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Electronic Supplementary Material

S1. Details of the proposed DR-CycleGAN motion correction network

In the training stage, the inputs of DR-CycleGAN are the unpaired motion-free and
motion-corrupted images. We assume that the task of motion correction can be considered
the image translation problem. Given x, € C denotes the training sample (motion-cor-
rupted image) in the motion-corrupted domain (C domain), x; € F denotes the training
sample (motion-free image) in the motion-free domain (F domain). Since training the pro-
posed DR-CycleGAN does not need paired training data, x. and x; are randomly sam-
pled from the unpaired dataset and probably belong to different contents. With inverse
translation mapping T._f: x. = Xf, we translate the motion-corrupted image x. to the
motion-free image Xy without aligned image pairs. As this translation mapping
(Tews: X; = %) is highly under-constrained, the forward mapping Ty_.: % — x¢”° is also
designed to translate the generated motion-free image %y back to the original image de-
noted as x.”° with cycle-consistency constraints, following the idea of Cycle-GAN. Spe-
cifically, a disentangled representation is introduced in the translation module. The mo-
tion-corrupted image can be disentangled into the artifact features A and the content fea-
tures C, and the artifacts feature and the image context feature can be jointly input into
the generators to implement paired forward and backward mapping (i.e., motion corrup-
tion and its inverse process). Moreover, a novel content loss function based on the MRI
physical prior information is proposed. Below, the translation modules and the content
consistency loss are described in detail:

(1) Translation with disentangled representation

As described above, we combine the disentangled representation within DR-Cy-
cleGAN to translate the motion-corrupted images to motion-free images. The network has
six translation mappings between the motion-corrupted and motion-free image transla-
tion: Teyp: X = R, TpoeiVp = Per TeneiXe = %26, Tropiyp = ¥, Troei®e » x7¢, and
Teog:9e = yf7°, in which x, 9, x7¢, and x;”° are motion-corrupted images and yf, X,
rec

¥, and y’¢ are motion-free images. The T_s: x. = X and T.;: 9. = yf”* could be
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considered inverse translation mappings, where the motion-corrupted image x, and .
are reconstructed into the motion-free ones £ and y;*“. On the contrary, the Ty_.:yy —
9. and T, % - x.”° could be considered as forward translation mappings, which
translated the motion-free images y; and £; to the motion-corrupted images J. and
g

In summary, the detailed process of the translation with disentangled representation,
which consists of six components: (1) content encoder (E.); (2) artifact encoder (E,); (3)
motion-free image generator (Gy); (4) motion-corrupted image generator (G,); (5) motion-
free image discriminator (Dy); and (6) motion-corrupted image discriminator (D). The
content encoder E, is used to extract the content features from the motion-free and the
motion-corrupted images. For the inverse mapping T;: x. — Xf, the motion-corrupted im-
age x. is disentangled to obtain the content features C and artifact features A by the
content encoder E. and the artifact encoder E,, respectively. Then, the content features
C are decoded by G to generate the motion-free image Xy = G(E.(x.)). For the forward
mapping Tf:yr — ¥, the motion-free image y; is encoded by E. to get the content fea-
tures C, and combined with the artifact features A. Then, G. is used to generate the mo-
tion-corrupted image ¥, = G, (EC ) Eq (xc)). Likewise, the generated motion-free image
&; is transformed into a motion-corrupted image x> = G.(E (%), E,(9.)), and then G;
reconstructs a new motion-free image yjfy €= G¢(E;(9;)). The discriminator Dy is used to
differentiate the reconstructed motion-free image X, from the input motion-free image
¥r, and the discriminator D, learns to discriminate the generated motion-corrupted im-
age J. from the input real image x,.

