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Abstract: Barrett’s esophagus (BE) represents a pre-malignant condition characterized by abnormal
cellular proliferation in the distal esophagus. A timely and accurate diagnosis of BE is imperative to
prevent its progression to esophageal adenocarcinoma, a malignancy associated with a significantly
reduced survival rate. In this digital age, deep learning (DL) has emerged as a powerful tool
for medical image analysis and diagnostic applications, showcasing vast potential across various
medical disciplines. In this comprehensive review, we meticulously assess 33 primary studies
employing varied DL techniques, predominantly featuring convolutional neural networks (CNNs),
for the diagnosis and understanding of BE. Our primary focus revolves around evaluating the
current applications of DL in BE diagnosis, encompassing tasks such as image segmentation and
classification, as well as their potential impact and implications in real-world clinical settings. While
the applications of DL in BE diagnosis exhibit promising results, they are not without challenges,
such as dataset issues and the “black box” nature of models. We discuss these challenges in the
concluding section. Essentially, while DL holds tremendous potential to revolutionize BE diagnosis,
addressing these challenges is paramount to harnessing its full capacity and ensuring its widespread
application in clinical practice.

Keywords: Barrett’s esophagus; deep learning; diagnosis; endoscope; pathology

1. Introduction

Barrett’s esophagus (BE) is a pathological condition where the squamous epithelial
cells in the lower part of the esophagus are replaced by a type of columnar epithelium
found in the intestine [1,2]. It is often considered a pre-cancerous change for esophageal
adenocarcinoma (EAC), with an annual progression rate from BE to EAC estimated to
be 0.12–0.13% [3,4]. Early detection and intervention for BE or EAC can result in a five-
year survival rate of up to 80%. At the same time, in the late stages, it drops to only
13% [5,6]. Currently, the diagnosis of BE primarily depends on the pathological biopsy
under endoscopy. However, even for well-equipped and experienced endoscopists or
pathologists, early-stage BE lesions pose a considerable diagnostic challenge [7,8]. Using
the Seattle Biopsy Protocol to handle abnormalities detected during endoscopic inspections
is commonly recommended. Despite this protocol suggesting four biopsies for every 1 cm,
a failure in diagnosis may still occur due to insufficient sample volume [9,10].

Deep learning (DL) has fundamentally changed our approach to analyzing and under-
standing visual information in recent years. As a subfield of machine learning, the essence
of deep learning lies in utilizing neural network models to learn and abstract features from
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large amounts of data [11,12]. In particular, deep learning has achieved significant break-
throughs in image recognition, analysis, and processing, surpassing human expert levels
in specific tasks [13]. In medical image diagnosis, deep learning models can learn typical
pathological features from many images, thus potentially identifying BE lesions at an early
stage, even those that are minuscule and difficult for the human eye to detect [12,14,15].
Through such means, deep learning may significantly enhance the early diagnosis rate of
BE, improving patient prognosis and quality of life.

In this review, we adopted a combined approach of subject keyword and free word
search strategy to identify pertinent studies focusing on deep learning and Barrett’s esopha-
gus. Our primary data sources encompassed four public databases: PubMed, Embase, Web
of Science, and Cochrane Library. Using a predefined set of inclusion and exclusion criteria,
we meticulously assessed the literature from the past decade. Inclusion Criteria: 1. Studies
primarily addressing the application of deep learning in Barrett’s esophagus diagnosis.
2. Articles presenting original data and specific research findings. 3. Publications within
the last ten years. Exclusion Criteria: 1. Duplicates or multiple versions of the same
study. 2. Commentaries, expert opinions, case reports, or any non-original research articles.
3. Studies not directly relevant to deep learning or Barrett’s esophagus. Following this
rigorous screening process, we distilled our initial findings from 213 articles down to
33 original studies for an in-depth analysis (Figure 1). Through this review, we offer an
exhaustive insight into the current applications of deep learning in BE diagnosis and further
discuss its promising trajectory in an upcoming clinical setting.
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2. Application of Deep Learning to Assist Endoscopic Diagnosis

Endoscopy plays a pivotal role in diagnosing BE, enabling gastroenterologists to
view the entirety of the esophageal inner wall and sample specific tissues for pathological
examination based on the situation. A comprehensive review included 21 original studies
that utilized endoscopic images or video information to construct deep neural networks to
aid diagnosis (Table 1).

Table 1. Twenty-one studies on deep learning-assisted endoscopic diagnosis of BE.

Author Year Task Dataset
Size

Data
Type

Methodology and
Innovation

Model
Architecture

Comparison
with Experts Result

Jisu, H. [16] 2017

Intestinal
metaplasia vs.

Gastric
metaplasia vs.

Neoplasia

262 Endoscopic
images

Augmented Data,
Iterations: 15,000, Batch:
20, Optimizer: Adaptive

Subgradient, LR: 1 × 10−5,
LR Decay: 1/10 per step

Traditional
CNN No Accuracy: 80.77%

de Groof, J. [17] 2018
BE

boundary
detection

40 Endoscopic
images NA Inception v3 Yes Delineation scores:

47.5%

Ebigbo, A. [18] 2019 BE vs. EAC 248 Endoscopic
images

Leave-one-patient-out
cross-validation,

Augmented Patches from
Endoscopic Images

ResNet No

Sensitivities/specificities
of 97%/88%

(Augsburg data); Sensi-
tivities/specificities of

92%/100%
(MICCAI data)

Passos, L.A. [19] 2019 BE vs.
Others 100 Endoscopic

images

Adopts 6 meta-heuristic
technology optimization

algorithms

Infinite
restricted

Boltzmann
machines

No MAX accuracy: 67%

van der
Putten, J. [20] 2019 Normal vs.

