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Abstract: This study aims to propose and evaluate DR-CycleGAN, a disentangled unsupervised
network by introducing a novel content-consistency loss, for removing arterial-phase motion arti-
facts in gadoxetic acid-enhanced liver MRI examinations. From June 2020 to July 2021, gadoxetic
acid-enhanced liver MRI data were retrospectively collected in this center to establish training and
testing datasets. Motion artifacts were semi-quantitatively assessed using a five-point Likert scale
(1 = no artifact, 2 = mild, 3 = moderate, 4 = severe, and 5 = non-diagnostic) and quantitatively evalu-
ated using the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). The datasets
comprised a training dataset (308 examinations, including 58 examinations with artifact grade = 1
and 250 examinations with artifact grade ≥ 2), a paired test dataset (320 examinations, including
160 examinations with artifact grade = 1 and paired 160 examinations with simulated motion artifacts
of grade ≥ 2), and an unpaired test dataset (474 examinations with artifact grade ranging from 1 to
5). The performance of DR-CycleGAN was evaluated and compared with a state-of-the-art network,
Cycle-MedGAN V2.0. As a result, in the paired test dataset, DR-CycleGAN demonstrated signifi-
cantly higher SSIM and PSNR values and lower motion artifact grades compared to Cycle-MedGAN
V2.0 (0.89± 0.07 vs. 0.84± 0.09, 32.88± 2.11 vs. 30.81± 2.64, and 2.7 ± 0.7 vs. 3.0 ± 0.9, respectively;
p < 0.001 each). In the unpaired test dataset, DR-CycleGAN also exhibited a superior motion artifact
correction performance, resulting in a significant decrease in motion artifact grades from 2.9 ± 1.3 to
2.0 ± 0.6 compared to Cycle-MedGAN V2.0 (to 2.4 ± 0.9, p < 0.001). In conclusion, DR-CycleGAN
effectively reduces motion artifacts in the arterial phase images of gadoxetic acid-enhanced liver MRI
examinations, offering the potential to enhance image quality.

Keywords: artifacts; gadoxetic acid; unsupervised machine learning; magnetic resonance imaging

1. Introduction

Gadoxetic acid is an effective liver-specific contrast agent for magnetic resonance
imaging (MRI), which is widely utilized in the detection of small hepatocellular carci-
noma (HCC) lesions [1–7]. To ensure the early diagnosis of small HCC, it is crucial
to assess arterial-phase hyperenhancement (APHE) according to the current Li-RADS
criteria [8,9]. However, numerous research findings have acknowledged the occurrence of
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side effects, such as acute transient dyspnea or transient severe motion (TSM), following
the administration of Gadoxetic acid [10–12]. These side effects can specifically result in
significant motion artifacts in arterial-phase images [10,11]. Previous studies have reported
a high incidence (5–18%) of severe degradation in image quality during the arterial phase
of gadoxetic acid-enhanced MR scans [13]. Consequently, the accurate evaluation of APHE
presentation becomes challenging, potentially leading to the incorrect classification of liver
nodules. Thus, developing an appropriate motion artifact correction algorithm becomes
essential for enhancing the quality of arterial-phase images in gadoxetic acid-enhanced
liver MRI.

Prospective techniques for motion artifact correction involve real-time adjustments to
image acquisition, often utilizing the optical tracking of target markers or continuous navi-
gator scans [14,15]. However, these prospective solutions face significant challenges when
applied to liver MRI due to the complexity of tracking nonrigid motion and the resulting
considerably longer scanning duration [14,15]. In contrast, retrospective motion correction
methods offer a different approach by making adjustments to the k-space or image data
post-acquisition, without the need for specific tracking devices or navigators [15]. Among
these retrospective techniques, the data-driven autofocusing motion correction approach
holds promise as it can be easily implemented across all scanners [15]. Unfortunately, this
approach faces obstacles in the form of a poorly conditioned and nonconvex optimization
problem [15].

With the rapid advancements in deep learning technologies, the potential of deep
learning for MRI motion correction has been extensively demonstrated, yielding promising
outcomes [16–27]. Deep learning has emerged as a powerful tool in the field of MRI
motion correction, offering a solution to address convergence issues often associated
with retrospective techniques, as mentioned previously [16,18,28]. Early deep-learning
models heavily relied on paired motion-free images for supervised learning, despite their
proficiency in artifact correction [16–18,29]. Consequently, the feasibility of these supervised
approaches diminishes due to the inherent challenge of acquiring paired motion-free images
in clinics, especially in the context of enhanced MRI scans.

