCo.
Specifically, we trained SMoCo to minimize the loss in Equation (3) with α = 1 and obtained
the representation vector for each training sample. The same was performed for MoCo.
To visualize the distribution of the training samples, we used Uniform Manifold Approxi-
mation and Projection (UMAP) to reduce the dimensionality of the representation vector
to two. Figure 4 compares the UMAP representations of MoCo and SMoCo. As shown in
Figure 4b, converter and non-converter samples overlapped more when MoCo was used.
During learning of the semantic structure of the images, converters and non-converters
were separated to some extent because they have different amyloid-PET characteristics.
However, the classes were not separated enough, because MoCo is designed to produce
general representations, not for the specific classification task. Compared with Figure 4a,
we can confirm that SMoCo more clearly separated converters and non-converters.

(a) SMoCo (α = 1.0) (b) MoCo

Figure 4. UMAP visualization of the representations of training images. (a) SMoCo; (b) MoCo. Grey,
blue, and red points refer to the unlabeled images, converters, and non-converters, respectively.

Furthermore, we compared SMoCo and MoCo using a more quantitative approach
than visualization. The idea was that a better representation should entail a better classifica-
tion of labeled samples based on their representation vectors. To this end, we obtained the
representation vectors of samples in the validation set by applying the trained SMoCo and
MoCo. Different values of the hyperparameter α were tried for SMoCo. Then, a k-nearest
neighbor (k-NN) algorithm with k = 5 was used to classify each validation sample, and
the Area under the Receiver Operating Characteristics (AUROC) was reported to appro-
priately evaluate the models with class imbalance. k-NN was adopted because it has been
a common choice to evaluate representation quality of SSL [30]. As shown in Table 2, it
can be observed that SMoCo enhances the representation quality over MoCo regardless
of the value of α. Namely, the proposed loss function helps the model to provide more
appropriate representations for classification tasks because, it is designed to perform the
given purpose well. The best AUROC is obtained when α = 1, which is 4.70%p higher than
MoCo. Furthermore, it can be observed that the model performance gradually decreases
when α is greater than one. Our interpretation is that the model focused too much on
aggregating the instances of the same class so that the instance discrimination task was
not properly performed. Overall, a good balance between the two losses combined in
SMoCo, i.e., LMoCO and LLabel , is important to achieve the best representation for dif-
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ferentiating converters vs. non-converters. Based on the results, we fixed α = 1 in the
remaining experiments.

Table 2. Representation quality comparison in the pre-training step on validation data. The average
values with standard deviations are reported. The best result is boldfaced.

Model MoCo SMoCo

α 0 0.25 0.5 1 2 3 5

AUROC 76.37
(3.60)

79.24
(3.32)

80.35
(2.94)

81.07
(3.02)

80.63
(3.71)

79.41
(3.40)

78.96
(3.55)

Moreover, we showed the AUROC on validation data along training epochs for both
MoCo and SMoCo in Figure 5. Both models demonstrate stable convergence. SMoCo con-
sistently outperforms MoCo with higher AUROC across the training epochs. The SMoCo
curve increases earlier than MoCo, indicating that the integration of label information
during pre-training can accelerate the model’s ability to capture representations vital for
downstream classification.

Figure 5. Comparing AUROC of SMoCo and MoCo across training epochs. SMoCo shows faster and
efficient training, as well as higher performance than MoCo.

3.2. Classification Performance and Comparison

Finally, we conducted extensive experiments comparing the classification accuracy
of our method with a variety of existing methods, including supervised classification,
three popular semi-supervised learning methods (pseudo-labeling [31], virtual adversarial
training [32], and stochastic weight averaging [33]), and MoCo.

Supervised classification refers to the conventional model that is trained using only
labeled data DL. It was trained for 100 epochs with an AdamW optimizer using an initial
learning rate of 0.0001. The learning rate was also decreased to zero using a half-cosine
schedule. The batch size was set to 16. Semi-supervised learning models were trained on
DL and DU . Unlike SSL, which involves a pre-training and a fine-tuning step, these models
were trained at once by incorporating both the cross-entropy loss for DL and an additional
loss for DU proposed by the corresponding method. The same training hyperparameters
as supervised classification were used.