BE 86 Endoscopic
videos

Using a pre-trained deep
learning model and the

Hidden Markov Model to
automatically classify

endoscopic video frames
as ‘informative’ or
‘non-informative’

ResNet No
Accuracy: 94%
Sensitivity: 86%
Specificity: 96%

van der
Putten, J. [21] 2019

NDBE vs.
Neoplastic

BE
40 Endoscopic

images

Utilize two-stage training
with differential learning
rates to optimize transfer
learning from ImageNet,

and during
post-processing, average
predictions over multiple

image transformations
and define lesion areas

based on a score threshold

ResNet Yes
Accuracy: 98%

Sensitivity: 100%
Specificity: 95%

Ghatwary,
N. [22] 2019 BE vs. EAC 100 Endoscopic

images

Utilize a range of deep
learning-based object

detection methods during
modeling, including
R-CNN, Fast R-CNN,

Faster R-CNN, and SSD,
to detect EAC

Single-shot
multibox

detector based
on VGG

No Sensitivity: 96%
Specificity: 92%

van der
Putten, J. [23] 2019

NDBE vs.
Dysplastic

BE

Pre-training:
494,364

Two centers:
159

Endoscopic
images

and
videos

Use endoscopic imagery
for pre-training and

validate using four-fold
subject-wise

cross-validation

Encoder/ResNet No AUC: 0.91

de Souza, L.A.,
Jr. [24] 2020 BE vs. EAC Public

repository
Endoscopic

images

Adopt patch- and
image-based

preprocessing strategies,
apply data augmentation,

and perform 20-fold
cross-validation

CNN based on
a generative
adversarial

network

No

Accuracy: 90%
patch-based approach

Accuracy: 85%
image-based

approach
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Table 1. Cont.

Author Year Task Dataset
Size

Data
Type

Methodology and
Innovation

Model
Architecture

Comparison
with Experts Result

Liu, G. [25] 2020
Normal vs.
Precancer
vs. Cancer

1272 Endoscopic
images

Contrast-enhanced
esophageal images were

used as input to the CNN
and trained using data

augmentation and a
two-stream CNN

algorithm, combining
features of the original

and pre-processed images

CNN with two
subnetworks No

Accuracy: 85.83%
Sensitivity: 94.23%
Specificity: 94.67%

de Groof,
A.J. [26] 2020

NDBE vs.
Neoplastic

BE

Pre-training:
494,364

Training:
1544

Test: 160
Application:

20

Endoscopic
images

Use a pre-trained large
dataset to initialize the deep
learning CAD system, then

fine-tune with Barrett’s
epithelium-specific images,
employing a custom hybrid

model for simultaneous
image classification and

segmentation

ResNet/U-Net No
Accuracy: 90%
Sensitivity: 91%
Specificity: 89%

van der
Putten, J. [27] 2020

NDBE vs.
Dysplastic

BE

T1
pre-training:

494,355
T2 training:

1247
T3

validation:
297

T4 + T5 test:
160

Endoscopic
images

Developed a
computer-aided

classification and
localization algorithm

using a semi-supervised
learning approach and
optimized it through a

multi-stage transfer
learning strategy

U-Net/ResNet Yes
Accuracy: 90%
Sensitivity: 90%
Specificity: 90%

Pulido, J.V. [28] 2020

Normal vs.
NDBE vs.
Dysplastic
BE/Cancer

1057 Endoscopic
videos

The video classification
model includes

frame-level networks,
pooling networks, and

classifiers, using attention
pooling technology to

highlight the importance
of each frame in video

classification

AttnPooling/
MultiAttnPooling No

AttnPooling:
sensitivity: 90%,
specificity: 88%

MultiAttnPooling:
sensitivity: 92%,
specificity: 84%

Struyvenberg,
M.R. [29] 2021

NDBE vs.
Neoplastic

BE

Pre-training:
494,364

Endoscopic
images:

1247
NBI images:

183
NBI videos:

157

Endoscopic
images

and
videos

NBI is trained on still
images and improves
performance through

automatic video analysis,
taking the average

prediction of all frames
within the video

Resnet/U-Net No

Image: sensitivity
88%, specificity 78%

video: sensitivity
85%, specificity 83%

Pan, W. [30] 2021

BE and
normal

tissue seg-
mentation

443 Endoscopic
images

Extract the feature map of
the input image through a
multi-layer convolutional

network and achieve
pixel-level semantic

segmentation

FCN No
Intersection over
union: 0.56 (GEJ),

0.82 (SCJ)

Hou, W. [31] 2021
BE: Cancer

vs.
No-cancer

100 Endoscopic
images

Proposed a novel
end-to-end network

equipped with an attention
hierarchical aggregation

module and
self-distillation mechanism

SE-ResNet50 No AUC: 0.9629

Ali, S. [32] 2021

Automatically
quantify
Barrett’s

epithelium

131

Endoscopic
images

and
videos

Automatically quantify
Barrett’s epithelium and
measure Barrett’s length

and Barrett’s area

NA No Accuracy: 98.4%

de Souza, L.A.,
Jr. [33] 2021 BE vs. EAC 176 Endoscopic

images

Four convolutional neural
network models were
analyzed using five

different interpretation
techniques to compare
their consistency with

expert previous
annotations of cancer tissue

AlexNet/
SqueezeNet/
ResNet/VGG

No Explain the “black
box”
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Table 1. Cont.