(2) Content consistency 10ss (Lgym)

The novel content consistency loss Lg,,, is proposed based on the MRI physical prin-
ciple. By calculating the ratio of the summation of the pixel values along each column (the
phase-encoding direction) in the motion-free image y;, the motion-corrupted image ¥,
and the motion-free image y, at the other slice, we can find that the content features of
vy, and J; at the same slice are much closer than y, at the other slice. This is because of
the presence of motion artifacts caused by breath-holding failures which are always along
the column direction (phase-coding direction), resulting in a wave shift along the phase-
encoding direction without altering the total signal intensity along each column remain-
ing between the paired motion-free and motion-corrupted images. Thus, we can define a
novel content consistency loss (Ls,m) to penalize the content discrepancy between the orig-
inal and translated images, as mentioned in the manuscript, to ensure that the motion-
corrected images neither suffer from a loss of anatomical details nor introduce non-exist-
ent information.

(3) Other loss functions

Besides the content consistency loss Ly, the other loss functions are described in
detail here:

a. The first term L,q4, is the adversarial domain loss to ensure the generated images
are in the corresponding domains. Specifically, the motion-corrupted domain discrimina-
tor D, is employed to distinguish between real and cross-domain-translated motion-cor-
rupted images. Meanwhile, we use the motion-free domain discriminator D, to differen-
tiate the real and the cross-domain-translated motion-free images. The calculation of L4,
follows:

Logy = dev + LZdv (8.1
Lyay = E[logDx (x.)] + E[log (1 — Dx(%f)] (5.2)
dev = E[logDY(yf)] + E[log (1 — Dy(ff)] (5.3)

where L%;, and LY, represent the motion-corrupted domain adversarial loss and
the motion-free domain adversarial loss, respectively, and E denotes the expectation op-

erator.
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b. The second term L, is the reconstruction loss, which measures the pixel-wise
difference between the input image and its reconstructed counterpart in the within-do-
main translation:

Lrec = E(llxc = x2Nl) + E(|lyy — vl (S4)

c. The cycle-consistency loss Ly is calculating the difference between the cycle im-
ages and the original images:

Lcycle = E(”xc - xccyc”l) + E(”yf - y;yC”l) (55)

S2. Network structures of the proposed encoders and generators

The detailed network structures of the proposed encoders and generators are illus-
trated in Figure 1 below: DR-CycleGAN comprises different encoders and generators. En-
coders are further divided into the content encoder (E.) (a) and the artifact encoder (E,)
(d), while the decoders (c) consists of a motion-corrupted image generator (G.) and a mo-
tion-free image generator (G¢). The ResNet structure (b) was used in the content encoders
and generators.
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Figure 1. Network structures of the proposed encoders and generators.

S3. Network structures of the proposed discriminators

The detailed network structures of the proposed discriminators are illustrated in Fig-
ure 2 below: Within the DR-CycleGAN framework, we have two discriminators (D and
D) to differentiate the reconstructed motion-free images (%) and the real motion-free im-
ages (yr), as well as between the fake “motion-corrupted” images (3,) and the real motion-
corrupted images (x.), respectively. To differentiate the images, the input image under-
goes a series of operations. It first passes through an average pooling layer and then pro-
gresses through five convolutional layers to generate the initial discriminator result. Sub-
sequently, the input image is downsampled and further processed by five additional con-
volutional layers to obtain the second discriminator result. Lastly, after another downsam-
pling step, the input image undergoes a final set of five convolutional layers to produce
the third discriminator result. The discriminator outputs the final result by averaging the
three previous results.
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Figure 2. Network structures of the proposed discriminators.
S4. Basic characteristics of datasets.
Motion artifact grades Avanto Skyra Total
Motion artifact grades—training dataset
Grade-1 41 (23.3%) 17 (12.9%) 58 (18.8%)
Grade-2 90 (51.1%) 67 (50.8%) 157 (51.0%)
Grade-3 30 (17.0%) 31 (23.5%) 61 (19.8%)
Grade-4 12 (6.8%) 14 (10.6%) 26 (8.4%)
Grade-5 3(1.7%) 3(2.3%) 6 (1.9%)
Total 176 (100.0%) 132 (100.0%) 308 (100.0%)
Motion artifact grades —paired test dataset
Grade-1 0 (0.0%) 0 (0.0%) 0 (0.0%)
Grade-2 2 (2.3%) 2 (2.7%) 4 (2.5%)
Grade-3 20 (23.0%) 21 (28.8%) 41 (25.6%)
Grade-4 34 (39.1%) 26 (35.6%) 60 (37.5%)
Grade-5 31 (35.6%) 24 (32.9%) 55 (34.4%)
Total 87 (100.0%) 73 (100.0%) 160 (100.0%)
Motion artifact grades—unpaired test dataset
Grade-1 28 (10.9%) 32 (14.8%) 60 (12.7%)
Grade-2 72 (27.9%) 85 (39.4%) 157 (33.1%)
Grade-3 61 (23.6%) 49 (22.7%) 110 (23.2%)
Grade-4 52 (20.2%) 26 (12.0%) 78 (16.5%)
Grade-5 45 (17.4%) 24 (11.1%) 69 (14.6%)
Total 258 (100.0%) 216 (100.0%) 474 (100.0%)
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S5. Standard scanning protocols of gadoxetic acid-enhanced liver MRI in 1.5T and 2.0T scanners.