Afterwards, one notable breakthrough is the introduction of the Cycle-Consistent
General Adversarial Network (CycleGAN) [20]. CycleGAN represents a significant ad-
vancement in the realm of motion artifact correction for liver MRI examinations [20,29].
A pivotal innovation in motion artifact correction using CycleGAN is the introduction of
a new non-adversarial loss named cycle-consistency loss [20]. This loss function plays a
crucial role in preserving vital image information and mitigating the risk of information loss
during the image translation process. It ensures that the translation process from the motion-
corrupted domain to the motion-free domain and back remains consistent, thus bolstering
the correction of motion artifacts [20,29]. As a result, CycleGAN alleviates the need for
paired motion-free and motion-corrupted images in clinical settings [20,29]. Furthermore,
certain unsupervised methods (e.g., Cycle-MedGAN, etc.), building upon the traditional
CycleGAN framework, have been proposed that incorporate other new non-adversarial
losses, demonstrating more promising results in motion artifact corrections [17,19,20,28].
However, despite the promise of these networks, the challenges posed by motion artifacts
in liver MRI examinations remain a formidable hurdle. The motion artifacts often manifest
in diverse and unpredictable ways, which may not be adequately addressed by the straight-
forward application of the traditional CycleGAN framework [19,26,28,30]. To tackle this
challenge, researchers have introduced end-to-end disentangled unsupervised networks,
such as DUNCAN, designed for training using unpaired data, enabling the flexible and
simultaneous correction of a range of MRI motion artifacts [26]. Experimental results
demonstrate that the method is effective in removing artifacts and retaining anatomical
details in images [26]. Nevertheless, the current disentangled framework poses complexity
concerns, featuring a total of four encoders that not only elevate computational demands,
but also introduce training challenges [26].
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Therefore, despite these advancements, there remains an ongoing need for innovative
solutions that can offer enhanced robustness, efficiency, and effectiveness in addressing
motion artifacts. Inspired by the advancements mentioned above, this study proposes
the end-to-end Disentangled Representation-Learning Cycle-Consistent Generative Ad-
versarial Network (DR-CycleGAN), which seeks to push the boundaries of motion artifact
correction in gadoxetic acid-enhanced liver MRI examinations by applying a modified
disentangled representation technique and an improvement of non-adversarial losses.
This network is built upon three key assumptions: 1. motion-corrupted images con-
sist of two distinct domains—the content domain (motion-free images) and the artifact
domain (motion artifacts)—while motion-free images possess only the content domain;
2. motion-corrupted images can be disentangled into content and artifact domains through
two separately trained encoders, enabling the generation of motion-free images by utilizing
a trained generator specifically for the content domain; 3. The breath-holding failure causes
motion artifacts always along the phase-encoding direction, meaning a novel content-
consistency loss can be designed to calculate the content consistency between the translated
image and the input image along the phase-encoding direction. In this study, we evaluate
the performance of DR-CycleGAN in correcting motion artifacts in arterial-phase images
obtained from gadoxetic acid-enhanced liver MRI examinations in patients.

2. Materials and Methods
2.1. The Proposed DR-CycleGAN Structure

The architecture of DR-CycleGAN is illustrated in Figure 1. During the training
stage, DR-CycleGAN takes unpaired motion-free and motion-corrupted images as inputs.
Motion-free images exclusively represent the content domain, while motion-corrupted
images encompass both the content and artifact domains. Similar to Cycle-GAN, DR-
CycleGAN performs the translation of motion-corrupted images to motion-free images
without requiring aligned pairs [20]. However, due to the diverse characteristics of motion
artifacts, single-cycle mapping generators may not be sufficient to generate an optimal dis-
tribution, as mentioned in the introduction [20]. To address this limitation, DR-CycleGAN
introduces two encoders, two generators, and two discriminators, based on convolutional
neural networks (Figure 1 and Supplementary S1–S3):

a. Two Encoders: A conventional “content-feature extraction” encoder (Ec) and an extra
“artifact-feature extraction” encoder (Ea). They can enhance the disentanglement of
content features (C) and artifact features (A) in motion-corrupted images (xc). By
employing both encoders (Ea and Ec), the content and artifact features (C and A) in
motion-corrupted images (xc) are separated.

b. Two Generators: G f and Gc, which were introduced to specifically generate motion-
free and motion-corrupted images, respectively. G f can generate “motion-free”
images (x̂ f , yrec

f , and ycyc
f ) reconstructed from content features (C), while Gc can

generate different “motion-corrupted” images (x̂c, yrec
c , and ycyc

c ) reconstructed from
concatenated content and artifact features (C

⊕
A).

c. Two discriminators: D f and Dc, which are employed to distinguish between recon-
structed motion-free images (x̂ f ) and real motion-free images (y f ), as well as between
fake motion-corrupted images (ŷc) and real motion-corrupted images (xc).