Author Year Task Dataset
Size

Data
Type

Methodology and
Innovation

Model
Architecture

Comparison
with Experts Result

Kusters,
C.H.J. [34] 2022

NDBE vs.
Neoplastic

BE

Images: 1748
Neoplastic
BE, 1762
NDBE

Videos: 90
Neoplastic

BE, 194
NDBE

Endoscopic
images

and
videos

Build an
endoscope-driven,
pre-trained deep

learning-based model to
characterize NBI images
of BE and evaluate the

algorithm’s performance
on images and videos

EfficientNet-b4 No AUC: 0.985

Kumar,
A.C. [35] 2022 Esophagitis

vs. BE 1663 Endoscopic
images

Try as many model
frameworks and classifier
combinations as possible
to find the optimal model

5 CNN
structures and

6 classifiers
No MAX AUC: 0.962

Villagrana-
Banuelos,
K.E. [36]

2022 Esophagitis
vs. BE 1561 Endoscopic

images

In order to classify into
classes, MiniVGGNet was

implemented, and after
experimentation, it was
tested every 50 epochs

until reaching 500

VGG No

Normal: AUC: 0.95
BE: AUC: 0.96
Esophagitis-a:

AUC: 0.86
Esophagitis-b-d:

AUC: 0.83

BE: Barrett’s esophagus; NDBE: non-dysplastic BE; EAC: esophageal adenocarcinoma; NBI: narrow-band imag-
ing; CNN: convolutional neural network; GEJ: gastroesophageal junction; SCJ: squamous-columnar junction;
NA: Not applicable.

Diagnosing diseases first considers the distinction between the pathological site and
the surrounding normal tissues. Liu, G., et al. constructed and verified a convolutional
neural network (CNN) with two subnetworks using 1272 white-light endoscopic images
from a single-center retrospective study, completing the classification task of normal vs.
pre-cancer vs. cancer. The final model performance showed an accuracy of 85.83%, a
sensitivity of 94.23%, and a specificity of 94.67%. One subnetwork was designed to extract
color and global features. In contrast, the other extracted texture and detailed features
to increase the model’s interpretability [25]. Leandro A. Passos and his team used the
infinite restricted Boltzmann machines to classify esophageal lesions (BE) from other
conditions based on the publicly available endoscopy images from the “MICCAI 2015
EndoVis Challenge” dataset. In this study, the maximum accuracy reached 67% [19]. In
theory, video provides more dimensional information than images, potentially enhancing
prediction effectiveness. Pulido, J.V., et al. retrospectively collected 1057 probe-based
confocal laser endomicroscopy (pCLE) videos from 78 patients and constructed models
based on AttnPooling and MultiAttnPooling architecture, completing the classification
task of normal vs. non-dysplastic BE (NDBE) vs. dysplastic BE/cancer. The final model
performance for AttnPooling showed a sensitivity of 90% and a specificity of 88%, whereas
for MultiAttnPooling, the sensitivity and specificity were 92% and 84%, respectively [28].
Van der Putten J. and colleagues discovered that during the process of creating endoscopic
videos, there might be some invalid frames due to various reasons, affecting lesion detection.
Therefore, a method was proposed that initializes frame-based classification and then
employs the Hidden Markov Model to incorporate temporal information, enhancing the
sensitivity of the classification by 10% [20].

Apart from distinguishing normal tissues from BE, some researchers have also paid
attention to differentiating esophagitis from BE. Kumar, A.C., et al. attempted combinations
of five CNN architectures and six classifiers using 1663 endoscopic images from public
databases. The best-performing model was a fine-tuned ResNet50 with transfer learning,
achieving an AUC of 0.962 [35]. Additionally, Villagrana-Bañuelos, K.E., et al. subdivided
esophagitis and accomplished a four-classification task: normal vs. BE vs. esophagitis-a
vs. esophagitis-b-d. They used 1561 endoscopic images from public databases to construct
a model based on the VGG architecture, with the final model’s AUC being normal: 0.95,
BE: 0.96, esophagitis-a: 0.86, and esophagitis-b-d: 0.83 [36].
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Since BE is a known precursor to EAC, the transition from BE to EAC is a clinical
concern. Ebigbo, A., et al. utilized 248 endoscopic images from a public database to classify
BE and EAC. Using the ResNet model, they achieved a sensitivity of 97% and a specificity
of 88% on the Augsburg dataset, and a sensitivity of 92% and a specificity of 100% on
the MICCAI dataset [18]. Ghatwary, N., et al. aimed to build an object detection model
based on endoscopic images. Through trials of multiple models, they ultimately chose
the VGG-based single-shot multibox detector as the prediction model. The model was
trained on endoscopic images from a public database of 100 cases, completing the BE vs.
EAC classification task and achieving a sensitivity of 96% and a specificity of 92% [22].
Hou, W., et al. proposed an end-to-end network with an attentive hierarchical aggrega-
tion module and a self-distillation mechanism, achieving an AUC of 0.9629. This model
enhances classification performance without sacrificing temporal performance, thereby
achieving real-time inference [31]. Additionally, de Souza, L.A., Jr., et al. constructed a
model for the same task using a convolutional neural network combined with a generative
adversarial network (GAN). Their choice of using GANs was driven by the challenges
related to limited datasets in medical imaging and the potential of GANs in data aug-
mentation, especially for generating synthetic yet realistic medical images. This approach
achieved an accuracy of 90% for the patch-based method and 85% for the image-based
approach [24]. The pursuit of creating explainable artificial intelligence continues to be
an ongoing endeavor that tracks the operational process of deep learning technology and
offers insights into the correctness or error behind its models. De Souza, L.A., Jr., et al.
used five different explanation techniques (saliency, guided backpropagation, integrated
gradients, input × gradients, and DeepLIFT) to analyze four commonly used deep neural
networks (AlexNet, SqueezeNet, ResNet50, and VGG16) built for BE vs. EAC classification
tasks through endoscopic images, demonstrating the correlation between computational
learning and expert insights [33].

