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Abstract: Signet ring cell (SRC) carcinoma is a particularly serious type of cancer that is a leading
cause of death all over the world. SRC carcinoma has a more deceptive onset than other carcinomas
and is mostly encountered in its later stages. Thus, the recognition of SRCs at their initial stages
is a challenge because of different variants and sizes and illumination changes. The recognition
process of SRCs at their early stages is costly because of the requirement for medical experts. A timely
diagnosis is important because the level of the disease determines the severity, cure, and survival rate
of victims. To tackle the current challenges, a deep learning (DL)-based methodology is proposed in
this paper, i.e., custom CircleNet with ResNet-34 for SRC recognition and classification. We chose this
method because of the circular shapes of SRCs and achieved better performance due to the CircleNet
method. We utilized a challenging dataset for experimentation and performed augmentation to
increase the dataset samples. The experiments were conducted using 35,000 images and attained
96.40% accuracy. We performed a comparative analysis and confirmed that our method outperforms
the other methods.

Keywords: medical imaging; histopathological images; signet ring cell; CircleNet; DenseNet

1. Introduction

As per a report by the World Health Organization, SRC carcinoma is an inadequately
cohesive carcinoma, that is, a combination of large tumor cells with permanent cytoplasmic
mucin and a semi-circular-shaped nucleus that is unconventionally located. A total of 90%
of SRCs exist in the stomach but are present in smaller numbers in other organs, i.e., the
pancreas, colon, and gallbladder [1].

Ring cell carcinoma can form on its own or in conjunction with any sort of malignant
tumor in an organ [2]. The nuclei surrounding ring cells typically have a crushed appear-
ance, and they usually have mucinous cytoplasm. Ring cells are uncommon compared
with other kinds of gastric cancer and are easy to miss during microscopic examinations [3].
Atrophic gastritis is difficult to identify from background mucosa, and because it resembles
gastritis, untrained endoscopists may fail to make an early diagnosis [4]. Since the stage
of the disease impacts the intensity and course of treatment, patient survival rates vary
according to cancer stage. Although patients with advanced stomach cancer have a terrible
prognosis, patients with an early diagnosis have a five-year survival rate of more than
90% [5]. Since the t-stage is typically used to determine the grounds for endoscopic resec-
tion and minimally invasive surgery, the extent of tumor invasion is crucial to determining
a patient’s therapy [6]. Therefore, the early detection of SRCs will improve patients’ chances
of receiving the right care. Early diagnosis also presents a chance to treat patients with
organ-preserving endoscopic procedures like endoscopic mucosal resection [7]. A sample
image of SRCs affected by carcinoma is shown in Figure 1.
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Figure 1. Sample images; the green boxes show signet ring cells in the images.

Medical imaging is essential and frequently used for early cancer detection, moni-
toring, and post-treatment follow-up [8]. However, manual interpretations of numerous
medical images take a lot of time and are prone to errors. As a result, beginning in the early
1980s, computer-aided diagnosis systems were developed to improve productivity and aid
physicians in interpreting medical pictures [9].

DL is currently being used in computer-aided diagnosis systems, which outperforms
traditional computer vision techniques like machine learning (ML). DL-based artificial
intelligence has recently advanced in numerous medical sectors and has proven to be the
most successful artificial-intelligence-based analysis in computer-aided imaging [10]. Many
different fields have used artificial intelligence for image classification and image detection,
including the diagnosis of gastrointestinal neoplasms [11], the comparison of drugs [12],
the diagnosis of retinal disease [13,14], and the detection of metaphase [15].

Even though researchers have begun to suggest procedures for the identification
of SRCs, it is still difficult to accurately identify these cells, which are associated with
hazardous diseases. Moreover, the early recognition of SRCs is a complex task due to
their diverse characteristics, such as their shape, size, and color. Machine learning (ML)
techniques outperform human brain intelligence in their capacity to handle difficult real-
world issues. However, the main problems with ML-based approaches are their low
effectiveness and prolonged processing times due to the fact that these frameworks generate
long, complex codes that raise computational complexity. Regarding the cost of increased
code complexity, DL-based approaches have been developed to address the problem of long
codes. Additionally, it is difficult to apply established methodologies to real-world settings.