The primary objective of DR-CycleGAN is to accurately disentangle the content and
artifact domains. This means that regardless of the source of content or artifact features,
the reconstructed “motion-free” or “motion-corrupted” images should not be distinguish-
able from or should closely resemble real ones. To achieve this goal, the training process
involves considering all separated content features and various combinations of content
and artifact features extracted from both original motion-free and motion-corrupted im-
ages as inputs for different generators. By doing so, the network can effectively learn
the optimal disentanglement between the content and artifact domains. This, in turn,
enables DR-CycleGAN to reconstruct “motion-free” and “motion-corrupted” images that
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are indistinguishable from real ones. Following the training phase, motion artifact correc-
tion for test datasets exclusively utilizes the “content-feature extraction” encoder (Ec) and
the generator G f to obtain motion-corrected images in an end-to-end manner (Figure 1).
For a more detailed explanation of the DR-CycleGAN structures, please refer to Supple-
mentary S1. More network details about encoders, generators, and discriminators can be
found in Supplementary S2 and S3. The code of DR-CycleGAN was released on GitHub:
https://github.com/baoqingjia/DR-CycleGAN (accessed on 15 August 2023).
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Figure 1. The structure illustration of the proposed DR-CycleGAN. Briefly, the proposed DR-
CycleGAN for motion artifact correction has a content encoder (Ec) and an artifact encoder (Ea),
two generators (Gc and G f ), and two discriminators (D f and Dc). The network has six transla-
tion mappings between the motion-corrupted and motion-free image translation: Tc→ f : xc → x̂ f ,
Tf→c : y f → ŷc , Tc→c : xc → xrec

c , Tf→ f : y f → yrec
f , Tf→c : x̂ f → xcyc

c , and Tc→ f : ŷc → ycyc
f , in

which xc, ŷc, xrec
c , and xcyc

c are motion-corrupted images and y f , x̂ f , yrec
f , and ycyc

f are motion-free
images. Among these mappings, Tc→ f : xc → x̂ f can be used in motion artifact correction for test
datasets after the training phase to obtain motion-corrected images. More explicit explanations can
be found in Supplementary S1–S3. Abbreviations: T, translation mapping; c, motion-corrupted;
f , motion-free; x, images sampled from motion-corrupted image dataset; y, images sampled from
motion-free image dataset; ,̂ forward generated images; rec, direct recovered images; cyc, backward
generated images; D, discriminator; E, encoder; C, content features; A, artifact features; G, generator.

https://github.com/baoqingjia/DR-CycleGAN
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2.2. Loss in the Training

As mentioned above, the training process of DR-CycleGAN strives to ensure that all
reconstructed “motion-free” (represented by x̂ f , yrec

f , and ycyc
f in Figures 1 and 2a) and

“motion-corrupted” (represented by x̂c, yrec
c , and ycyc

c in Figures 1 and 2a) images, generated
from various inputs, closely resemble real images. Therefore, it is crucial to establish a
sound loss framework that encompasses comparisons between each type of reconstructed
“motion-free” and “motion-corrupted” images with their original counterparts. Drawing
from prior research, DR-CycleGAN incorporates three commonly used loss functions
(Supplementary S2) [17,18,24,27,28]:

a. Adversarial domain loss (Ladv): it supervises the resemblance between motion-
corrected images and the original motion-free images (x̂ f vs. y f ), as well as the
similarity between generated motion-corrupted images and the original motion-
corrupted images (ŷc vs. xc) (Figure 2a and Supplementary S2).

b. Reconstruction loss (Lrec): It is designed to minimize the pixel-wise difference be-
tween the input image and its reconstructed counterpart in the same domain trans-
lation (xrec

c vs. xc and yrec
f vs. y f ). Its primary objective is to ensure that eligible

encoders and generators do not introduce any significant discrepancies during the
reconstruction process (Figure 2a and Supplementary S2).

c. Cycle-consistency loss (Lcycle): it is another classic loss in CycleGAN and guarantees
that the images generated backward closely resemble the originals (xcyc

c vs. xc and
ycyc

f vs. y f ) (Figure 2a and Supplementary S2).

While the incorporation of these loss functions significantly enhances the training of
DR-CycleGAN, enabling it to generate motion-corrected images that closely resemble the
originals, it is essential to acknowledge an inherent limitation. These loss functions do
not account for the potential correlation between paired motion-corrected/corrupted and
original motion-corrupted/free images (x̂ f vs. xc and ŷc vs. y f ), which do not effectively
prevent the introduction of spurious information during the cross-domain translation (or
so-called “motion artifact correction”) process [31].