From the perspective of BE subclasses, some researchers have modeled and predicted
whether there are developmental abnormalities. Several researchers have tried to model
predictions for the presence or absence of dysplasia within the subcategories of BE. Van
der Putten, J., et al. collected prospective data sets from three centers. They constructed
a model using the ResNet architecture with 40 endoscopic images, thereby completing
the classification task of neoplastic BE vs. NDBE. The model achieved a final accuracy
of 98%. Its innovation lies in the fact that the deep learning model can assist clinicians
in determining the optimal location for pathological biopsies [21]. The team published
another phased model for the same problem in the same year. In the first phase, the
extraction of features was completed through an editor structure, and in the second phase,
the classification task of NDBE vs. dysplastic BE was achieved through a ResNet-based
structure. They explored the effect of pre-training on model performance and which dataset
would provide the best performance when used for pre-training. The results indicated that
pre-training based on the GastroNet dataset yielded the best performance, with an AUC
reaching 0.91 (the other two were 0.82 and 0.90, respectively) [23]. The following year, van
der Putten, J., et al. incorporated five datasets for modeling, aiming to address this problem
better. The T1 dataset contained 494,355 gastrointestinal organ images for pre-training;
the T2 dataset consisted of 1247 endoscopic images for model training; the T3 dataset,
containing 297 endoscopic images, was used for model parameter adjustment; and finally,
the T4 and T5 datasets, together composed of 160 endoscopic images, served as an external
test set to evaluate model performance. The multi-stage model they constructed completed
the segmentation task using a U-Net architecture and the classification task using a ResNet
architecture, ultimately achieving an accuracy, sensitivity, and specificity of 90% [27]. The
ultimate purpose of model construction is to serve clinical practice. De Groof AJ and
others built a classification model for NDBE vs. neoplastic BE based on the ResNet/U-Net
architecture model. They validated it using a prospective, multicenter dataset, achieving
an accuracy of 90%, sensitivity of 91%, and specificity of 89%. Worth mentioning is that this
team attempted to apply the model to clinical practice with 20 patients after its construction
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to demonstrate the consistency of computer-assisted detection (CAD) predictions and
diagnoses [26]. Jisu, H., et al. conducted a study based on 262 endoscopic images targeting
subtypes with BE. Using a conventional CNN model, they accomplished a tri-classification
task of intestinal metaplasia, gastric metaplasia, and neoplasia, achieving an accuracy of
80.77% [16].

Compared to standard endoscopy, narrow-band imaging (NBI) endoscopy enhances
the visualization of the mucosa and vasculature [37–40]. Struyvenberg, M.R., et al. initially
conducted pre-training using the GastroNet database. Subsequently, they trained using
another dataset composed of 1247 white-light endoscopic images. Following this, they
employed the third dataset containing NBI endoscopic images, undertaking additional
training and validation within an internal center. Lastly, they used the fourth dataset,
composed of NBI videos, for external validation. When performing the classification task
of neoplastic BE vs. NDBE, the prediction results for image information were a sensitivity
of 88% and a specificity of 78%. For video information, the prediction results were a
sensitivity of 85% and a specificity of 83% [29]. Additionally, Kusters, C.H.J., et al., based
on the EfficientNet-b4 architecture, performed predictions for NBI data using datasets from
seven centers. They conducted training on image data and validated and tested it on video
data. For completing the neoplastic BE vs. NDBE classification task, the highest achieved
AUC value was 0.985 [34].

Determining the extent of BE lesions is crucial for diagnosis, treatment monitoring, and
prognosis prediction [41,42]. Pan, W., et al., based on the architecture of fully convolutional
networks, constructed a model to accomplish the segmentation task of delineating the
boundary between BE and normal esophageal epithelium, utilizing 443 endoscopic images
from a single-center prospective study. The performance of their model was evaluated
by the intersection over union: 0.56 (at the gastroesophageal junction) and 0.82 (at the
squamous-columnar junction) [30]. De Groof J. and others conducted esophageal lesion
boundary detection using 40 endoscopic images. They used a pre-trained Inception v3 to
build the model, and the final segmentation score was 47.5%. Although the performance
was not as good as that of human experts, this study focused on the detection of esophageal
lesion boundaries [17]. Furthermore, Ali, S., et al. created an automated model for the
quantification and segmentation of BE using endoscopic images and videos, with an
accuracy of 98.4% [32].

These studies employ deep learning technologies based on endoscopic images or video
information to diagnose BE. They primarily cover three key areas: disease classification,
severity grading of disease, and lesion segmentation. They provide auxiliary diagnostic
means with significant potential for clinical application.

3. Applications of Deep Learning to Assist Pathological Diagnosis

With the rapid advancements in digitization and artificial intelligence, digital pathol-
ogy has emerged as an integral component of modern medicine, providing clinicians with
a more precise and quicker method of diagnosis [43–46]. At its core, digital pathology
utilizes complex algorithms and big data to analyze images of pathological tissues, aiming
to identify and assess lesions. In the diagnosis of BE, digital pathology is increasingly
prevalent, with a series of research studies deeply exploring this application [47,48]. The
primary objective of these studies is to leverage deep learning technologies for more accu-
rate identification and categorization of BE-related lesions, thereby enhancing the precision
and timeliness of BE diagnosis [49,50]. In the following sections, we will discuss the specific
content of seven research studies (Table 2).
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Table 2. Seven studies on deep learning-assisted pathological diagnosis of BE.

