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Abstract: To diagnose Gougerot–Sjögren syndrome (GSS), ultrasound imaging (US) is a promising
tool for helping physicians and experts. Our project focuses on the automatic detection of the
presence of GSS using US. Ultrasound imaging suffers from a weak signal-to-noise ratio. Therefore,
any classification or segmentation task based on these images becomes a difficult challenge. To
address these two tasks, we evaluate different approaches: a classification using a machine learning
method along with feature extraction based on a set of measurements following the radiomics
guidance and a deep-learning-based classification. We propose, therefore, an innovative method
to enhance the training of a deep neural network with a two phases: multiple supervision using
joint classification and a segmentation implemented as pretraining. We highlight the fact that
our learning methods provide segmentation results similar to those performed by human experts.
We obtain proficient segmentation results for salivary glands and promising detection results for
Gougerot–Sjögren syndrome; we observe maximal accuracy with the model trained in two phases.
Our experimental results corroborate the fact that deep learning and radiomics combined with
ultrasound imaging can be a promising tool for the above-mentioned problems.

Keywords: machine learning; deep learning; texture analysis; radiomics; classification; multi-supervision;
ultrasound imaging; Gougerot–Sjögren syndrome

1. Introduction

This study addressed the problem of the clinical diagnosis of Gougerot–Sjögren syn-
drome (GSS) using ultrasound imaging. The Gougerot-Sjögren syndrome is an autoimmune
disease that involves an inflammatory process and lymphoproliferation that primarily af-
fects the lacrimal and salivary glands. Common symptoms include xerostomia (dry mouth),
keratoconjunctivitis sicca (dry eyes), and enlargement of the parotid gland [1]. This disease
affects about 0.5 to 4. 8% of the population [2] and specifically females; indeed, more than
90% of the patients affected by GSS are women [2,3].

Primary GSS (pGSS) concerns patients who have only been affected by GSS; if they
suffer from another autoimmune disease, then it is called secondary GSS. Unfortunately,
actual medical treatment can only relieve the symptoms of the disorder. The challenges in
the diagnosis of SSG are related to the fact that its symptoms can be confused with systemic
diseases, such as sarcoidosis, amyloidosis, IgG4-related disease, HIV, and lymphoma.
In fact, these systemic diseases affect the salivary and lacrimal glands and can cause
syndromes similar to GSS [4,5].

The salivary glands facilitate the production of saliva, mastication, swallowing, speech,
and taste perception. There are three main salivary glands and 600 to 1000 small minor
salivary glands that can be present throughout the mouth [6]. Three main salivary glands
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exist on both sides of the face: the sublingual gland is the smallest and closest to the mouth,
the submandibular gland, and the parotid gland, located near the ear, is the largest.

Usually, GSS detection is performed via biopsy. However, Cornec et al. [7,8] reported
a strong correlation between biopsy results and salivary gland ultrasonography (SGUS).
Their study motivated several researchers to further investigate non-invasive diagnosis
approaches using SGUS. Additionally, deep learning approaches consist of promising tools
to tackle challenging tasks in image analysis.

Our project aimed to improve the automatic detection and segmentation of GSS in
SGUS using machine learning and deep learning methods. Recent studies show that deep
learning approaches may produce strong performance and are robust to environmental
changes. However, the results obtained using deep learning methods may, at certain
levels, be explainable [9,10], with a challenging hyperparameter tuning that requires a large
dataset. Moreover, radiomics have recently been applied to many medical image analysis
tasks, and they showed understandable and explainable features. Therefore, we developed
a machine learning method optimized via radiomic guidance [11].

2. Related Works

In this section, existing GSS detection methods are briefly discussed, and then we
present several models applied to texture analysis and deep learning methods for image
analysis. This section also presents the deep learning approaches dedicated to biomedical
image analysis.

Several studies have been published on the segmentation and classification of GSS
from ultrasound imaging. Two approaches have been used for automatic classification,
either training a deep neural network [12], or using feature extraction methods combined
with a machine learning classifier [13,14]. To characterize GSS and extract some useful
features, Berthomier et al. [13] proposed an approach based on a scattering operator. Other
works used features based on grey-level textures and statistics, following radiomics ap-
proaches [11,15,16]. Deep learning methods have produced exciting results in several fields
of medical ultrasound imaging, such as in the evaluation of neuromuscular disease [17].

To segment glands using ultrasound imaging with deep neural networks, Vukice-
vic et al. [18] compared various architectures of deep convolutionnal neural networks
(CNNs), such as U-net and FCDenseNet, for salivary gland segmentation in a database
of 1184 ultrasound images obtained from 287 patients, all of who were diagnosed with
primary GSS. In their study, they achieved a Dice score (The Dice score is used to gauge
model performance, ranging from 0 to 1. It can characterize the number of true positives;
at the same time, it penalizes the algorithm for its false positives) of 0.91 with FCN8.

To detect infected glands using ultrasound images, Kise et al. use the VGG16 net-
work [12] pretrained on ImageNet [19]. They classified GSS into four classes with the
approval of some experts: definitely GSS, probable GSS, probablt not GSSS, definitely not
GSS. The authors used a database containing 200 acquisitions to train their model and
obtained an area under curve (AUC) (The ROC (receiver operating characteristic) curve is
a graph showing the performance of a classification model at all classification thresholds.
The AUC corresponds to the area under the ROC, which indicates the true positive rate
against the false positive rate for various classification thresholds) of 0.810 for the parotid
glands and an AUC of 0.894 for the submandibular glands [12].

Tables 1 and 2 present several texture analysis methods from a historical point of
view and a performance analysis [20] over 13 texture datasets. We mention the best results
obtained on the Textures under varying Illumination, Pose and Scale (KTH-TIPS) image
database and KTHTIPS2b in Table 2.
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Table 1. Overview of the evolution of texture analysis methods.