In reality, motion artifacts arising from breath-holding failures often exhibit a distinct
characteristic—alignment along the phase-encoding direction [18]. This leads to noticeable
discrepancies between motion-free and motion-corrupted images. Nevertheless, it is worth
highlighting that despite the presence of motion artifacts caused by breath-holding failures,
the overall total signal intensity along each column or direction remains relatively consistent
between paired motion-free and motion-corrupted images. This consistency arises because
the signals only undergo a shift along the phase-encoding direction without altering the
total intensity in this specific direction [18]. Thus, the summation ratio of pixel values
in every column along the phase-encoding direction tends to be remarkably consistent
between paired motion-free and motion-corrupted images (Figure 2b). Inspired by this
unique characteristic, we introduce a novel content-consistency loss function—Lsum. It
harnesses the consistency in the summation ratios of pixel values in every column along
the phase-encoding direction as a valuable constraint, contributing to the enhancement of
motion artifact correction within DR-CycleGAN. The formula for Lsum is as follows:

Lsum =
n

∑
i=1

(

∥∥∥∥∥∥ sumi(xc)

maxi(xc)
−

sumi

(
x̂ f

)
maxi

(
x̂ f

)
∥∥∥∥∥∥

1

+

∥∥∥∥∥∥
sumi

(
y f

)
maxi

(
y f

) − sumi(ŷc)

maxi(ŷc)

∥∥∥∥∥∥
1

)

where ‖·‖1 denotes the L1-norm, n is the pixel number of the image column which
equals 320, sumi is the summation of the pixel value in ith column, and maxi is the maxi-
mum pixel value of the ith column. Lsum serves to penalize content discrepancies between
the original dataset images and their respective cross-domain translated counterparts (in-
cluding xc vs. x̂ f and y f vs. ŷc). By including Lsum, content errors can be minimized after
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motion artifact correction, furthermore ensuring that the resulting motion-corrected images
preserve anatomical details while preventing the introduction of spurious information.

In sum, the total loss function (Ltotal) of DR-CycleGAN comprises four components:
Ladv, Lrec, Lcycle, and the proposed Lsum (Figure 2a). The total loss can be expressed
as follows:

Ltotal = Ladv + l1Lrec + l2Lcycle + l3Lsum

where l1, l2, and l3 are the balance factors to ensure similar contributions among all these
losses, which were set as 10, 10, and 0.5, respectively.
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Figure 2. The structure illustration of applied loss in DR-CycleGAN. (a) Based on different re-
constructed images obtained from six translation mappings, four types of loss were proposed to
comprehensively compare different types of images: Ladv; Lrec; Lcycle; and Lsum. (b) Among four
types of loss, Lsum is a novel proposed content-consistency loss. After calculating the ratio of the
summation of the pixel values along each column, the content information of y1 (red curve) and
∼
y1 (blue curve) at the same slice is much closer than image y2 (black curve) at another slice. More
explicit explanations can be found in Supplementary S1–S3. Abbreviations: T, translation mapping;
c, motion-corrupted; f , motion-free; x, images sampled from motion-corrupted image dataset; y,
images sampled from motion-free image dataset; ,̂ forward generated images; rec, direct recovered
images; cyc, backward generated images; D, discriminator.

2.3. Motion Artifact Grading

For subjective evaluation, the severity of motion artifacts in arterial-phase MRI
before and after motion correction was assessed using a classic five-point Likert scale:
1 = no artifact, 2 = mild artifacts, 3 = moderate artifacts, 4 = severe artifacts, and
5 = non-diagnostic (Figure 3) [10,12,18,32]. Two experienced radiologists (LY and FP)
with 25 and 13 years of expertise in abdominal radiology, respectively, independently
conducted semi-quantitative evaluations of motion artifact scales and other quantitative
measurements. Inter-measurement agreement was determined using multi-measurement
intraclass correlation coefficients (ICCs), categorized as poor (ICC, 0–0.40), moderate
(ICC, 0.40–0.75), or good (ICC, >0.75) [32]. Any discrepancies in motion artifact scales
were resolved through consensus after discussion between the two readers. Quantitative
measurements were averaged and compared before and after motion correction. Drawing
and measurement of regions of interest (ROIs) were performed on axial images using the
MITK software (version v2021.10, https://www.mitk.org/wiki/The_Medical_Imaging_
Interaction_Toolkit_(MITK), accessed on 12 October 2023), a free and open-source tool.