Author Year Task Dataset Size Data Type Methodology and
Innovation

Model
Architecture

Comparison
with Experts Result

Tomita, N. [51] 2019

Normal vs.
NDBE vs.
Dysplastic
BE vs. EAC

123 Pathological
images

A two-step attention
model is proposed to
extract features from

high-resolution images
and apply the attention

mechanism for
classification

CNN with
attention No

Noraml AUC:
0.751 NDBE AUC:
0.897 Dysplastic
BE AUC: 0.817

EAC AUC: 0.795

Sali, R. [52] 2020

Normal vs.
NDBE vs.
Dysplastic

BE

387 Pathological
images

Compare the impact of
fully supervised, weakly

supervised, and
unsupervised learning
methods on the model

ResNet No MAX accuracy:
95.2%

Law, J. [53] 2021 Cell sorting Multiple
public datasets

Pathological
images

An improved U-Net cell
detection network is

proposed, using SE(2,N)
group convolution to

enhance rotation
invariance and optimize

training

SE2-U-Net No Sensitivity: 92.8%
F1 score 0.907

Codipilly,
D.C. [54] 2021

NDBE vs.
LGD vs.

HGD
587 Pathological

images NA ResNet No

NDBE: sensitivity:
93%, specificity:

100% LGD:
sensitivity: 99.2%,
specificity: 95.3%
HGD: sensitivity:
100%, specificity:

99.5%

Beuque, M. [55] 2021

Task 1:
epithelial vs.

stroma
Task 2:

dysplastic
grade
Task 3:

progression
of dysplasia

57

Pathological
images

mass spec-
trometry
images
(MSI)

MSI’s spatially resolved
molecular data and H&E

staining data are
combined to achieve

complementary lesion
classification and
severity grading

Grid searches
+ ensemble

learning
Convolutional

Block
Attention

Module with
Resnet50

No

Task 1: AUC 0.89
(MSI), 0.95 (H&E)
Task 2: AUC 0.97
(MSI), 0.85 (H&E)
Task 3: accuracy
of 72% (MSI) and

48% (H&E)

Faghani, S. [56] 2022
NDBE vs.
LGD vs.

HGD
542 Pathological

images

Whole-slide images are
converted into tiles,

detected using YOLO v5,
then processed using a

classifier model, and the
results of the two models

are combined

YOLO
recognition

and
segmentation

ResNet101
classification

No
NDBE F1 score: 0.91
LGD F1 score: 0.90
HGD F1 score: 1.0

Guleria, S. [57] 2021

Normal vs.
NDBE vs.
Dyspla-

sia/cancer

1970 pCLE
videos

897,931 biopsy
patches

387 whole-
slide images

PCLE
endoscopic
pathology

images and
videos

Images and videos were
modeled simultaneously NA No

pCLE analysis:
accuracy: 90%
Biopsies at the

patch level:
accuracy: 90%
Whole-slide-
image-level

accuracy: 94%

BE: Barrett’s esophagus; NDBE: non-dysplastic BE; EAC: esophageal adenocarcinoma; CNN: convolutional
neural network; LGD: low-grade atypical hyperplasia; HGD: high-grade atypical hyperplasia; pCLE: probe-based
confocal laser endomicroscopy; NA: Not applicable.

Pathology represents the gold standard for diagnosis, potentially offering more com-
prehensive and microscopic histological information in theory than endoscopy. As the
precursor of EAC, BE presents a unique opportunity to understand the factors driving the
transition from pre-cancerous conditions to cancer [3,58]. Cell detection is usually the first
crucial step in the automated image analysis of pathological slides [59,60]. Law, J., et al.
developed a model based on SE2-U-Net, using pathological images from multiple public
datasets to classify cells and non-cells in pathological sections [53].

Subsequently, the task of pathological diagnosis and classification comes into play.
Tomita, N., et al. built a deep learning network model based on an attention-driven CNN.
They used 123 retrospective case images from a single center for training, validation, and
prediction, accomplishing a four-category task: normal vs. NDBE vs. dysplastic BE vs.
EAC. The final model performance indicators were: AUC for normal: 0.751; NDBE: 0.897;
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dysplastic BE: 0.817; and EAC: 0.795 [51]. This model can accurately identify cancerous
and pre-cancerous esophageal tissues on microscopic images without training annotations
for areas of interest, significantly reducing the workload in pathological image analysis.
Sali, R., et al. used 387 pathological images to construct a model based on the ResNet
architecture to accomplish a three-category task: normal vs. NDBE vs. dysplastic BE.
During the experiments, they compared the impact of full supervision, weak supervision,
and unsupervised learning on model performance. The results indicated that the appro-
priate setting of unsupervised feature representation methods could extract more relevant
image features from whole-slide images [52]. Guleria, S., et al. conducted a modeling
study where they compared pCLE with pathological images. Their findings demonstrated
that a comprehensive three-category classification task, distinguishing between normal,
NDBE, and dysplasia/cancer, can be successfully achieved using multiple retrospective
datasets [57].

Moreover, the risk of BE transforming into EAC increases with the progression of atyp-
ical hyperplasia. However, the histological diagnosis of atypical hyperplasia, particularly
low-grade atypical hyperplasia, presents challenges, leading to a lack of inter-observer
consensus among pathologists [61]. Therefore, Codipilly, D.C., et al. used 587 patient
pathological slices to build a model based on the ResNet architecture, accomplishing a
three-category task: NDBE vs. low-grade dysplasia vs. high-grade dysplasia [54]. In the
same task, Faghani, S., et al. constructed a two-stage model, with the first stage identifying
and segmenting using YOLO [56]. The output of the first stage was then used as input
for the second stage, which, in conjunction with the ResNet architecture, completed the
three-category task [56].