Method Year Author

Texture perception model [21] 1962 Julesz

Gray-level co-occurence matrix (GLCM) [22] 1973 Haralick et al.

Wavelet [23] 1989 Mallat

Local binary pattern for facial texture [24] 2002 Ojala et al.

Scattering convolutionnal networks [25] 2012 Bruna et al.

Fisher vector pooling of CNN [26] 2015 Cimpoi et al.

The concept of texture was introduced and questioned by Julesz in 1962 [21]. The au-
thor proposed a decomposition of textures into basic spatially local primitives called textons.
Texture can be characterized by the occurrence of a pattern along the spatial distribution,
taking into account the intensities of the pixels [27], which makes it useful for the classifi-
cation of similar regions in different images. The specificity of a spatial pattern is that it
cannot be defined on a single pixel compared to color. Texture analysis was adopted for the
analysis of echocardiograms in 1983 [28]. In 1973, Haralick et al. [22] extracted statistical
features on the co-occurence of pixel intensities in an image. In 1989, Mallat introduced the
wavelet transform (A wavelet transform approximates an image by dilated and translated
local wavelets) to analyze texture in both the frequency and spatial domains. In 2002,
Ojala et al. proposed a descriptor called the local binary pattern that uses the sign of the
difference between a pixel and the neighboring pixels. Let P be the number of neighboring
pixels, R is the radius that defines the neighborhood, s is the sign operator, and qc is a pixel
in the image. The descriptor LBPP,R is computed as follows for every pixel qc:

LBPP,R(qc) =
P−1

∑
p=0

s(gp − gc)2p (1)

The histogram of the descriptor can then be used to identify patterns. The limitation
of descriptors is caused by the sign operation, which loses local information. In 2012,
Bruna et al. [25] proposed scattering convolutionnal networks, invariant to translation and
rotation, using a cascade of wavelet transform convolutions with modulus and low-pass
filters. Cimpoi et al. developed a Fisher vector-convolutionnal neural network (FV-CNN)
to remove global spatial information. Song et al. [29] improved the model by adding
local connected layers and a loss layer using the hinge loss (The hinge loss is used for
“maximum-margin” classification, most notably for support vector machines). This model
produced state-of-the-art results on the KTH-TIPS2 data set [30].

Table 2. Texture analysis methods that obtained an accuracy >99% on KTHTIPS challenge [20].

Method

Sorted random projections [31]

Scale-invariant feature transform [32]

Scattering convolutionnal networks

VGG [33]

Locally transferred Fisher vector for classification (LFVCNN) [29]

Since 2012, deep learning has become popular in image processing, with the first
human-competitive results achieved on a digit classification dataset [34–36]. Performance
was then improved using deeper networks, requiring convolutionnal layer reformula-
tion, such as residual learning [37], densely connected neural networks [38], dilated net-
works [39], or using attention mechanisms [40,41]. In 2021, Dai et al. [42] achieved the best
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performance on ImageNET classification benchmarks with a hybrid model that combines
attention and convolutionnal networks.

Deep learning methods have been extensively applied to medical image analysis in
segmentation or classification tasks [43,44]. Ronneberger [45] developed the U-net model
using convolutionnal blocks with several resolutions, downsampling and upsampling
paths, and skip connection mapping layers at the same resolution from both paths. This
method and recent improvements with attention blocks have provided strong performances
on small datasets [45–47].

3. Databases

This section describes the databases used in our project. In addition, we describe the
preprocessing steps introduced for each database. We also introduce the new salivary gland
database of SGUS gathered in our project, called GSID, which contains 210 SGUS cases of
normal and ill submandibular glands, provided by the Brest University Hospital Center
(Brest UHC). We also used an open source database, named Harmonicss, of SGUS [48].
Using the Harmonicss database, we used two test methods to evaluate the adaptation of
our models to a new environment. The first method directly predicts the model trained on
the GSID. In the second method, we created training, validation, and testing sets from the
Harmonicss database, fine-tuning our model on the training set, and reproducing it with a
10-fold cross-validation.

The GSID database contains patients with suspected GSS. Several images were an-
notated by experts with dot points and others with a binary mask segmentation. We
developed the following algorithm to create a segmentation mask from a dot–points con-
tour. The images in the database are either in grey scale with a white dot–point contour
or in red, green, blue (RGB) images with a color dot–point contour. We transformed the
RGB images in hue saturation values (HSV) and applied a threshold on the color of the dot
points using the following operations (Figure 1):

• HSV transformation
• Color threshold
• Gaussian blur
• Dilation
• Filling holes
• Erosion

For the grey-scale images, we applied a threshold on the white color (Figure 2) and
used the following operations:

• White threshold
• Detecting isolated components
• Removing large isolated components
• Dilation
• Filling holes
• Erosion
• Blur

A threshold is a simple operation that selects grey-level values between 200 and
255, while the Gaussian blur applies a Gaussian filter of size (3, 3). The dilation and
erosion operations are morphological operations based on a structural element given
by a binary matrix. The dilated (respectively, eroded) value at a given pixel x is the
maximum (respectively, the minimum) value in a window, defined by the structuring
element, centered on x [49]. The images are finally resized to a size of (192, 192) via
bilinear interpolation.
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Figure 1. Annotation of contour on the RGB imgaes from GSID database. The first image represents
the ultrasound image encoded in RGB values, the second image is the RGB image transformed in
HSV, and the third image is the contour obtained with a dilation a Gaussian blur and a color threshold.
The image on the bottom left is the annotated segmentation after filling the contour and an erosion.

Figure 2. Annotation of the contour on grey-scale annotation.