https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_(MITK
https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_(MITK
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2.4. Training and Test Datasets

The retrospective collection of gadoxetic acid-enhanced liver MRI data for model
training and testing was approved by the Institutional Review Board at Union Hospital,
Tongji Medical College, Huazhong University of Science and Technology (No. 2020-336).
The image data underwent deidentification preprocessing, and the need for informed
consent from patients was waived. From June 2020 to September 2020, a total of 308 adults
who underwent gadoxetic acid-enhanced liver MRI examinations were consecutively in-
cluded from a single center (Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology) for model training (Supplementary S4) [33]. The MR image
data (in DICOM file format with the same 320×320 resolution) were retrieved from the
institutional digital system (Vue PACS, version 11.3.5.8902, Carestream Health, Concord,
ON, Canada) and underwent deidentification preprocessing. Among these image data,
176 examinations (7045 slices) were acquired on a commercial 1.5T MR scanner (MAGNE-
TOM Avanto, Siemens Healthineers, Erlangen, Germany), and another 132 examinations
(9279 slices) were obtained on a 3T MR scanner (MAGNETOM Skyra, Siemens Healthineers,
Germany). The scanning protocols followed standard procedures using 3-Dimensional
Volumetric Interpolated Breath-hold Examination (3D-VIBE) sequences, as described in
previous studies (Supplementary S5) [34]. Out of the 308 examinations, 58 (4005 slices) had
no artifacts (grade-1), and the remaining 250 examinations (12,319 slices) had grade-2 to -5
motion artifacts, forming the training dataset (a total of 16,324 slices) (Supplementary S4).

For model validation, two test datasets were prepared at the same center (Supplementary S4).
From October 2020 to July 2021, out of 821 examinations, 160 examinations (11,514 slices)
were identified with grade-1 motion artifacts (no artifacts) and were used for motion ar-
tifact simulation. This was achieved by adding phase error components to the Fourier
Transform of the magnitude-only images, following a commonly used method [18]. These
160 simulated examinations (11,514 slices) were combined with the paired original MR
data as the ground truth to create a paired test dataset. Furthermore, from August 2021
to November 2021, an additional 474 consecutively obtained examinations (33,875 slices)
were designated as an unpaired test dataset.
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2.5. Training, Performance Comparisons, and Ablation Study

The total number of trainable parameters in the DR-CycleGAN network amounts to
39 million. Before training, we performed random cropping for data augmentation on
the original images to obtain 128 × 128-pixel images to prevent overfitting issue in the
training process [35]. This step can also optimize memory usage and accelerate the training
process. All training procedures were carried out on the PyTorch platform using the Adam
optimizer. The initial learning rate was set to 0.0001 and exponential decay was applied
over 10,000 iterations. Training was conducted on a computer system equipped with an
NVIDIA Geforce GTX 2080Ti with 11GB GPU memory and an Intel Core CPU i7-8700
3.7GHz. We compared the performance of our models with a state-of-the-art unsupervised
network, Cycle-MedGAN V2.0 [28]. Additionally, we conducted an ablation study on
DR-CycleGAN, examining the effects of removing our designed Lsum or incorporating an
additional artifact encoder for motion-free images. In the paired test dataset, we evaluated
and compared the motion-correction accuracies of the technique using the widely used
structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) metrics, as ground
truth data were available [36,37]. Furthermore, we compared the motion artifact grades
before and after motion correction in both the paired and unpaired test datasets. The
flowchart depicting the entire study is presented in Figure 4.
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2.6. Statistical Analysis

The paired t-tests were performed in SPSS software (version 26; IBM) to compare the
semi-quantitative and qualitative data. Statistical significance was defined at a p value < 0.01
level (two-tailed).

3. Results
3.1. Evaluation of Paired Simulated Test Dataset

In this section, we assess the performance of DR-CycleGAN in comparison to Cycle-
MedGAN V2.0 and a control group consisting of simulated corrupted image data using a
paired simulated test dataset.
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The evaluation reveals significant differences among the different networks. DR-
CycleGAN outperforms both Cycle-MedGAN V2.0 and the control group in terms of
SSIM and PSNR, with notably higher values (0.89 ± 0.07 vs. 0.84 ± 0.09/0.81 ± 0.11 and
32.88 ± 2.11 vs. 30.81 ± 2.64/30.13 ± 3.81, respectively; p < 0.001 for each comparison).
These results indicate that DR-CycleGAN achieved a better signal-to-noise ratio (a higher
PSNR) and a closer resemblance to the ground truth (a higher SSIM), signifying better
image quality. In contrast, Cycle-MedGAN V2.0 exhibits the lowest SSIM and PSNR values,
suggesting suboptimal image quality compared to all other networks.