Mass spectrometry imaging (MSI) can obtain spatially resolved molecular spectra from
tissue slices without labeling. Beuque, M., et al. combined MSI with standard pathological
slice data to construct a model with three modules that can complete tasks: Task 1: epithelial
vs. stroma; Task 2: dysplastic grade; and Task 3: progression of dysplasia. The inclusion of
more information may contribute to a more precise classification [55].

The application of deep learning to aid pathological diagnosis has been extensively
studied. Research focuses on utilizing complex algorithms and big data to analyze patho-
logical tissue images for more accurate and timely identification and classification of lesions.
Various studies have made progress, including cell vs. non-cell classification, multi-category
tasks for BE, and more precise diagnoses integrating mass spectrometry imaging. These
research findings provide robust support for improving the accuracy and efficiency of
pathological diagnosis.

4. Applications of Deep Learning to Assist Other Diagnostic Methods

In addition to traditional endoscopy and conventional pathological sampling, some
researchers have developed deep neural network models for other diagnostic methods
(Table 3). Volumetric laser endomicroscopy (VLE) is a novel imaging technique. During
the examination, a balloon is inflated in the esophagus, and second-generation optical
coherence tomography (OCT) is used to capture a full circumferential scan of the esophageal
wall (approximately 6 cm) in about 90 s, reaching a depth of up to 3 mm [62]. This method
can acquire information from deep tissues, but interpreting the gray-shadow images is
challenging for human experts. To address this, Fonollà, et al. used VLE image data to
distinguish between NDBE and HGD using the deep learning model VGG-16, achieving
a maximum AUC value of 0.96 [63]. Van der Putten, J., et al., utilizing prospective single-
center data and based on the FusionNet/DenseNet architecture, effectively completed a
binary classification task of NDBE vs. HGD, achieving an AUC of 0.93 [64]. Additionally,
based on OCT information, Z. Yang and others proposed a bilateral connectivity-based
neural network for in vivo human esophageal OCT layer segmentation. This marked the
development of the first end-to-end learning method specifically designed for automatic
epithelial cell segmentation in vivo in human esophageal OCT images [65].
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Table 3. Five studies of deep learning assisting other diagnoses of BE.

Author Year Task Dataset Size Data Type Methodology and
Innovation

Model
Architecture

Comparison
with Experts Result

Fonollà, R. [63] 2019 NDBE vs.
HGD 7191

Volumetric
laser

endomi-
croscopy
images

Using FusionNet for VLE
segmentation, features
were extracted by layer
histograms and gland

statistics, and the model
was fine-tuned with

adaptive learning, data
augmentation, and

balanced classes

VGG-16 No AUC: 0.96

van der
Putten, J. [64] 2020 NDBE vs.

HGD 140

Volumetric
laser

endomi-
croscopy
images

Principal dimension
encoding for VLE data is

proposed, which
effectively utilizes a

priori information about
the importance of

dimensions in the image
to create a

lower-dimensional
feature space

FusionNet/
DenseNet No AUC: 0.93

Yang, Z. [65] 2021
Segmentation

of tissue
epithelium

30 OCT images

Proposed a bilateral
connectivity-based
neural network for

in vivo human
esophageal OCT layer

segmentation

CE-Net
(Bicon-CE) No

Evaluate through
the dice

coefficient

Gehrung,
M. [66] 2021 Normal vs.

BE 4662

Picture of a
pathological

section of
exfoliated

cells

Proposed a
classification-driven
approach to analyze

samples tested by
Cytosponge-TFF3

VGG-16 Yes AUC: 0.88

Waterhouse,
D.J. [67] 2021 NDBE vs.

EAC 715 Spectral
signal

Endoscopic spectral
imaging extracts vascular

properties in Barrett’s
esophagus to achieve

high contrast

Traditional
CNN No Sensitivity: 83.7%

Specificity: 85.5%

BE: Barrett’s esophagus; NDBE: non-dysplastic BE; EAC: esophageal adenocarcinoma; HGD: high-grade atypical
hyperplasia; OCT: optical coherence tomography.

An exciting study was conducted by Gehrung, M., et al., in which an endoscopic brush-
like sponge was used to collect epithelial cells. H&E staining and immunohistochemical
staining of trefoil factor 3 were performed to obtain the image information input for the
model. The model, built based on the VGG-16 architecture, was used to distinguish
between BE and others, with an AUC reaching up to 0.88 [66]. Other researchers discovered
that when light passes through tissue, it is absorbed by endogenous chromophores such
as hemoglobin and scattered by endogenous structures such as organelles and nuclei.
Biochemical and structural changes associated with diseases in the epithelial layer alter
the distribution and abundance of absorbers and scatterers, leading to subtle changes in
the spectral characteristics of the light exiting the tissue. Spectral imaging techniques
can capture this rich endogenous contrast to reveal potential pathological changes [68,69].
Waterhouse, D.J., et al. modeled the spectral signals and completed the NDBE vs. EAC
classification task with prospective data. The first clinical human trial demonstrated the
potential of spectral endoscopy to reveal disease-related vascular changes and provide a
highly contrasting depiction of esophageal tumor formation [67].

Compared to human experts, artificial intelligence has a more remarkable ability to
capture patterns in large datasets, especially the potential information between data that
is hard to discern with the naked eye. Therefore, one possible future research direction
is to focus on collecting more information through various means and using it to assist
in diagnosis.