MR Scanning Parameters 1.5T MR Scanner! 3.0T MR Scanner?
Sequence 3D-VIBE 3D-VIBE
TR (ms) 4.74 4.50
TE (ms) 2.38 1.29
Flip angle (o) 10 9
Field of view (mm) 380 380
Base resolution 320 320
Section thickness (mm) 3 3
Contrast® dose (mmol/kg) 0.025 0.025
Contrast® injection rate (ml/s) 1.0 1.0
Acquisition phases:
Arterial phase (s) 20-35s 20-35s
Portal vein phase (s) 60-70s 60-70s
Delayed phase (s) 180 180
HBP (min) 20min 20min

MAGNETOM Avanto, Siemens Healthineers, Germany; 2MAGNETOM Skyra, Siemens Healthi-
neers, Germany; *Primovist®, Bayer Schering Pharma, Berlin, Germany. Abbreviations: MR, mag-
netic resonance; 3D-VIBE, 3-Dimensional Volumetric Interpolated Breath-hold Examination; TR,
repetition time; TE, echo time; HBP, hepatobiliary phase.

S6. The comparisons of motion correction by DR-CycleGAN with and without Lg,,,
in test datasets

The comparisons of motion correction by DR-CycleGAN with and without Lg,,, in
test datasets are illustrated in Figure 3 below: a, Row 1 and 3 show the different slices in
the paired test dataset; row 2 and 4 are the corresponding local enlarged drawings of the
area of the red rectangle in the original images above; as a result, DR-CycleGAN with
Lsym shows a better correction of motion artifacts and reserves more original information
due to the effective supervised signals for the translated images. b, DR-CycleGAN with
Lsum also shows a better correction of motion artifact and avoids the fake information
formation (referring to the blue rectangle in the model without Lg,,,) in the unpaired test
dataset.
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Figure 3. The comparisons of motion correction by DR-CycleGAN with and without Lg,,, in test
datasets.

S7. The comparisons of motion correction by DR-CycleGAN with and without artifact
encoder for motion-free images

The comparisons of motion correction by DR-CycleGAN with and without artifact
encoder for motion-free images are illustrated in Figure 4 below: Row 1 and 3 show the
different slices, and row 2 and 4 are the corresponding local enlarged drawings of the area
of the red rectangle in the original images. As a result, DR-CycleGAN without an artifact
encoder for motion-free images outperforms the network with an artifact encoder for mo-
tion-free images, leading to a mildly better image quality with better textural details.
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Figure 4. The comparisons of motion correction by DR-CycleGAN with and without artifact encoder
for motion-free images.