Additionally, when assessing motion artifact grades, DR-CycleGAN consistently
scores lower (2.7 ± 0.7) than both Cycle-MedGAN V2.0 (3.0 ± 0.9) and the control group
(4.0 ± 0.8), indicating a superior ability to reduce motion artifacts.

To further visualize these findings, Figure 5 demonstrates the preservation of anatomi-
cal details in DR-CycleGAN’s results compared to other networks. For detailed numerical
results, please refer to Table 1.
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3.2. Evaluation of Unpaired Test Dataset

In this section, we assess the performance of DR-CycleGAN and Cycle-MedGAN V2.0
in the context of an unpaired test dataset, focusing on motion artifact correction. This
evaluation is essential to gauge the networks’ ability to address real-world scenarios where
paired data may not be readily available.

Our findings indicate a marked superiority in the motion artifact correction capa-
bilities of DR-CycleGAN. Specifically, DR-CycleGAN achieved a significant reduction in
motion artifact grades, decreasing from an average of 2.9 ± 1.3 to an impressive 2.0 ± 0.6
(p < 0.001). This notable improvement underscores its effectiveness in mitigating motion
artifacts in unpaired datasets. Conversely, Cycle-MedGAN V2.0 exhibited a notably poorer
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performance in artifact correction when confronted with the unpaired test dataset. It
yielded an average motion artifact grade of 2.4 ± 0.9 (p < 0.001), indicating its limitations in
effectively addressing motion artifacts under these conditions.

Table 1. Comparisons of different models in the paired test dataset (n = 160 examinations).

Mean ± Standard Deviation

SSIM #

DR-CycleGAN 0.89 ± 0.07 *
Cycle-MedGAN V2.0 0.84 ± 0.09 *
Simulated corrupted image data 0.81 ± 0.11 *
PSNR #

DR-CycleGAN 32.88 ± 2.11 *
Cycle-MedGAN V2.0 30.81 ± 2.64 *
Simulated corrupted image data 30.13 ± 3.81 *
Motion artifact grades
DR-CycleGAN 2.7 ± 0.7 *
Cycle-MedGAN V2.0 3.0 ± 0.9 *
Simulated corrupted image data 4.0 ± 0.8 *

# SSIM and PSNR were computed as the averages of results across all slices within each examination. * Significances
were found when compared with the other two groups (p < 0.001).

It is noteworthy that Cycle-MedGAN V2.0 exhibited an unexpected behavior by
introducing various types of noise in images that were originally free of motion artifacts
(grade-1). This behavior is illustrated in Figure 6, highlighting a potential concern regarding
the introduction of spurious noise. These results emphasize the robustness and applicability
of DR-CycleGAN in real-world scenarios where paired data may be limited, while also
raising questions regarding the performance and unintended effects of Cycle-MedGAN
V2.0 when handling unpaired datasets.

For a comprehensive presentation of numerical results, please refer to Table 2.

Table 2. Motion artifact grades of different models in the unpaired test dataset (n = 474 examinations).

Mean ± Standard Deviation

Total (n = 474 examinations)
Before correction 2.9 ± 1.3 *
DR-CycleGAN 2.0 ± 0.6 *
Cycle-MedGAN V2.0 2.4 ± 0.9 *
Motion artifact grade-1 (n = 60 examinations)
DR-CycleGAN 1.0 ± 0.0
Cycle-MedGAN V2.0 1.0 ± 0.0
Motion artifact grade-2 (n = 157 examinations)
DR-CycleGAN 1.9 ± 0.3
Cycle-MedGAN V2.0 2.0 ± 0.4
Motion artifact grade-3 (n = 110 examinations)
DR-CycleGAN 2.1 ± 0.5 #

Cycle-MedGAN V2.0 2.4 ± 0.6
Motion artifact grade-4 (n = 78 examinations)
DR-CycleGAN 2.4 ± 0.5 #

Cycle-MedGAN V2.0 3.0 ± 0.7
Motion artifact grade-5 (n = 69 examinations)
DR-CycleGAN 2.7 ± 0.6 #

Cycle-MedGAN V2.0 3.8 ± 0.7
* Significances were found when compared with the other two groups (p < 0.001). # Significance was found when
compared with the other group (p < 0.001).
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3.3. Ablation Study

In this section, we conduct an ablation study to investigate the impact of specific
components within DR-CycleGAN, specifically the inclusion of Lsum and the presence
of the artifact encoder for motion-free images. We aim to assess whether these elements
contribute significantly to the network’s performance in reducing artifacts and preserving
textural details.