Due to the intricate appearance of SRCs, the detection of these cancer cells is a difficult
task. In the proposed approach, to address the shortcomings of the previous techniques,
we introduce a framework using CircleNet with ResNet-34. For the extraction of keypoints,
we used the ResNet-34 method, in which the CircleNet framework is used to localize and
classify the SRCs. ResNet is a good feature extractor because it has fewer parameters
and is also more lightweight than the other models. In addition, we used a challenging
dataset with challenging SRC sizes, colors, and forms containing several image artifacts
such as noise, blurring, and intensity changes. The primary contributions of our research
are listed below:

• We present the CircleNet model, which performs well in a variety of settings including
noise, blurred light fluctuations in size, etc.
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• Our approach is capable of identifying SRCs and has no trouble identifying photos of
a healthy patient.

• The ResNet-34 framework’s accurate feature computation power makes the suggested
technique resistant to SRC recognition.

• Because the CircleNet architecture can handle overfitted training data, the provided
system is resilient to image post-processing attacks.

• To avoid overfitting, we performed data augmentation, which also increases the
model accuracy.

The next part of this study is set up as follows: in Section 2, we present previously
published studies. In Section 3, we present investigations on data preparation, data augmen-
tation, and the suggested method. Section 4 includes a discussion of the results, analyzed
together with the experimental findings. The conclusion and future work are included in
Section 5.

2. Related Work

Here, an in-depth analysis of the work already performed for SRC identification and
recognition is reviewed. The rapid increase in the evolution of numerous cancers has urged
the research community to introduce computer-aided diagnostic systems due to the slow
detection ability of manual procedures. Moreover, the existing systems are vastly reliant on
the accessibility of domain experts. The extensive progression in the area of AI and ML
has introduced powerful approaches that are able to detect medical diseases due to a high
recall rate [16–21].

The early identification of SRCs is a time-consuming and difficult task because of
the complex properties of the cancer cells, which alter their structure from other types
of body cells [22]. Several techniques accompanying different ML approaches, including
supervised or semi-supervised methods, have been investigated by researchers. However,
such methods were found to be not very proficient for the accurate detection of SRCs
from medical samples. Li et al. in [23] introduced a methodology to identify and classify
SRCs from healthy cells of human bodies using a semi-supervised learning approach. The
work presented in [23] shows improved SRC recognition results by merging the techniques
that promote the efficient use of both labeled and unlabeled samples. However, this
approach is economically inefficient. Similarly, a technique was proposed in [24] where a
DL framework was used to locate SRCs in suspected samples by reducing the occurrence
of false positives using the partially annotated samples. Specifically, an object detection
model named RetinaNet was used to correctly detect and classify the samples either as
healthy or SRC-affected. To improve the recognition ability of the introduced approach,
the model used a self-learning technique using non-maximum suppression to enhance
the detection power of the RetinaNet model. This work showed better SRC detection and
classification results; however, the model was unable to perform well under the occurrence
of intense brightness changes.

Wang et al. [25] also presented a framework to locate the occurrence of SRCs in the
human body by proposing a model, namely, the classification reinforcement detection
network (CRDet), based on cascaded RCNN. The major goal of the CRDet approach was
to improve the SRC detection performance of the model by selecting a reliable set of
keypoints that could assist in locating the affected areas of small size. The approach used
in [25] performed well in locating SRCs of small sizes; however, there was an over-fitting
issue. Another DL approach was used in [26] to identify SRCs from medical images.
The technique described in [26] used the region proposal approach and the embedding
model layers, which permitted resemblance learning for model training. The approach
was efficient in locating and classifying SRC-affected areas; however, the classification
accuracy needs enhancements. Lin et al. [22] used decoupled gradient harmonizing along
with classification loss. The approach was proficient in identifying diseased areas; however,
performance decreased in the case of noisy samples. Saleem et al. [27] introduced a DL
framework to accomplish the recognition of SRCs from medical images. Specifically, the
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authors used an object detection approach known as Mask-RCNN. Initially, the suspected
samples were passed as input to the Resnet-101 module to extract the keypoints, which were
later delivered to RPN to produce region RoI proposals along with the use of the RoiAlign
unit. Then, the RoIAlign module of the Mask-RCNN model merged the keypoints maps
along with the RoI proposals to create segmentation masks. Finally, the fully connected
(FC) layer of the model executed the segmentation task by drawing the bonding region
over the affected areas and outputting the classification score. The work showed better SRC
detection and segmentation results; however, it suffered from the high computational cost.