5. Public Databases and Model Evaluation Metrics

In the literature we reviewed, the commonly used public datasets mainly include the
following: Firstly, the HyperKvasir dataset was collected at Bærum Hospital in Norway
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and is derived from gastroscopy and colonoscopy examinations. Part of the data has been
annotated by experienced gastroendoscopy physicians. This dataset covers 110,079 images
and 374 videos, showcasing anatomical landmarks, various pathological conditions, and
normal findings. Secondly, GastroNet is composed of 494,364 endoscopic images from
15,286 patients, covering organs including the colon, stomach, duodenum, and esophagus.
Thirdly, the ImageNet database encompasses over 14 million manually annotated high-
resolution images, covering more than 22,000 categories of objects and entities. Fourthly,
the MICCAI 2015 dataset includes 100 lower esophageal endoscopic images captured
from 39 individuals. Out of them, 22 were diagnosed with Barrett’s esophagus, and
17 showed early signs of esophageal adenocarcinoma. Fifthly, the Augsburg dataset consists
of 76 endoscopic images from patients with BE (42 samples) and early adenocarcinoma
(34 samples). These databases have significant application value in the fields of medical
imaging and computer vision research. Specifically, HyperKvasir, GastroNet, and ImageNet
are frequently used as sources for pre-training models, while MICCAI 2015 and Augsburg
are often utilized in formal model training and external validation.

In the model performance evaluations mentioned above, for classification tasks, accu-
racy, sensitivity, specificity, F1 score, and area under the receiver operating characteristic
curve are commonly employed as evaluation metrics. For segmentation tasks, aside from
accuracy, some researchers also use metrics such as intersection over union and dice
coefficient to assess segmentation performance.

6. Discussion

In this review, we conducted a literature search across multiple databases, culminating
in the inclusion of 33 primary studies. The objective was to summarize the current role
of deep learning in aiding the diagnosis of BE. We identified that the types of data for
modeling can be categorized as discussed herein. First, endoscopic data, including images
and videos, are used for prediction modeling. Second, pathological images (e.g., H&E
staining or IHC) are modeled for prediction. Third, other auxiliary diagnostic information
(such as OCT) is utilized for predictive modeling. Regarding the types of diagnostic tasks,
there are two primary categories: classification tasks, which encompass binary and ternary
classification tasks distinguishing BE from normal tissues or tumorous tissues, and seg-
mentation tasks, which focus on the segmentation of epithelial tissues or individual cells
(Figure 2A). In some of the aforementioned studies, researchers delineated segmentation
and classification tasks into two distinct phases. Initially, problematic esophagi are seg-
mented, followed by classification tasks targeting the segmented esophagi. This phased
model approach deconstructs a complex task into multiple stages, each employing a specific
model to address sub-problems, sequentially accomplishing the entire task. In every stage,
a dedicated model processes the data, producing intermediary outcomes, which are then
forwarded to the subsequent phase’s model for further processing until the entire task is
finalized [70–72].
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and 19% on other task types.
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Given the outcomes of these 33 studies, all exhibited commendable model performance.
Consequently, we believe that deep learning holds promising potential for augmenting the
diagnosis of BE.

From an architectural perspective, researchers chose different foundational model
architectures for various tasks or data types and made adaptive improvements (Figure 2B).
For classification tasks, image data was predominantly processed using CNN architectures
such as VGG, AlexNet, and ResNet. AlexNet, designed in 2012, was pivotal in the Ima-
geNet image recognition challenge, establishing the efficacy of deep convolutional neural
networks in large-scale image classification tasks [73]. In this BE diagnostic review, studies
by de Souza LA Jr. and Kumar A. C. have attempted to employ this architecture [33,35].
VGG, proposed by the Oxford Vision Group in 2014, secured the second position in the
ImageNet challenge. Despite not clinching the title, VGG showcased the potential of deep
convolutional networks, particularly through increased depth [74]. This BE review en-
compasses four studies involving this architecture [22,33,36,63,66]. ResNet, designed by
Microsoft Research in 2015, became widely adopted due to its residual network design,
which addressed the vanishing gradient problem in deep network training [75]. This BE
review indicates 12 studies utilizing ResNet, revealing a preference for its stable perfor-
mance in classification tasks [18,20,21,23,26,27,29,31,33,35,52,54–56]. DenseNet, introduced
by Cornell University researchers in 2017, embraced dense connections to enhance feature
reuse and gradient flow [76]. In this BE review, research by van der Putten J. and Kumar A.
C. tried this architecture [35,64]. For segmentation tasks, most adopted the U-Net architec-
ture with modifications. U-Net, proposed in 2015 by a German image processing institute,
was specifically designed for biomedical image segmentation [77]. This review found four
studies using U-Net [26,27,29,53]. We argue that modeling should not be confined to one
architecture but should explore diverse methods, opting for the most efficacious model, as
exemplified by Kumar A. C. and colleagues [35].

The introduction of deep learning in medical diagnosis has brought revolutionary
changes to the field. However, we must clarify its actual application intent: as a supple-
mentary tool to complement and enhance doctors’ expertise, not to completely replace
them. Human intuition, experience, and years of training cannot simply be replaced by
machines. On the contrary, deep learning should be viewed as a tool aimed at providing
more accurate and faster data analysis to assist doctors in making better decisions. In our
review, we noted that some researchers have made comparisons between deep learning
models and human experts. The results show that, especially on certain metrics, the per-
formance of deep learning models is comparable to expert diagnosis (Table 4). This has
mainly been verified in scenarios where tasks are clear and the data set quality is high. This
further proves the potential value of deep learning in the medical field. For instance, for
some complex image analysis tasks, models can quickly identify potential abnormal areas,
helping doctors narrow the scope of examination.

Table 4. Human-machine performance comparison.