Our visual analysis of the results, as illustrated in Supplementary S6 and S7, suggests
noticeable improvements when incorporating Lsum and excluding the artifact encoder for
motion-free images. These improvements are visually apparent in the reduced presence of
artifacts and enhanced preservation of textural details.

However, to provide a more comprehensive understanding, we conducted a statistical
analysis. Surprisingly, the statistical analysis revealed no significant differences in the key
metrics, including SSIM, PSNR, and motion artifact grade, when comparing models with
and without Lsum or with and without the artifact encoder for motion-free images. While
the visual assessment indicated promising trends, the absence of statistically significant
differences in these metrics suggests that the contributions of Lsum and the artifact encoder
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for motion-free images may warrant further investigation or fine-tuning to fully leverage
their potential.

The detailed statistical results can be found in Table 3.

Table 3. Results of ablation study.

Mean ± Standard Deviation

Paired test dataset (n = 160 examinations)
SSIM #

Before correction 0.81 ± 0.11 *
DR-CycleGAN 0.89 ± 0.07
Without Lsum 0.86 ± 0.12
With artifact encoder for motion-free images 0.85 ± 0.09
PSNR #

Before correction 30.13 ± 3.81 *
DR-CycleGAN 32.88 ± 2.11
Without Lsum 32.10 ± 3.04
With artifact encoder for motion-free images 32.71 ± 2.47
Motion artifact grades
Before correction 4.0 ± 0.8 *
DR-CycleGAN 2.6 ± 0.7
Without Lsum 2.8 ± 0.8
With artifact encoder for motion-free images 2.7 ± 0.7
Unpaired test dataset (n = 474 examinations)
Motion artifact grades
Before correction 2.9 ± 1.3 *
DR-CycleGAN 2.0 ± 0.6
Without Lsum 2.2 ± 0.7
With artifact encoder for motion-free images 2.2 ± 0.6

# SSIM and PSNR were computed as the averages of results across all slices within each examination. * Significances
were found when compared with the other three groups (p < 0.001).

3.4. Inter-Observer Agreement in Semi-Quantitative Motion Artifact Grading

A total of 1603 examinations were assessed and graded by the aforementioned two ra-
diologists, demonstrating excellent inter-observer agreement with an ICC of 0.965. During
the test phase, when grading the motion artifacts in simulated image data (160 examina-
tions), the ICC was 0.957. Additionally, a total of 3170 corrected examinations, comprising
1605 examinations from the paired test dataset and 4745 examinations from the unpaired
test dataset, were re-graded after motion corrections, yielding an ICC of 0.960. These high
ICC scores underscore a strong consensus between the two radiologists in their grading of
motion artifacts for all images.

4. Discussion

In this study, we introduce a novel unsupervised network called DR-CycleGAN for
effectively correcting motion artifacts in arterial-phase images of gadoxetic acid-enhanced
liver MRI examinations. Our network design transforms the motion correction task into an
image-to-image translation problem. By leveraging corresponding encoders, the motion-
corrupted images are disentangled into content and artifact domains. Subsequently, a
generator is employed to extract the motion-free image from the obtained content features.
The network incorporates cycle-consistency learning within and across domains, enabling
autoencoders to obtain reliable feature representations even in the absence of paired images.
Our experimental results demonstrate that DR-CycleGAN outperforms a state-of-the-art
unsupervised network, Cycle-MedGAN V2.0, in terms of motion artifact correction [28]. In
the test dataset containing simulated corrupted images and paired ground-truth images,
DR-CycleGAN achieves significantly higher SSIM and PSNR values compared to Cycle-
MedGAN V2.0 (0.89 ± 0.07 vs. 0.84 ± 0.09 and 32.88 vs. 30.81 ± 2.64, respectively; p < 0.001
for both measures). Furthermore, in the test dataset consisting of authentic MR images with
motion artifacts graded from 1 to 5, DR-CycleGAN demonstrates a significant reduction in
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motion artifact grades from 2.9 ± 1.3 to 2.0 ± 0.6 (p < 0.001), surpassing the performance of
Cycle-MedGAN V2.0.

Due to the challenges posed by the lack of ground truth data, supervised learning
approaches are seldom practical for the motion correction of gadoxetic acid-enhanced MR
images [16–18,29]. As a result, the current research focus has shifted towards unsupervised
approaches. So far, most unsupervised approaches have been built upon the traditional
Cycle-GAN framework, such as Cycle-MedGAN V2.0 and our DR-CycleGAN [20–26].
However, most of the other published methods share a common limitation: blurring arti-
facts still persist probably because they have not fully exploited the unique characteristics
of motion artifacts while preserving the original content information [20–26]. In contrast,
our network, DR-CycleGAN, stands out by disentangling the artifact component from the
true content component without significantly affecting the true content information. Our
results clearly demonstrate that DR-CycleGAN outperforms previous studies in terms of
motion correction, while maintaining the integrity of anatomical details and avoiding the
introduction of additional noise.