Another approach was presented in [1] for the automated detection of SRCs. The
preprocessed images were used to train several DL approaches like VGG16, VGG19, and
InceptionV3. The method attained the best results for the VGG16 model; however, the
framework requires extensive training data. Moreover, in [23], a framework using both
conventional ML and DL approaches was proposed to facilitate the early diagnosis of SRCs
from input images. The method was robust to SRC detection; however, the recognition
performance needs further improvements. Zhang et al. [28] proposed an approach for SRC
detection and categorization from noisy samples. The authors proposed a DL framework,
namely, RetinaNet, combining an unfolding super-resolution network (REUR) to locate
the occurrence of SRCs in low-quality samples. In the first step, the model used the super-
resolution (SR) unit, which is capable of differentiating high and low-quality samples
from the training samples. Then, the approach used the label correction unit to enhance
the ground-truth labels from noisy samples, which were later passed as input to the
gradient harmonizing mechanism for training loss computation. Finally, the affected
region was located with the help of the binding box. The method proposed in [28] was
proficient in detecting the SRCs from distorted images; however, it suffered from increased
computational cost.

Numerous approaches have been discussed by researchers for the reliable and timely
detection of SRCs; however, there is a need for a more efficient approach. Table 1 lists a
summary of the existing works. In this study, we tried to fill this gap by proposing a more
accurate and effective model for SRC recognition.

Table 1. Summary of related work.

Reference Method Results Limitation

[1] VGG 16 Recognition of SRCs Requires extensive training data

[22] Decoupled gradient
harmonizing Proficient in identifying diseased areas Performance decreases in the case of

noisy samples

[23] Semi-supervised learning Classification of SRCs Economically inefficient approach

[24] RetinaNet Binary classification with good results
Unable to perform well under the

occurrence of intense
brightness changes

[25] Classification reinforcement
detection network (CRDet) Locates the occurrence of SRCs Overfitting issue

[26] Resemblance learning Efficient in locating and
classifying SRCs

Classification accuracy needs
enhancements

[27] Mask-RCNN Classification and segmentation
of SRCs Small dataset

[28] RetinaNet SRCs detection and categorization from
noisy samples Increased computational cost
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3. Proposed Method

We proposed an improved CircleNet for signet ring cell detection from histological
images. The method has the following modules: firstly, annotations are performed and
then a localization step is performed to recognize the SRC with the respective class. The
overall structure of our methodology is described in Figure 2. According to our proposed
method, we generated annotations with the help of experts and ground truths, which are
essential for model training. Afterward, in the test module, the input images along with
the bounding circle are fed into the model for feature extraction. The Resnet-34 network
is used for deep feature estimation from input images. In the final module, the proposed
CircleNet is utilized for the localization and classification of SRC. So, the performance
of our framework is evaluated using computation metrics that are standard in computer
vision. The steps are given in Algorithm 1.
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Figure 2. Architectural figure showing the proposed method.

3.1. Data Preparation

In this step, we performed data augmentation and also generated annotations of the
data. DL-based methods require a lot of data for training, so data augmentation is an
essential process to increase the data. Data augmentation can be helpful in attaining a
higher accuracy of the model and reducing the overfitting problem. Data augmentation is
utilized for the creation of data, which is a useful technique for increasing the quantity and
variety of data. In this paper, we applied geometric augmentation approaches, i.e., blur,
cropping, flip, and rotation, on the given data to increase its size.

In the next step, we generated annotations with the help of experts and ground truths.
Annotations are necessary to recognize the SRC area in the image; for this purpose, we
utilized the VGG annotator [29]. The annotated bounding circle values and their respective
class details are kept in the file, which is later used for model training. The final annotated
file is used as input along with images in the proposed CircleNet framework.
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Algorithm 1: Steps for the Presented Approach

INPUT: TS, annotations
OUTPUT: Localized RoI, C_Net, Classified lesion

TS: training samples
Annotation (position): bounding box coordinates of lesions in sample
Localized RoI: lesion position
C_Net-: ResNet34-based CenterNet

Image-Size← [p q]
// Bounding box approximation
Ӓ← AnchorsEstimation (TS, annotation)
// C_Net framework
C_Net← ResNet34-based-CenterNet (Image-Size, Ӓ)
[Tr, Ts]← partitioning of the database into train and test set
// Lesion Identification Training Unit
For each sample I in→ Tr

Compute ResNet34 keypoints→ nm

End
Training C_Net over nm, and measure training time t_res
η_res← PreLesionLoc(nm)
Ap_res← Evaluate_AP(ResNet34, η_res)
For each sample I in→ Ts

(a) Compute keypoints using trained model €→βI;
(b) [Bounding_box, objectness_ score, class]←Predict (βI);
(c) Show sample along with bounding_box, class;
(d) η← [η bounding_box].