The open-source database of the Harmonicss project (HARMONIzation and integra-
tive analysis of regional, national, and international cohorts on primary Sjögren’s syndrome
(pSS) toward improved stratification, treatment and health policy making) contains 225 ul-
trasound images of 225 patients from 4 European centers [50], see Table 3. The salivary
glands in the acquisition are parotid or submandibular collected by four different devices
(Samsung, Philips, esaote, GE), see Figure 3. The database includes for each patient:
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• DeVita’s score [51]: The DeVita score ranges from zero to three in each gland, from
normal-appearing morphology to severe inhomogeneity.

• The Outcome Measures in Rheumatology Clinical Trials (OMERACT) score [52]: The
OMERACT score proposes a four-grade classification.

• The classification of the European League against Rheumatism (EULAR) [53]: The
EULAR score is based on focal lymphocytic sialadenitis with a focus score (FS) ≥ 1 by
LSG, presence of anti-SSA(Ro) antibodies, positive ocular staining score (OSS ≥ 5),
positive Schirmer’s test (≤5 mm/5 min), and unstimulated whole salivary (UWS) flow
rate ≤0.1 mL/min.

• The duration of the disease.

To compare the scores given in this database with the binary classification used for
the GSID database, we applied a threshold on the scores. We call devita0 the binary score
created from the DeVita score, in which we assigne the score in the range [1, 3] of the DeVita
score to label 1 and a score of 0 to label 0. Similarly, we call devita1 the score created by
assigning the range [0, 1] in the DeVita score to 0 and the range [2, 3] to 1.

Table 3. Description of the Harmonicss database.

Database Entry Range Value or Value

Patients number 225

Gland type parotid/submandibular

Ultrasound 4 constructors

DeVita [0, 3]

OMERACT [0, 3]

Disease duration [0, 24 weeks]

EULAR [0, 2]

(a) Udine center with a Samsung device. (b) Lubjana center with a Philips device

(c) Milano center with an Esaote device (d) Belgrade center with a GE device

Figure 3. Examples of images getting from different centers and using various devices.
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4. Methods

In this section, we present different detection approaches tested on SGUS. We used
two different classes of methods applied to GSS detection:

• The first method computes textural features following the radiomics guidance and
trains a classifier based on these features.

• The second method uses a deep neural network with an innovative 2-phase training
scheme with pre-training based on joint classification and segmentation loss.

Radiomics feature extraction first requires the extraction of a region of interest (ROI) in
which to compute the features. Three cases occur (see Figure 4): Firstly, ROI annotations are
present and a deep neural network can perform strong automatic annotations. Secondly,
partial annotations are present on the images, but the segmentation task is too hard to
reproduce; finally, there is no annotation given and no segmentation network.

Figure 4. Three different classification schemes and the steps in each scheme: classification with
radiomics features using masks, classification with radiomics features with DNN-predicted mask,
and classification with a DNN.

While we made segmentation models for GSS, our final approach for assessing the
potential of radiomics feature extraction consisted of annotations to generate an ROI mask.
In this assessment, we only considered the data where experts’ annotations were provided.
We also trained a deep neural network to automatically provide the segmentation mask
with or without annotations.

4.1. Features for Texture Description

This part of our work focused on combining the extraction of texture features with
machine learning classifiers. We selected first-order statistical features and other features
extracted from 4 matrix-containing texture information: grey-level co-occurrence matrix
(GLCM) [22], grey-level run length matrix (GLRLM) [54,55], grey-level dependence matrix
(GLDM) [56], and grey-level size zone matrix (GlZSZM) [57]. Statistical characteristics
were computed from these 4 matrices (see Table 4). We define the GLCM and GLRLM
matrices and a part of those features in the next section.

4.1.1. Grey-Level Quantization

The texture features presented in the previous section depend on the quantization of
the grey-level distribution. We computed the features using a discretization, with specific
criteria for the selection of the histogram bins. The first method possible for the bin
selection, called bincount, is based on a fixed number of bins to create this histogram,
whereas the second method, called bin width, uses a fixed width for every bin in the
histogram. Following the documentation of PyRadiomics, we used the bin width method,
testing grey-scale-range width values of 10, 25, and 50, aiming to reach a bincount of 30 to
130 bins. Lofstedt et al. [58] recently modified Haralick features to be invariant to grey-level
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quantization. We describe below how the statistical features are extracted from the texture
matrix constructed on the discretized grey levels.

Table 4. Summary of the features extracted.

Class of Features Name of Features

GLCM [22]

“Autocorrelation”, “JointAverage”, “ClusterProminence”, “ClusterShade”, “ClusterTendency”, “Contrast”,
“Correlation”, “DifferenceAverage”, “DifferenceEntropy”, “DifferenceVariance”, “JointEnergy”,

“JointEntropy”, “Imc1”, “Imc2”, “Idm”, “Idmn”, “Id”, “Idn”, “InverseVariance”, “MaximumProbability”,
“SumEntropy”, “SumSquares”

GLRLM [54]

“GrayLevelNonUniformity”, “GrayLevelNonUniformityNormalized”, “GrayLevelVariance”,
“HighGrayLevelRunEmphasis”, “LongRunEmphasis”, “LongRunHighGrayLevelEmphasis”,

“LongRunLowGrayLevelEmphasis”, “LowGrayLevelRunEmphasis”, “RunEntropy”,
“RunLengthNonUniformity”, “RunLengthNonUniformityNormalized”, “RunPercentage”, “RunVariance”,

“ShortRunEmphasis”, “ShortRunHighGrayLevelEmphasis”, “ShortRunLowGrayLevelEmphasis”

GLDM [56]

“DependenceEntropy”, “DependenceNonUniformity”, “DependenceNonUniformityNormalized”,
“DependenceVariance”, “GrayLevelNonUniformity”, “GrayLevelVariance”, “HighGrayLevelEmphasis”,