In addition to incorporating the conventional adversarial domain loss, reconstruc-
tion loss, and cycle-consistency loss, we proposed a novel component called the content-
consistency loss (Lsum) to further enhance our network’s performance. This loss leverages
a unique design that efficiently incorporates supervised information through the phase
encoding direction [18]. To validate the effectiveness of this approach, we conducted an ab-
lation study, and the results confirmed our hypothesis. It was observed that DR-CycleGAN
with Lsum achieved a superior artifact reduction performance and preserved finer anatomi-
cal structures in the images. This underscores the advantage provided by the inclusion of
Lsum in our network.

In a recent study by Liu et al., they introduced an unsupervised cycle-consistent adver-
sarial network called DUNCAN, which shared a similar hypothesis with our research [26].
They reported a better motion correction performance compared to other unsupervised
methods [26]. However, DUNCAN differs from our network in that it incorporates two con-
tent encoders and two artifact encoders specifically for motion-free and motion-corrupted
images, probably increasing computational demands and training difficulties. In our abla-
tion study, we examined the use of two artifact encoders in DR-CycleGAN. Surprisingly,
the addition of this encoder did not yield any improvement in artifact correction. Instead,
it slightly worsened the correction and resulted in a loss of textural details. This suggests
that the inclusion of an extra artifact encoder for motion-free images is redundant and
may even introduce unintended side effects. Therefore, our proposed DR-CycleGAN not
only demonstrates superior effectiveness in removing artifacts and preserving anatomical
details across different artifact grades, but also boasts a more streamlined design compared
to DUNCAN [26].

This study has certain limitations that should be acknowledged. Firstly, our proposed
DR-CycleGAN is specifically designed to address motion artifacts during the arterial
phase of gadoxetic acid-enhanced liver MRI data, while other phases such as the portal
phase and hepatobiliary phase, which are typically motion-free, are not utilized for motion
artifact correction. This limitation restricts the applicability of DR-CycleGAN to only the
arterial-phase images. Future research should explore the relationships between gadoxetic
acid-enhanced images in different phases. After all, adding multi-phase information may
provide more valuable features for correcting motion artifacts in any phase and enable
the restoration of finer texture details. Secondly, it is important to acknowledge that
the performance of DR-CycleGAN is not yet perfect. This may be attributed to the fact
that artifact correction training primarily relies on the learning of reconstructed images
rather than the original MR signals. In the next phase of our research, we can explore
the possibility of incorporating k-space data for modeling and training purposes. This
approach holds the potential to further enhance the effectiveness of artifact correction.
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5. Conclusions

In conclusion, our DR-CycleGAN framework represents a better motion artifact cor-
rection for arterial-phase images acquired during gadoxetic acid-enhanced liver MRI ex-
aminations. This approach introduces several key innovations that enhance its efficacy
and practicality. First and foremost, DR-CycleGAN simplifies the network architecture by
reducing the need for unnecessary encoders, streamlining the computational requirements,
and making it more accessible for practical applications in clinical settings. Furthermore,
our method extends beyond conventional approaches by considering the crucial correlation
between the original motion-corrupted images and the resulting motion-corrected images
by applying a novel proposed content-consistency loss function. This consideration ensures
that the corrected images not only reduce artifacts, but also retain vital anatomical details,
thus enhancing diagnostic accuracy. These advancements collectively demonstrate the
transformative potential of DR-CycleGAN in medical imaging. By significantly improving
image quality and reducing motion artifacts, our approach holds the promise of revolution-
izing radiological diagnosis and positively impacting patient care. As we move forward,
this work paves the way for further research in the field of medical image processing. It
serves as a foundation for the development of advanced techniques that continue to push
the boundaries of motion artifact correction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10101192/s1, S1: details of the proposed DR-
CycleGAN motion correction network; S2: network structures of the proposed encoders and gen-
erators; S3: network structures of the proposed discriminators; S4: basic characteristics of datasets;
S5: standard scanning protocols of gadoxetic acid-enhanced liver MRI in 1.5T and 2.0T scanners;
S6: The comparisons of motion correction by DR-CycleGAN with and without Lsum in test datasets;
S7: the comparisons of motion correction by DR-CycleGAN with and without artifact encoder for
motion-free images.
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