End For
Ap_€← Evaluate model € using η

END

3.2. CircleNet

The efficient and accurate recognition of SRC is challenging and can be completed
effectively if the framework computes the deep features of images. However, the computa-
tion of deep features is a complex task because of various factors, for example, the model
would miss some essential features if it utilized a small set of features. Another issue arises
when the model uses a large set of features, which increases the computational time.

Texture-based feature detection techniques are not robust to SRC recognition because
of different variations present in color, size, and positions. Moreover, an accurate SRC
detection model demands the proposal of a system that is competent and adequate to
instinctively acquire image features without the requirement of using hand-crafted key-
points. To address the above issues, we presented a CircleNet model that automatically
understands the varying nature of SRC regions from histological images. The CircleNet
layers deeply learn the features from test images by exploring their structural details.

The evolution of several object recognition approaches has compelled researchers
to use them in medical image analysis. These methods are classified either as two-stage,
like the RCNN [30], Fast-RCNN [31], Faster-RCNN [32], or one-stage, like YOLO, SSD,
RetinaNet, CornerNet, and CenterNet. The problem with two-stage models is that they
offer improved classification solutions at the overhead of an increased processing cost.
Two-stage techniques follow two phases to discover and classify suspected regions from the
images, which makes them ineffectual for real-world examples. One-stage models offer a
low-cost result to SRC recognition but also have low performance gain. Therefore, accurate
SRC identification is a complicated task because of some factors including: (i) extensive
variations in color, size, and shape and (ii) the existence of intensity fluctuations and
the occurrence of multiple SRCs in an image. Furthermore, to handle the above-stated
challenges and to address the tradeoff between both SRC identification performance and
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time, we chose to use the CircleNet model due to its ability to learn important image
features while preserving the time complexity as well. Moreover, the cbbox generation
ability of CircleNet makes it suitable for SRC identification while maintaining its contours
as well.

3.3. ResNet-34-Based Features Extractor

All object detection models usually use a CNN framework that is focused on comput-
ing the keypoints of input images to extract meaningful information from samples and
show it in a viable manner. A computed feature vector is utilized to identify regions of in-
terest (RoI) and accomplish a classification task in numerous object recognition approaches.
Descriptively, the more reliable a base model in computing a nominative set of sample
features, the more chances there are to enhance the object identification and classification
results [33]. For this reason, we selected ResNet-34 [34] together with the convolutional
block attention module (CBAM) [35] as the backbone of the improved CircleNet mode,
which eventually enhanced SRC recognition performance. ResNet is a well-known DL
model that exploits identity shortcut links and residual mapping between the framework
layers to attain efficient accuracy. The complex DL models forwarded the results of each
earlier layer to the next layer, which calculated a dense keypoints vector. However, for
such techniques, the extensive increase in the depth may affect the model recognition
performance due to the occurrence of vanishing gradient issues in the model training phase.
To address the issues of existing approaches, the ResNet technique proposed the concept of
residual blocks (RB) that use skip links in deep models to bypass several layers.

This structure passes the utilization of computed keypoint maps from the prior layers,
which delivers enhanced performance and easier training. A visual depiction showing
the RB is given in Figure 3. An RB includes numerous Con layers and uses ReLU as the
activation function. Moreover, it encompasses a batch normalization layer together with
shortcut connections. Within RBs, the stacked layers are focused on performing the residual
mapping by creating shortcut links that accomplish locating mapping (y). The outputs
are joined with the stacked layers’ output residual function F(y), which is elaborated in
Equation (1).

Z = M(y) + y (1)

where y represents the input, M represets the residual method, and Z represents the output
of the residual method.
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We improved the network structure of ResNet-34 by introducing a CBAM-based
attention block (AB) [35] at the start of the framework. The basic reason to propose the
CBAM block is that it advances the illustration of keypoints using an attention mechanism.
The introduced ABs support the model to emphasize the SRC-affected areas while over-
whelming unrelated sample data and refining classification results by altering complex
circumstances, like chrominance, brightness, and lighting conditions. The CBAM unit up-
grades the CNN-computed keypoints by incorporating pixel- and channel-wise attention
and consequently boosts DNN results. The CBAM block is trained with the base CNN
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along with a small added overhead because of its shallow structure. The architectural
description of the custom base network is listed in Table 2. Additionally, the starting 7 × 7
Con along with the max-pooling layer are switched with three stacked 3 × 3 Con layers to
evade down-sampling phases in the initial Con layer. Moreover, to minimize computational
burden, 64 channels are used for newly introduced Con layers.