“LargeDependenceEmphasis”, “LargeDependenceHighGrayLevelEmphasis”,
“LargeDependenceLowGrayLevelEmphasis”, “LowGrayLevelEmphasis”, “SmallDependenceEmphasis”,

“SmallDependenceHighGrayLevelEmphasis”, “SmallDependenceLowGrayLevelEmphasis”

GLSZM [57]

“GrayLevelNonUniformity”, “GrayLevelNonUniformityNormalized”, “GrayLevelVariance”,
“HighGrayLevelZoneEmphasis”, “LargeAreaEmphasis”, “LargeAreaHighGrayLevelEmphasis”,

“LargeAreaLowGrayLevelEmphasis”, “LowGrayLevelZoneEmphasis”, “SizeZoneNonUniformity”,
“SizeZoneNonUniformityNormalized”, “SmallAreaEmphasis”, “SmallAreaHighGrayLevelEmphasis”,

“SmallAreaLowGrayLevelEmphasis”, “ZoneEntropy”, “ZonePercentage”, “ZoneVariance”

First order
“10Percentile”, “90Percentile”, “Energy”, “Entropy”, “InterquartileRange”, “Kurtosis”, “Maximum”,

“MeanAbsoluteDeviation”, “Mean”, “Median”, “Minimum”, “Range”, “RobustMeanAbsoluteDeviation”,
“RootMeanSquared”, “Skewness”, “TotalEnergy”, “Uniformity”, “Variance”

4.1.2. Grey-Level Co-Occurrence Matrix

The main idea of this method is based on the relationship between texture and tone
in grey-scale-level analysis. An image can be divided into zones, where either tone or
texture can be dominant. The method focuses on the size of these zones and their contained
elements, such as the number of distinct tones, the element length, or the size of the
zone. We assumed that texture information can be described by the matrix that counts
the co-occurrence of grey-scale levels, with a fixed distance and angle. Let M be a matrix
containing four grey levels (1–4):

M =


2 1 2 3
1 1 1 3
3 4 3 2
2 4 4 4


The co-occurrence matrix is defined as follows, where N(0, 1) is the number of co-

occurrences of tones 0 and 1 for a given angle and distance:

A =


N(1, 1) N(1, 2) N(1, 3) N(1, 4)
N(2, 1) N(2, 2) N(2, 3) N(2, 4)
N(3, 1) N(3, 2) N(3, 3) N(3, 4)
N(4, 1) N(4, 2) N(4, 3) N(4, 4)


The GLCM characteristics were calculated on the matrix of the four following angles

(0°, 45°, 90°, 135°) and averaged. We show the formulas of 5 of the 22 GLCM features
calculated (see Table 4). We define a(i, j) as the coefficients of the normalized matrix A and
Ng as the number of discrete intensity levels in the image. σx is the standard deviation of
the marginal row probability. Hereinafter, we define several features:
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• Marginal row probability p(i) = ∑
Ng
j=1 a(i, j)

• Joint average: µx = ∑
Ng
i=1 ∑

Ng
j=1 a(i, j)i

• Angular second moment: f 1 = ∑
Ng
i=1 ∑

Ng
j=1 a(i, j)2.

• Contrast: f 2 = ∑
Ng
i=1 ∑

Ng
j=1 a(i, j)(i− j)2.

• Correlation: f 3 =
∑

Ng
i=1 ∑

Ng
j=1 ija(i,j)−2µx

2σx
.

• Sum of squares: f 4 = ∑
2Ng
i=2 ∑

Ng
j=1(i− µx)2a(i, j).

• Entropy: f 5 = −∑
Ng
i=1 ∑

Ng
j=1 a(i, j) log(a(i, j)).

4.1.3. Grey-Level Run-Length Matrix

Whereas the GLCM matrix focuses on the number of grey-level co-occurrences, then
Glrlm matrix counts each grey level, i.e., the length of segments of consecutive pixels of a
single grey- evel. Let M be a matrix of four grey levels (1–4) as defined earlier. A grey-level
run is a set of consecutive, collinear points with the same grey-level value. For a given
picture, we computed a grey-level run-length matrix A for runs having any given direction.
A matrix element a(i, j) specifies the number of times that the picture contains a run of
length j in the given direction, consisting of points having grey-level i [59]. From this
matrix, we reproduced the features following the radiomics guidance. We chose to present
three of all descriptors obtained from this Glrlm matrix:

• Short-run emphasis

∑
Ng
i=1 ∑Nr

j=1
a(i,j)

j2

∑
Ng
i=1 ∑Nr

j=1 a(i, j)
(2)

• Long-run emphasis

∑
Ng
i=1 ∑Nr

j=1 j2a(i, j)

∑
Ng
i=1 ∑Nr

j=1 a(i, j)
(3)

• Run percentage
Ng

∑
i=1

Nr

∑
j=1

a(i, j) (4)

To enhance the classifier performance, we normalized all the features using the following:

• Standard: Letting µ be the mean and σ be the standard deviation for a feature x, we
computed the standard normalization:

x− µ

σ
(5)

• Min–max: We computed the Min–max normalization for any feature x relative to the
max and min of all feature values.

x−min(x)
max(x)−min(x)

(6)

• Principal component analysis (PCA): For PCA normalization, we selected the number
of components such that the variance was greater than 0.95 [60].
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4.2. Classifier and Feature Selection

In this section, we present the feature selection method and the classifiers used
in order to obtain the best accuracy (ACC) (Equation (7)), where TP = True Positives,
TN = True Negatives, FP = False Positives, and FN = False Negatives:

ACC =
TP + TN

TP + FP + TN + FN
. (7)

To select the most relevant classifier among support vector machine [61], random
forest, and regression, we performed a 10-fold cross-validation for each model.