To evaluate the classification performance of MoCo and SMoCo, we fine-tuned the
networks for 10 epochs. Other training hyperparameters were kept the same as supervised
classification. These methods are referred to as “MoCo and Fine-Tuning” and “SMoCo
and Fine-Tuning” in Table 3. In addition, recognizing that fine-tuning the entire network
requires considerable time, another commonly used approach is to use an SSL model as a
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feature extractor and train a simple classifier based on the representations [34]. We used
this approach and trained a random forest classifier [35] with the generated representation
vectors from the pre-trained SMoCo. This method is referred to as “SMoCo and Random
Forest” in Table 3. Note that random forest cannot be used directly on 3D image data
and a prior feature extraction step is needed. Therefore, the “SMoCo and Random Forest”
approach is intended to demonstrate the effectiveness of SMoCo as a feature extractor.

Furthermore, noting that our amyloid-PET data has a class imbalance, we applied a
resampling technique in every mini-batch to address the problem. We also used an adaptive
cutoff strategy to select the threshold for classification probability to assign each sample
into a binary class (converters vs. non-converters), which is a recommended strategy under
class imbalance [36]. We reported evaluation metrics such as AUROC, accuracy, sensitivity,
and specificity.

Table 3 presents the classification results. Overall, classification performance is good in
the order of SMoCo, MoCo, semi-supervised methods, and supervised classification. It can
be noticed that simply using MoCo enhanced the model performances, especially in terms
of AUROC and sensitivity. It improved the prediction of the minority class (converters).
We can confirm that the general data representations learned from SSL led to classification
performance improvements.

Table 3. Classification performance on test data. The average values with standard deviations are
reported. The best result is boldfaced.

Category Model AUROC Accuracy Sensitivity Specificity

Supervised Supervised Classification 81.53 (3.81) 77.68 (4.01) 73.20 (4.22) 78.89 (3.65)

Semi-Supervised
Pseudo-Labeling 81.89 (3.93) 77.97 (3.53) 73.22 (3.68) 79.18 (3.97)

Virtual Adversarial Training 82.03 (3.36) 78.13 (3.99) 73.43 (2.98) 78.03 (3.50)
Stochastic Weight Averaging 82.27 (3.88) 78.19 (3.45) 73.65 (3.39) 78.08 (4.10)

Self-Supervised
MoCo and Fine-Tuning 83.01 (3.59) 78.37 (3.13) 74.23 (2.89) 78.39 (3.77)

SMoCo and Random Forest 84.86 (3.31) 79.10 (3.09) 74.96 (3.58) 80.03 (3.12)
SMoCo and Fine-Tuning 85.17 (2.87) 81.09 (3.38) 77.39 (2.97) 82.17 (3.26)

Moreover, the proposed SMoCo further improved the performance of MoCo. Both
training a random forest classifier and applying fine-tuning showed better performance
than other models. Fine-tuned SMoCo achieved the best performance with considerable
gains of 2.16%p of AUROC, 2.72%p of accuracy, 3.27%p of sensitivity, and 3.78%p of
specificity than MoCo. This, in turn, proves our original conjecture that “pulling” additional
instances with the same label as the labeled images in the training set, as performed by
SMoCo, help learn more suitable representations for the downstream classification and
bring a substantial performance gap.

4. Discussion

Compared to the other application areas of computer vision, the use of SSL in AD
studies is quite limited, with only a handful of recent papers focusing on 3D MRI. To classify
AD and health controls, an SSL method utilizing a data augmentation technique that mixes
medically relevant regions was proposed [37]; a multimodal SSL model was used to
combine structural and functional MRI [20]. To predict MCI conversion, a benchmarking
study was performed, which revealed that some SSL methods have advantages over
supervised pre-training, multitask learning, and multiclass learning [38]. Also, a two-stage
model was proposed, which combined transfer learning and self-supervised contrastive
learning [11]. However, no study using SSL on 3D amyloid-PET has been found.