Table 2. Detailed architecture specification of the conventional and modified ResNet-34 model.

Name Conventional Improved

Con1 7 × 7, 64, 3 × 3 max pool [3× 3, 64] × 3, 7 × 7 Attention
Con2_x

[
3× 3, 64
3× 3, 64

]
× 3

[
3× 3, 64
3× 3, 64

]
× 3

Con3_x
[

3× 3, 64
3× 3, 64

]
× 4

[
3× 3, 64
3× 3, 64

]
× 4

Con4_x
[

3× 3, 64
3× 3, 64

]
× 6

[
3× 3, 64
3× 3, 64

]
× 6

Con5_x
[

3× 3, 64
3× 3, 64

]
× 3

[
3× 3, 64
3× 3, 64

]
× 3

3.4. Heatmap HEAD

After the keypoints are calculated with the help of the modified ResNet34 model,
the down-sampling step is used to minimize the feature space. Then, the heatmap head
unit takes the extracted feature vector as input to perform a feature approximation. The
basic purpose of this module is to locate the SRS-affected areas from the input images. The
keypoint approximation results in the computation of the cbbox center to trace the RoI,
i.e., SRC regions, which is computed using Equation (2).

ôu,v,s = exp(−

(
u− d̂i

)2
+
(

v− d̂j

)2

2σ2
d

) (2)

where u and v denote the location of the real ground-truth keypoints and d̂i and d̂j denote
the location of the computed down-sampled keypoints. Additionally, σ2

d shows the kernel
variance and s denotes the total categories, which was two in this study. The ôu,v,s indicates
the computed center value over the designated keypoints set having a value up to 1, while
the rest are considered as background.

3.5. Offset Head

The offset head unit is designated to minimize the discretization error, which usually
occurs due to performing the down-sampling phase. After the computation of center points
from the heatmaps, they are again shifted to the original sizes.

3.6. Dimension Head

The dimension head unit is focused on calculating the coordinates of the cbbox. Once
the heatmap peaks are calculated, the next phase is to nominate H uppermost peaks having
values equivalent to or greater than the eight connected neighbors. A cluster of nominated
H central points is calculated using Equation (3).

P̂ = {(ûk, v̂k)} f or k = 1 to H (3)

Lastly, the cbbox is calculated by performing the dot product among the center point
p̂ ∈ P̂ and radius r̂. A detailed description of the CircleNet is elaborated in [36].

3.7. Multi-Loss Function

To enhance the performance of the proposed CircleNet, we used numerous multi-loss
tasks that can successfully identify SRCs having different sizes, colors, and shapes. So, it
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is important to establish such a model that utilizes efficient loss techniques for accurate
SRC detection with classification. The proposed CircleNet used different loss operations at
each stage. The usage of numerous losses at each stage of the network allows it to precisely
differentiate between the normal and affected regions. The multi-loss L function over each
input sample head is given by Equation (4).

LCN = Lh + λrLr + λoLo (4)

where LCN represents the entire loss determined using the proposed CircleNet and Lh,
Lr, and Lo represent the losses estimated across the heatmap, radius, and offset heads,
respectively. Moreover, λr and λo are constants having values of 0.1 and 1, respectively.
The heatmap loss Lh is calculated using Equation (5).

Lh =
−1
K ∑

u,v,s


(1− ôu,v,s)

α log(ôu,v,s).
i f ôu,v,s = 1
otherwise

(1−Ou,v,s)
β(ôu,v,s)

α

log(1− ôu,v,s)

(5)

where K is the total features calculated from the input sample, Ou,v,s is the original center
of the main feature, and ôu,v,s describes the calculated center of the same main feature.
Therefore, α and β are the hyper-parameters of Lh having values of 2 and 4 for all performed
investigations, respectively.

Then, the Lr is calculated using Equation (6):

Lr =
1
K ∑K

k=1|ĉk − ck| (6)

where ĉk indicates the expected dimensions of the cbbox and ck is the original coordinates
of the cbbox taken from the ground truths. Next, Lo is calculated using Equation (7).

Lo =
1
K ∑d

∣∣∣∣ f̂d̂ −
(

d
R
− d̂
)∣∣∣∣ (7)

where f̂ indicates the values of computed offset and d and d̂ are the original and down-
sampled features.