4.2.1. Random Forest Feature Selection

A random forest consists of the randomized training of an ensemble of trees. A tree
is defined as a structure containing nodes in which the input data are split into two
subsets according to a threshold on a variable of the input data. In order to measure the
importance of a variable, we used the mean decrease impurity importance (MDI) [62,63].
MDI averages, over all trees and for all splits using one variable, the difference between the
Gini impurity (Gini impurity measures the frequency for a randomly selected and labeled
element if a set is incorrectly labeled, according to the distribution of labels in the set) of a
node and the sum of the Gini impurity of its child nodes weighted by the probability that a
sample may reach each node.

4.2.2. Maximum Relevance, Minimum Redundancy

Maximum relevance, minimum redundancy (MRMR) consists of selecting the features
with the highest relevance for the classification, while minimizing the redundancy of the
selected features [64,65]. Letting Ns be the number of features in the subset S, the relevance
was computed as follows:

D =
1

Ns
∑

xi∈S
I(xi; c) (8)

where I(x, y) stands for the mutual information:

I(x; y) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy. (9)

Then, redundancy is computed as follows:

R =
1

N2
s

∑
xi ,xj∈S

I(xi, xj). (10)

To maximize the relevance and minimize the redundancy, we maximized the following
function:

max Φ(D, R) = D− R. (11)

To find the most relevant features for classification, this method was applied to the
database. We chose the same number of features as obtained with the random forest
feature selection.

4.3. Deep Neural Network with Joint Training Scheme

In the previous section, we presented the method used to train a machine learning
classifier with features extracted on a texture matrix with statistical descriptors. This section
presents the second method used for the classification of GSS. We describe the used deep
neural networks, the training scheme, and the selected hyper-parameters.
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4.3.1. Model

Using five layers of double convolutionnal blocks with 4 downsampling applied
within the 5 layers and a reconstruction path for the segmentation part with upsampling
operations, our baseline model is inspired by U-net [45]. That model is based on double
convolutionnal blocks and skip connections mapping the downsampling and upsam-
pling paths.

A double convolutionnal block consists of blocks formed by a convolutionnal layer
with a batch normalization operation and a ReLU regularization [66]. To expand the recep-
tive field, we used dilated convolutions in the second layer of each double convolutionnal
block, without losing resolution or increasing the number of parameters [39]. This method
allows end-to-end training of a deep neural network for classification with a relatively
small database.

Internal covariate shift is defined by the changes in the distribution of network activa-
tion due to changes in network parameters during training. It can produce very low or very
high values, which can lead to vanishing or exploding gradients. To avoid this distribution
shift issue, we used the batch normalization method. This normalization method can
accelerate the training of deep neural networks and improve performance [67,68]. For each
batch, the mean and variance are computed to normalize the data. Then, the scaling pa-
rameter γ and the shifting parameter β are learned to produce the batch normalization:

yi = γx̂i + β (12)

This function is applied on every feature map at each batch to train the parameters
and perform batch normalization.

4.3.2. Joint Training Scheme

This section describes the multi-phase joint-training scheme used to train the deep
neural network. We considered several training schemes. Joint training is a case multi-task
learning [69], which has been largely considered in deep learning but rarely in medical
imaging. In our case, joint-training is seen as a way to increase performance, facilitate
optimization, and improve generalization, under the assumption that the segmentation
task and classification task require similar features. However many multi-task problems are
considered only as a requirement for the objective task. In multi-task learning optimization,
Yu et al. [70] identified three concepts, conflicting gradients, dominating gradients, and high
curvature. Conflicting gradients occur when gradients from multiple tasks are in conflict
with one another; dominating gradients occur when the difference in gradient magnitudes
is large, leading to some task gradients dominating others; and high curvature occurs in the
multi-task optimization landscape. We assumed that in our case, gradients have less risk to
consider, but there is a risk of dominating gradients between the segmentation loss and
the classification loss. To deconflict gradients during optimization Yu et al. [70] proposed a
procedure called PCGrad, in which the gradient of each task is projected onto the normal
plane of the gradient of the other tasks.

Inspired by the Y-net proposed by Mehta et al. [71], we built a joint segmentation
and classification network. The novelty of our proposal, called two-phase training, is the
use of this joint training as pre-training in a first phase, then a second phase trains the
model specifically on the classification loss in a classical way. The joint-training phase
uses the classification branch along with the segmentation branch to regularize the model
during 200 epochs. Then, the model is specifically trained on the required task, either
using the classification branch alone or the segmentation branch alone for 600 epochs. This
regularization is used to push the network to generate high-level task-relevant features
using the low-level features built in the first phase, to thus fine tune the network more
specifically. We did not freeze any layer during the second training phase, and the final
classification model had the same number of parameters as the first-hase network.

During the first phase, called the joint training scheme, the classification branch is
linked to the lowest-resolution layer at the bottleneck of the segmentation model, see
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Figure 5. The classification part contains a global pooling operation that produces a
vector, whose size is the number of filters at the bottleneck layer. Cross-entropy is used
as classification loss, and a weighted sum of a cross-entropy function and a Dice score
produces the segmentation loss. During the second phase of 600 epochs, we only used the
class categorical cross-entropy to train the network. We describe the loss functions used in
more detail in the next section .

Figure 5. Coarse representation of the architectures of U-net [45] and Y-net with 2 downsampling
layers. The skip connections are not included in the figure for simplification. The decrease in the
height of the convolutionnal block denotes upsampling or downsampling.