Author Task Data Type Model Performance Expert Performance

de Groof, J. [17] BE boundary detection Endoscopic images Delineation scores: 35% Delineation scores: 69%

van der Putten, J. [21] NDBE vs. Neoplastic BE Endoscopic images
Accuracy: 98%

Sensitivity: 100%
Specificity: 95%

NA

van der Putten, J. [27] NDBE vs. Dysplastic BE Endoscopic images
Accuracy: 87.5%
Sensitivity: 92.5%
Specificity: 82.5%

Accuracy: 73.0%
Sensitivity: 71.8%
Specificity: 74.3%

Gehrung, M. [66] Normal vs. BE Picture of a pathological
section of exfoliated cells

Sensitivity: 72.62%
Specificity: 93.13%

AUC: 0.88

Sensitivity: 81.7%
Specificity: 92.7%

BE: Barrett’s esophagus; NDBE: non-dysplastic BE; NA: Not applicable.
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Although deep learning has achieved remarkable strides in diagnosing Barrett’s esoph-
agus, we must recognize the inherent challenges and shortcomings. In the subsequent
sections, we delve deeper into these shortcomings and explore potential countermeasures
for more reliable diagnostic methods. Primarily, the model’s performance could be ham-
pered by data limitations and inherent model characteristics. Most researchers utilized
retrospective single-center data, possibly leading to overfitting and thus compromising
generalization. To address this, we recommend prospective multi-center joint data for
training and validation to ensure data quality and diversity. However, such data collabora-
tion also brings a series of challenges. First, there are issues of data privacy and security.
Medical data often contains sensitive information about patients. When sharing data across
centers, it is essential to ensure that this data is not misused or leaked. To address this,
researchers can consider using techniques such as data de-identification and anonymiza-
tion to ensure privacy and security during the data-sharing process. Secondly, there is the
challenge of data heterogeneity. Different centers may adopt various standards for data
collection, storage, and processing, leading to data heterogeneity that might impact model
performance. To resolve this issue, normalization and standardization must be performed
before integrating the data, ensuring data consistency. Third, there are legal and ethical
concerns related to data sharing. Beyond technical issues, data sharing encompasses multi-
ple legal and ethical considerations. This necessitates that researchers obtain appropriate
ethical review and patient consent before sharing data, ensuring compliance with relevant
legal stipulations.

Secondly, in the application of multidimensional data modeling, there is limited uti-
lization in this direction. In fact, multidimensional information modeling has demonstrated
potential for enhancing the predictive performance of clinical models across various fields.
This modeling approach integrates multiple data features and information, aiming to
construct a more comprehensive and accurate model [78–80]. It can take into account
factors such as a patient’s medical history or multiple related examinations for classification
purposes. Successful applications have been observed in areas such as lung cancer and
breast cancer [81–83]. We believe this will be a promising research direction.

Thirdly, it is undeniable that the quality of the endoscopic system influences the final
image quality, which in turn affects the accuracy of deep learning models. High-resolution
sensors are capable of capturing more details, thereby providing richer information for
deep learning models. At the same time, sensors with a wide dynamic range ensure
that clear images can be obtained under various lighting conditions. A high-quality
illumination system ensures that both doctors and algorithms can clearly see every detail
of the tissue. Uniform, shadow-free illumination helps emphasize abnormal areas, making
it easier for the model to detect lesions. Insufficient or uneven lighting might obscure
crucial information or lead to color distortions in the image. In the studies we reviewed,
few provided detailed information about the technical specifications of their endoscopic
systems. This omission might be a potential limitation because different systems might
produce varying image qualities, leading to differences in model performance. Therefore,
we recommend that in future research, researchers should explicitly provide detailed
information about the technical specifications of the endoscopic system. This not only
enhances the transparency of the research but also helps to better understand under which
equipment conditions the performance of deep learning models is optimal.

Furthermore, the interpretability of deep learning models remains an immensely chal-
lenging field. Deep learning models are often regarded as “black boxes,” which constitutes
a significant barrier to the clinical application of deep neural networks [84,85]. Despite their
impressive performance in Barrett’s esophagus diagnosis, the internal mechanisms of these
deep learning models are frequently exceptionally intricate, making it difficult to explain
the basis for the model’s decisions. In the realm of medical diagnosis, interpretability
becomes especially critical, as both medical practitioners and patients require an under-
standing of how the model arrives at its diagnostic conclusions. It is worth mentioning that
although de Souza LA Jr. and colleagues attempted five distinct explanation techniques
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in their research, including saliency, guided backpropagation, integrated gradients, input
time gradients, and DeepLIFT, this undertaking was a proactive effort [33]. Nonetheless,
conquering this issue still appears to be a challenge.

7. Conclusions

Deep learning has played a pivotal role and demonstrated tremendous potential in
diagnosing BE (Figure 3). Its applications range widely, from primary image classification to
more complex segmentation tasks and advanced lesion detection, where deep learning has
shown powerful capabilities. Leveraging advanced network architectures such as U-Net,
ResNet, etc., deep learning has achieved remarkable success in big data processing, pattern
recognition, and precise localization. Moreover, some studies have gone even further,
using deep learning techniques for spectral image analysis or OCT image information
to uncover more potential pathological changes, which brings new possibilities for early
diagnosis of BE. However, despite the significant advancements made by deep learning
in diagnosing BE, challenges remain that need to be addressed and resolved, particularly
those related to model interpretability and credibility. Nevertheless, with continuous
algorithm optimization and the application of new technologies, such as advanced model
explanation techniques, there is reason to believe that deep learning will play an even more
significant role in the diagnosis and research of BE. This will enable us to provide more
accurate, earlier diagnoses, ultimately leading to better treatment options and quality of
life for patients.
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