4. Results

This section describes the experimental details including the dataset, evaluation details,
results, and comparative analysis of our proposed study. We split our dataset into training
and test sets with a ratio of 70:30. The experiments are conducted using a GPU-based
machine Intel i7 16 GB ram. To train the proposed model, we choose a learning rate of
0.001, a batch size of 32, and an epoch size of 25. We utilized the Python library TensorFlow
for implementation.

4.1. Dataset

The DigestPath2019 Grand Challenge competition provided a real public clinical
dataset [37] known as the complete slide images SRC dataset, which is used in this work.
The dataset includes 90 patient-related samples: 77 positive and 378 negative samples
stained with hematoxylin and eosin at a magnification of 9/40. Each negative image
sample has a magnification of 2000 × 2000. The dimensions of each positive image sample
are comparable but not fixed. SRCs are absent from the negative samples in the dataset.
However, pathologists label the SRCs in positive images using annotation techniques.

The size of the available dataset is 455 images, which is not enough for DL-based
model training. So, we applied augmentation to increase the data, and the size of the data
after augmentation was 35,000 images. The new data consists of two classes SRC and
non-SRC images, as shown in Figure 4: Class samples from the ataset. Additionally, the
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collection contains some SRCs that pathologists have missed. In the histology sample, it is
quite challenging to tell ring cells apart from normal cells.
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4.2. Evaluation Metrics

For performance measures, we used different parameters, i.e., a confusion matrix
(CM), precision, recall, accuracy, F1-score, intersection over union (IOU), and mAP. The
CM includes some combinations of predicted and actual values like true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values.

Accuracy is measured by dividing the model’s accurately predicted regions by the
total dataset, and the mathematical expression is given in Equation (8).

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

Precision is measured by the percentage of positively predicted images that are gen-
uinely positive, as described in Equation (9). It is used to assess classifier accuracy. A low
precision rating means that a classifier encounters several FPs. High accuracy values are
essential when choosing a model.

Precision =
TP

TP + FP
(9)

Recall displays the proportion of favorable image predictions that occur. A low recall
value indicates that the classifier has a high FN rate. For model selection, a high recall value
is significant. Equation (10) shows the formula for the recall rate.

Recall =
TP

TP + FN
(10)
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The harmonic mean of the precision and recall data is used to obtain the F1 score. The
extreme cases should not be disregarded, which is why a harmonic mean should be used
instead of a basic one. A model with a precision of “1” and a recall of “0” would have
an F1-score value of 0.5, if we assume that the F1-score value is the simple average. This
result would be misleading. As a result, the F1-score number includes the harmonic mean
calculation. Equation (11) shows the mathematical description of the F1-score.

F1− Score = 2× Precision× Recall
Precision + Recall

(11)

Equation (12) depicts the mathematical formulation of mAP:

mAP :=
T

∑
i=1

AP(ti)/T (12)

where T is the number of test images and AP(ti) is the average precision of a given test
image category. This means that we calculate the AP of each category for a given test image
category, ti, and then the average of each category across all test images. All AP scores
would result in a single number, which is mAP, describing how well the trained model is
for detection.

IOU is a measure used to indicate how much two boxes overlap. The IOU increases
with the size of the overlap region. We calculated IOU using Equation (13).

IOU =
Area of Intersection of two boxes

Area of Union of two boxes
(13)

4.3. Proposed CircleNet Results

In this section, we elaborate on the SRC localization and classification results for the
proposed approach using the entire dataset. We performed two types of experiments to
show the robustness of our approach. Initially, we performed an analysis to show the
SRC recognition power of our model. Then, we discussed the categorization results of our
model in classifying the samples either as healthy or SRC-affected with the help of several
numerical measures.

4.4. Localization Results

The main characteristic of an SRC recognition model is measured using its ability to
correctly locate a diseased region from the input samples. For this reason, we performed
an experiment to measure the localization power of the custom CircleNet. The obtained
localized results are shown in Figure 5, which indicates that our approach is capable
of identifying affected regions of varying sizes, colors, and orientations. Moreover, the
proposed approach is capable of preserving the shape of ring cells due to its round binding
box generation capability. To numerically assess the power of our model, we used standard
measures, namely, mAP and IOU, as these have been heavily explored by scientists using
object detection models. The custom CircleNet model attained mAP and IOU scores of
0.959 and 0.961, respectively, which demonstrate the effectiveness of our approach for SRC
detection and classification.
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4.5. Classification Results

In this section, we explain the classification power of our model with the use of
numerous standard measures like precision, recall, F1-score, and accuracy.