4.3.3. Training Settings

Our loss function is based on the sum of cross-entropy and the Dice score. Let xi and
yi be, respectively, the binary predicted label and the ground truth label for a pixel i ∈ [1, n],
where n stands for the number of pixels. Cross-entropy is defined as:

lce = −
n

∑
i=1

(yilog(xi) + (1− yi)log(1− xi)) (13)

Cross-entropy was firstly introduced as a cost function to train deep neural networks
for the segmentation of biomedical images [45]. However, this metric is not robust to
unbalanced data when a class is under-represented [72]. On the other hand, the Dice
score provides improved performance when applied on an unbalanced dataset for several
tasks [73–75]. Following the scheme proposed in [46], we used a weighted sum of the Dice
score LsegDice and the cross-entropy LsegCE to compute the segmentation loss. We also used
the cross-entropy Lclassi f CE to compute the classification loss:

Ltotal = coe f fce ∗ Lclassi f + coe f fsegdice
∗ LsegDice + coe f fsegce

∗ LsegCE (14)

For other training hyperparameters of the deep neural network, as described in Table 5,
we used 32 filters in the first layer and 600 epochs of training. To learn the weights of the
network, the optimizer for the stochastic gradient descent was based on the Adas method,
which adds momentum to the classical algorithm [76]. The learning rate, which weighs the
optimization step, was set to 10−5.
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Table 5. Parameters tested.

Hyperparameter Searched Values

Filters Fixed 32
Augmentations Fixed 3
Batch size Fixed 4
Learning rate Fixed 10−5

Training scheme Searched [2-phase, class]
Loss coefficients Searched [ [10, 0.2, 0.1], [10, 0.2, 0], [1, 1, 0], [10, 0.1, 0],

[1, 0.5, 0], [10, 0.01, 0], [10, 0.3, 0] ]
normalization Searched [‘no’, ‘standard’]
Image shape (Width,Height) Searched [(128, 128), (192, 192)]

Data augmentation is commonly used to tackle the lack of data by applying various
image transformations. To ensure the robustness of the implementation, we used the
package imgaug. The transformations were consistently applied to labeled image. The used
transformations were left and right flip, cropping, sharpening, affine transformation, linear
contrast, Gaussian blur, additive Gaussian noise, edge detection, dropout, and elastic
transformation [77]. The augmentations were performed sequentially during the training,
and we randomly selected three augmentations to be applied for each batch.

4.4. Metrics

To measure and interpret the classification results, we computed the accuracy, sensitiv-
ity, and specificity as follows:

Sensitivity =
TP

TP + FN
(15)

Speci f icity =
TN

TN + FP
(16)

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

To summarize, this section presented the method inspired by radiomics guidance,
as well as an innovative training scheme for deep neural networks using joint training on
classification and segmentation, the initialization of the model weights for 200 epochs in
order to train the model to learn the segmentation task features, and a specific training phase
on classification. Next, we compare this method to classical training on the classification
task and compare the results with those produced by machine learning models trained
with texture and statistical descriptors.

5. Simulation Results

For classification and segmentation tasks, we present, in separate sections, the results
of the two above–mentioned methods: the extraction of radiomics features combined with
a machine learning classifier and deep neural networks. For GSS detection with deep
learning, we provide the results obtained on experiments with various hyperparameter
sets on our labeled database and then the results obtained on an unseen unlabeled database
gathered by the Harmonics project.

5.1. Classification Results with Radiomics Features

We present here the results obtained for the selection of the best pixel normalization
and bin width, the features selected with these parameters using 10-fold cross-validation,
and the accuracy metric. We compare as well feature selection methods with various feature
sets that measure the mean of all classifier accuracies and the maximal accuracy obtained
across all classifiers.

By performing the bin-width selection with a random forest classifier and PCA feature
normalization, we obtained a best accuracy of 0.79 with a sensitivity of 0.839 and a specificity
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of 0.776 with a bin width of three (see Table 6). We observed a slight decrease in the
sensitivity with a bin width of 5 and a decrease in specificity with a bin width of 10.
The bin width of 25 provided the lowest performance. These results showed that a more
precise discretization produced more relevant features, good overall performance using the
classifier and radiomics features with a relevant discretization, and good balance between
sensibility and specificity. Taking into account these results, we fixed the bin width to five
for the following experiments to compare classifiers and normalization methods.

Table 6. Results for various bin widths with a random forest classifier and PCA.

Accuracy Sensitivity Specificity Bin Width

0.79 0.839 0.776 3
0.782 0.823 0.776 5
0.764 0.839 0.731 10
0.738 0.803 0.706 25

The comparison of the 10-fold classification results over all features with a fixed bin
width, for various classifiers and normalizations, is given in Table 7. This table shows
that the best performance was obtained with random forest and standard normalization
considering the accuracy metric, with 0.789 compared to 0.782. The SVM classifier with
standard normalization provided a good specificity of 0.816 but a slightly lower accuracy,
with 0.771 against 0.789 with random forest.

Table 7. Classifier and normalization comparison for a fixed bin width.

Classifier Feature Normalization Accuracy Sensitivity Specificity

Random forest (RF) PCA 0.782 0.823 0.776
Random forest (RF) std 0.797 0.85 0.76

SVM std 0.771 0.737 0.816

We tested two feature selection methods with various numbers of features. As 23 features
were selected using MDI, we fixed the same feature number for the MRMR feature selection
to compare the methods (see Table 8). The best 10-fold accuracy of 0.84 was obtained with
STD image normalization and logistic regression without a feature normalization.

Table 8. Accuracy (Acc) results obtained with all classifiers with fixed normalization and various
feature selection methods.

Feature Selection Image Norm Dim Acc Mean Acc Max Acc Std

All features STD 128 0.705 0.797 0.08
10 selected with MRMR STD 128 0.721 0.802 0.082

23 selected with MDI STD 128 0.723 0.84 0.078
23 selected with MRMR STD 128 0.713 0.79 0.07

The tests of various feature selections on the GSS detection showed better results for
all classifiers with the features selected by random forest (MDI), as well as the maximum
accuracy obtained with one classifier. The MRMR-selected parameters provided a slightly
lower mean accuracy over all classifier and a decrease of 0.04 for the best classifier compared
with that of the model using features selected with MDI. Both feature selections provided
an improvement in the mean and max accuracy compared with the classifiers trained
using all features. Additionally, using the 10 most important features according to MRMR
provided better results than using the 23 most important features.