On the other hand, there are existing studies using amyloid-PET, by itself or combined
with other imaging modalities, for MCI conversion prediction. However, these studies
are based on pre-extracted features. One study used the fractal dimension and Shannon
entropy as extracted features from amyloid-PET and trained a support vector machine for
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classification [12]. Another study built a multimodal sparse representation-based classifier
based on pre-defined features from various regions of interest obtained from amyloid-PET
and MRI [39]. A transfer learning method was proposed to exploit features extracted from
regions of interest of amyloid-PET, FDG-PET, and MRI, which can account for missing
modalities [40]. In comparison to these studies, our study achieved better and similar
performance, but provided an end-to-end method based directly on 3D amyloid-PET
without feature engineering.

This study has several limitations. First, SMoCo tends to pull negative instances of
the same class as the anchor from the memory queue. This might make the model over-
rely on class information, potentially ignoring subtle within-class variations. Recognizing
that a class can have diverse patterns, as seen when diagnosing patients with varied
symptoms under the same label, a more nuanced approach is required. Like Prototypical
Contrastive Learning [41], we can address this by clustering instances and identifying a
representative ‘prototype’ for each cluster. This can allow model to account for both the
nuances of individual instances and the broader class patterns. Second, this study is based
on amyloid-PET data only. Integrating other data modalities such as demographics, clinical
records, and MRI has the potential to improve model performance. In a proof-of-concept
experiment, we added age, gender, education years, and mini-mental state examination
to the fine-tuning stage of SMoCo based on amyloid-PET, as demonstrated in Table 1
and Figure 1. We found improvement over using amyloid-PET alone (AUROC = 86.12%,
accuracy = 82.19%, sensitivity = 78.52%, and specificity = 83.71%). We expect further
improvement by including MRI, which can be explored in future research. Third, it is
well-known that training deep learning models requires large amounts of data, while the
sample size of our study is still limited. To expand the training capacity, we could leverage
pre-trained 3D networks based on large medical image datasets such as Swin UNETR [42]
and Med3D [43]. Last but not least, this study is based on ADNI data. It is important to
further validate the proposed method using other datasets than ADNI. To this end, we
acquired another public dataset commonly used for AD studies, the Australian Imaging
Biomarkers and Lifestyle Study of Ageing (AIBL) [44]. The AIBL dataset contains a limited
number of amyloid-PET images with 28 converters and 14 non-converters. To apply our
method to the AIBL dataset, we further fine-tuned the previously obtained ADNI-based
model using AIBL data. We used 5-fold cross validation, i.e., including 4 folds of AIBL data
to further fine-tune the ADNI-based model, testing on the remaining fold, and iterating
this process through all folds to compute performance. This resulted in an AUROC of
82.50% on the AIBL dataset, which is comparable to the testing performance using the
ADNI dataset (AUROC = 85.17%). This result demonstrated the generalizability of our
method, while we acknowledge that the AIBL dataset has a limited sample size. Further
validation using larger datasets is needed, and will be explored in future research.

5. Conclusions

In summary, our study is among the first ones that leverage SSL to predict MCI
conversion to AD based on 3D amyloid-PET Images. Amyloid-PET images have favor-
able characteristics for early AD diagnosis. We used 3D images to avoid using feature
engineering that requires domain knowledge and related tools. The main advantage of
SSL is to enable the leveraging of a large amount of unlabeled images to learn general
representations, which helps improve the downstream classification task. In AD research,
collecting a sufficient amount of diagnosis labels is costly and time-consuming. Therefore,
utilizing unlabeled data can be an important benefit. To further strengthen the advantage
of SSL, we proposed SMoCo to learn more suitable representations for the downstream
classification task of converters and non-converters. Our experimental results showed that
SMoCo outperformed a variety of existing SSL, semi-supervised learning, and supervised
learning models.
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