The classification results in terms of precision, recall, F1-score, and accuracy attained with
the custom CircleNet for SRC recognition are shown as boxplots (Figure 6), as these provide
a better elaboration of results by showing the maximum, minimum, and average obtained
values. Specifically, we acquired precision and recall values of 96.80% and 96.10%, respectively.
The custom CircleNet approach acquired F1-score and accuracy values of 96.45% and 96.40%,
respectively, for SRC recognition, which exhibits the efficacy of the presented model.
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Furthermore, we plotted the confusion matrix as it is the most widely used graph
by researchers for discussing classification results obtained by calculating the TPR. The
obtained values are shown in Figure 7, which shows that the custom CircleNet model is
capable of recognizing healthy and SRC-affected samples accurately.
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4.6. Proposed System versus Base Models

In this section, we experimentally assessed the SRC classification performance of the
custom CircleNet against several base models, namely, Inception-V3, VGG-16, VGG-19,
ResNet-101, and GoogleNet. For a fair comparative analysis, we considered the average
results obtained using all models over the used dataset and then examined the architectural
complexities as well.

Initially, we performed a comparison of our approach with the base models by taking
the network structural specifications and discussing the total framework parameters to-
gether with their execution time. The results of the analysis are listed in Table 2. The values
reported in Table 2 demonstrate that the proposed approach contains a small number
of model-trainable parameters and requires less processing time in comparison with the
base approaches for SRC detection and classification. Specifically, the VGG19 framework
acquires the highest number of model parameters, whereas, in terms of execution time,
the GoogleNet model is the most expensive. It is quite evident from the values listed in
Table 2 that the proposed custom CircleNet approach outperforms the comparative models
in terms of structural complexity as it comprises a small number of parameters and takes
minimum time to accomplish the classification task. Based on the values reported in Table 3,
it can be said that the introduced model presents a low-cost solution to SRC detection
and classification.

Table 3. Comparative analysis with the base method.

Parameters Inception V3 VGG-16 VGG-19 ResNet-101 GoogleNet Proposed
ResNet-34

Total parameters
(million) 41.2 119.6 138.3 42.5 6.5 20.3

Execution time (s) 2042 1851 1983 2976 3366 1049

Furthermore, we performed a comparative analysis of the proposed approach with
the selected models in terms of classification accuracy. The obtained results are depicted in
the form of bar graphs (Figure 8). Specifically, InceptionV3, VGG16, VGG19, ResNet-101,
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and GoogleNet exhibit classification test accuracies of 0.756, 0.951, 0.920, 0.924, and 0.776,
respectively. In comparison, the custom CircleNet model attains a classification accuracy
value of 0.964, which is higher than all the other approaches. Specifically, the comparative
models show an average accuracy value of 86.54%, whereas the average accuracy is 96.40%
for our proposed model. Therefore, we achieved a performance gain of 9.86%.
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The major cause for the robust SRC detection and classification results of the custom
CircleNet model is due to its lightweight structure, which assists in better identifying a
more reliable set of feature sets by removing unnecessary data. Such architectural settings
of the improved CircleNet model also reduce the total parameters compared with the
other DL models, which occupy very deep framework structures and cause the model-
tuned issue. Due to this, the comparative approaches are not capable of dealing with
several image transformations like the incidence of blurring, noise, and alterations found
in the size, chrominance, and brightness of samples. Furthermore, the comparative DL
frameworks are not robust enough to tackle unseen cases. The introduced framework has
better resolved the limitations of the other approaches by selecting a better set of keypoint
vectors that permit the CircleNet model to improve SRC recognition ability. Moreover, the
circular bounding box of the CircleNet model allows it to maintain the shape of the detected
diseased regions, which further assists in better locating RoIs. Furthermore, the proposed
approach minimizes model parameters, which reduces the computational complexity as
well. Additionally, the custom CircleNet is capable of generalizing to real-world scenarios
due to its better recognition ability. Therefore, we can say that the custom CircleNet
approach presents an efficient and robust framework for SRC detection and classification.