In this section, we compared the detection results of GSS with various classifiers, data
normalization, and bin widths. This work allowed us to find the best settings for this
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method and to obtain an accuracy that was next used as a basis for a comparison with the
results obtained from a deep neural network.

5.2. Classification Results with Deep Neural Network on GSS Detection

In this section, we present the results of various experiments conducted using deep
neural networks using the best, precise hyperparameters described in the previous sections.
We also compare the two-phase training results to classical training results in terms of
classification loss. Based on our database, we compared our results to the ones of a machine
learning classifier. Additionally, we present the results of a model trained on our database
and used to detect GSS on Harmonicss.

We performed a twofold cross-validation with two launches for each set of hyperpa-
rameters,as indicated in Table 9.

Table 9. Two-phase loss coefficient selection.

Coeff Classif Ce Coeff Seg Dice Coeff Seg Ce

1 1 0
1 0.5 0
1 0.03 0
1 0.02 0.01
1 0.02 0
1 0.01 0
1 0.001 0

Table 10 shows that the two-phase model had slightly higher accuracy (0.019) on
two-fold cross-validation averaged over input image shapes of (192, 192) and (128, 128).

Table 10. Two-fold accuracy for two phases or classification phase only without normalization
averaged over various image shapes.

Training Phase Norm Accuracy

1-phase joint no 0.908
2-phases no 0.909

class no 0.891

According to Table 11, the best accuracy of 0.905 was obtained with a coeff_classif_ce
of 1, a coeff_seg_dice of 0.5, and a coeff_seg_ce set to 0. Similar accuracy was obtained by
increasing coeff_seg_dice to 1. A lower accuracy was obtained for all coeff_seg_dice values
lower than 0.5.

Table 11. Two-phase loss coefficient selection.

Coeff Classif Ce Coeff Seg Dice Coeff Seg Ce Accuracy

1 1 0 0.903
1 0.5 0 0.905
1 0.03 0 0.897
1 0.02 0.01 0.897
1 0.02 0 0.897
1 0.01 0 0.899
1 0.001 0 0.887

The best results were obtained with neighboring values for the classification cross-
entropy and the segmentation Dice. However, lower values were obtained when adding
the segmentation cross-entropy loss or when using a small coefficient for the segmentation
Dice loss.
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Over all hyperparameter sets and using the two best loss coefficient combinations,
as defined in Table 11, the accuracy differed slightly, with an accuracy 0.008 higher for the
two-phase training (see Table 12). The results obtained during this experiment are shown in
Figure 6. The three best and the two lowest precisions appeared with the two-phase model.

Table 12. Two-fold accuracy for 2 phase or classification phase with all normalizations averaged over
various image shapes.

Training Phase Norm Accuracy

2-phases no,std 0.904
class no,std 0.896

Figure 6. Classification accuracy for all sets of hyperparameters: blue, 2-phase model; orange, “class”
with the classification only model.

The maximum accuracy was obtained without normalization with a coefficient of 1 for
the classification loss and a coefficient of 0.5 for the Dice segmentation loss (See Table 13).

Table 13. Two-fold max accuracy for 2 phases or classification phase over all hyperparameter sets.

Training Phase Accuracy

2-phases 1.0
class 0.977

The results obtained with the best hyperparameters for the two-phase training of
the deep convolutionnal neural network were higher by 0.16, with a 1.0 accuracy for
the two-phase-trained DCNN, compared with 0.84 for the best classifier trained on ra-
diomics features (See Table 14).
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Table 14. Results of deep-learning- and radiomics-based model on GSID database.

Database Model Image Shape Accuracy Sensitivity Specificity

GSID 2-phase (192, 192) 1.0 1.0 1.0
GSID Radiomics (192, 192) 0.790 0.839 0.776

By applying the model trained in the GSID database to the Harmonicss database,
the best accuracy obtained was 0.831 using the devita1 score and an image preprocessed
to a shape of (192, 192) (See Table 15). The accuracy obtained on the devita0 score was
0.08 lower, at 0.751. The specificity obtained using the devita0 score was slightly higher than
when using devita1, with 0.918 for devita0 versus 0.899 for devita1. However, the sensitivity
was much higher for devita1 with 0.724 versus 0.591 for devita0.

The results obtained on the original Harmonicss images without preprocessing were
very low, with an accuracy of 0.547 obtained with devita0. A preprocessing method called
‘Adapted’, which reshapes images adapted to all different input shapes, achieved a lower
accuracy than reshaping all images to (192, 192). The accuracy decreased by 0.08 from 0.921
on the GSID test set compared to 0.831 on the Harmonicss database.

Table 15. Results of GSS detection with 2-phase model trained on GSID database training set and
predicted directly on Harmonicss database.

Database Score Image Shape Accuracy Sensitivity Specificity

Harmonicss devita0 (192, 192) 0.751 0.591 0.918
Harmonicss devita0 Original 0.547 0.583 0.509
Harmonicss devita0 Adapted 0.747 0.565 0.936
Harmonicss devita0 (192, 144) 0.756 0.667 0.955
Harmonicss devita1 (192, 192) 0.831 0.724 0.899

Table 16 shows the results obtained after fine tuning the model on the Harmonicss
database. We used five different training and testing splits in order to obtain a five-fold
cross-validation. In the fine-tuning case, the testing set was a split of the Harmonicss
database, and the results were averaged over five different splits of the database. In the
direct prediction case, the testing set was the entire Harmonics database.

Table 16. Accuracy obtained on the Harmonicss database for devita0 and devita1 scores with or
without fine tuning with the model trained on GSID.