4.7. Comparison with Object Detection Models

In this section, we performed another experiment to evaluate the proposed approach
against other object detection models. Reliable SRC detection and classification is manda-
tory as a noisy background can deceive the framework when the RoIs have very small
sizes. Moreover, the occurrence of several SRCs over a single sample further increases the
complexity of the detection procedure. To check this, we considered other object detection
models, namely, SSD, YOLO, Fast-RCNN, Faster-RCNN, and Mask-RCNN, and compared
our results with results obtained using these models.

To accomplish this, we reported the mAP score and test time for all the selected models,
and the attained comparison is listed in Table 3. We calculated the mAP measure and test
duration for all models to determine the computational complexity of the performance
analysis. An SRC detection comparison of various object detection methods is listed
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in Table 4. It is evident from Table 4 that in terms of mAP and test time, our strategy
outperforms the other approaches. Regarding the mAP values, the SSD, YOLO, Fast R-CNN,
Faster R-CNN, and Mask-RCNN approaches achieve mAP values of 0.813, 0.851, 0.845,
0.870, and 0.902, respectively, while our method achieves a mAP value of 0.959 and provides
a performance boost of 0.1022. Furthermore, because it produces region suggestions at
random and uses the selective search technique, Fast R-CNN is computationally expensive
and requires 0.45 s to complete an imaging test. Faster R-CNN processes the suspected
sample in 0.31 s and uses the RPN module to automatically generate region proposals
while sharing the convolutional layer with the class and bb network to reduce processing
costs. SSD and YOLO struggle with small-size SRCs, which reduce their performance. So,
our proposed method can detect and recognize small and large-sized objects accurately.

Table 4. Comparison with other object detection models.

Method mAP Test Time (s/img)

SSD 0.813 0.40

YOLO 0.851 0.27

Fast R-CNN 0.845 0.45

Faster R-CNN 0.870 0.31

Mask-RCNN 0.902 0.29

Proposed CircleNet 0.959 0.25

Our method outperforms other methods by creating a bounding circle as well as
completing the task in 0.25 s, which is faster than any other comparable method. Based
on the results of this study, it is obvious that the proposed approach is more reliable than
previous approaches, both in terms of model evaluation and processing time.

4.8. Proposed Method versus State-of-the-Art Techniques

For a performance evaluation, we compared our proposed technique with state-of-
the-art models proposed by Budak et al. [1], Ying et al. [24], Sun et al. [26], Wang et al. [25],
Zhang et al. [28], and Saleem et al. [27]. The reported results obtained using the comparative
methods are listed in Table 5. Our method works better than the alternatives. More
specifically, we achieved an average accuracy value of 0.964 compared with the other
methods, which achieved an average accuracy of 0.91. Thus, we can say that our approach
attained a 0.044 performance gain. In the case of precision, the models by Budak et al.,
Wang et al., and Saleem et al. achieved values of 0.95, 0.428, and 0.901, respectively. Our
method attained a higher precision than all other techniques at a value of 0.968. Similarly,
for the recall measure, our method yielded an average value of 0.961, which was higher
than the comparative approaches. The average recall of the other methods was 0.813 and
the performance gain achieved by our method was 0.148, which shows the effectiveness of
our method.

Table 5. Our method versus state-of-the-art models.

Reference Accuracy Precision Recall

Budak et al. [1] 0.95 0.95 0.950

Ying et al. [24] - - 0.877

Sun et al. [26] - - 0.735

Wang et al. [28] - 0.428 0.742

Zhang et al. [25] 0.89 - 0.677

Saleem et al. [27] 0.918 0.901 0.897

Proposed CircleNet 0.964 0.968 0.961
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The use of CircleNet is much more effective in our case because of SRC shape and
region localization. The use of the ResNet-34 framework, which produces a more robust
set of image features and helps in improved cancer cell recognition, is the cause of the
approach’s successful performance.

5. Conclusions

SRC is a dangerous form of cancer that can cause death at the developed stage. The
timely recognition of SRCs can save humans from death and painful treatment procedures.
Moreover, the complex shape of SRCs also makes the accurate detection of rings a tedious
and complex task. We attempted to address the limitations of existing works by introducing
a robust framework, namely, the custom CircleNet. Specifically, ResNet-34 was introduced
as the backbone network structure of the CircleNet model. Furthermore, the circular
bonding box assisted in maintaining the morphological shape of SRCs. Our methods
achieved 96.4% accuracy, 0.968 precision, and 0.961 for recall parameters. Both the visual
and quantitative values show that our approach can detect and classify SRC regions
accurately under the presence of several image distortions. In the future, we will conduct
experiments using other datasets and also improve our system performance.
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