Score Fine Tuning Accuracy Sensibility Specificity

devita0 no 0.756 0.667 0.955
devita1 no 0.831 0.724 0.899
devita0 yes 0.873 (5-fold) 0.900 0.853
devita1 yes 0.929 (5-fold) 0.924 0.931

Using the trained model, direct predictions on the Harmonicss database compared
with the devita0 score showed an accuracy of 0.756, with a low sensibility and a high
specificity. Using the devita0 classification score, a fine tuning of the same model achieved
an accuracy of 0.873, which was 0.117 higher than that of direct predictions, with a much
higher sensibility of 0.900 compared with 0.667. The direct predictions on Harmonicss
compared with the devita1 score produced an accuracy of 0.831. The fine tuning of the same
model performed using devita1 classification produced a high accuracy of 0.929, which
was 0.092 higher than that achieved with direct predictions. This showed that on both
metrics, fine tuning consequently increased the accuracy. Additionally, the accuracy on the
devita1 score was higher by 0.075 than the devita0 score for direct prediction, whereas it
was higher by 0.056 for the predictions after fine tuning.
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6. Discussion

This paper presents an analysis of several GSS detection methods using ultrasound
imaging. The experiments aimed to find the best classifier, normalization, bin width,
and most relevant features for the methods based on radiomics. We also compared two deep
neural network training schemes with US as the input. This included a hyperparameter
search and a search for the training loss coefficient. This allowed us to compare the deep
learning method to a classical machine learning method and perform a robustness test of
the model on an unseen database.

The classification tests using radiomics features showed that the feature selection
improved the accuracy up to 0.18 on average and up to 0.4 at a maximum. The feature
selection based on random forest classifiers generated the best average and maximal
accuracies over all tests. This highlights the importance of feature selection in the training
phase of machine learning classifiers on radiomics features. The feature selection method
has a large impact on accuracy. Additionally, an optimal bin width was found for the
grey-level quantization on this task. These results were used to compare the machine
learning methods with deep learning methods.

The best parameters for the two-phase training were obtained with an input image
shape of (128, 128) and without any image normalization. Concerning the loss coeffi-
cient, adding the cross-entropy loss to the segmentation penalization did not result in
any improvement. Additionally, the best accuracies were obtained with a classification
coefficient of 1, a segmentation cross-entropy coefficient of 0, and a Dice coefficient of 0.5
or 1. Therefore, a Dice loss coefficient close to the classification loss coefficient produced
better results. In general, the best accuracy was obtained with a dice loss coefficient of 0.5
with an accuracy of 1.

Two-phase training and “class” training were tested on the same hyperparameter sets
with two-fold cross-validation. The mean accuracy over all tests differed only by a slight
increase of 8‰ for the two-phase model. The best global results were surprisingly obtained
without any image normalization with a perfect accuracy on one-fold cross-validation.
On the hyperparameter sets with no normalization, the accuracy obtained with the joint
two-phase model was 1.8% higher than that of the one-phase model trained on classification.
Furthermore, the jointly trained two-phase model was only 1‰ higher than the jointly
trained one-phase model. A potential improvement was achieved using the two-phase
model on images without normalization. However, there was no significant improvement
between the models trained with joint loss on one or two phases. This can be explained by
all layers being retrained in the two-phase model and that the model can efficiently learn
relevant features to both classification and segmentation.

Based on accuracy, the best results were obtained in the salivary glands database,
with the two-phase model achieving a two-fold cross-validated accuracy of 1.0 compared
with the classification based on radiomics features with 0.84. These results show that
both methods are relevant for the detection of GSS. However, differences between the
two methods could be further observed on unseen datasets. The deep neural network
trained on GSID adapted well to an unseen environment on the open-source part of the
multicentric Harmonicss database, with an accuracy of 0.831 based on the devita1 score.
Furthermore, better results were obtained for devita0 and devita1 after a fine tuning of the
model originally trained on a GSID training set and retrained on the Harmonicss dataset,
using devita0 or devita1 scores as labels. The increase in accuracy obtained with the fine
tuning was larger on devita0 than on devita1. Therefore, the model can quickly adapt to
the desired classification score.

Our performed experiments compared models based on machine learning to deep
learning and tuned the best parameters. Whereas both radiomics and deep learning
features seemed relevant for our application, we found that the deep learning models are
more accurate due to the larger possibility of encoding shifts in images and environment.
The second key of our approach is the joint segmentation pretraining in the two-phase
model, which did not increase performance over all hyperparameter sets but increased the
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maximal accuracy. Hence, the learning of relevant segmentation features produced relevant
classification features that were not learned by the single-phase model and helped reach
the maximal accuracy. A deeper study of the model performance on an unseen database
would help to conclude if the gain obtained is specific to the used database.

7. Conclusions

Based on joint classification and segmentation training, this study developed the first
two-phase joint training of a deep convolutionnal neural network and compared it to two
other methods: classical training with classification loss and a machine learning classifier
using textures features as the input. Classification using radiomics features showed good
performance for GSS detection. But the deep neural network trained for classification
was more accurate than the machine learning model based on radiomics features. The in-
novative two-phase training scheme showed the best improvement compared with the
single-phase model without any normalization and provided a perfect accuracy on the
test set. The results obtained were globally similar for the previous approach and a model
trained with classification only. However, our new method can be useful when both seg-
mentation and classification are required. It would be worth testing this training scheme
on a task where the classification model produces a lower accuracy around 0.7 to observe
the higher contribution of the two-phase or multi-phase training.

Finally, the single phase deep neural network performed well on the unseen Har-
monicss dataset obtained from an open-source multicentric study, which showed that the
model is robust to new domains. This opens good perspectives for the application of this
algorithm in clinical settings. Future work will consider data fusion between the radiomics
coefficient and the features of deep neural networks.
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