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Abstract: Cystic lesions are common lesions of the sellar region with various pathological types,
including pituitary apoplexy, Rathke’s cleft cyst, cystic craniopharyngioma, etc. Suggested surgical
approaches are not unique when dealing with different cystic lesions. However, cystic lesions with
different pathological types were hard to differentiate on MRI with the naked eye by doctors. This
study aimed to distinguish different pathological types of cystic lesions in the sellar region using
preoperative magnetic resonance imaging (MRI). Radiomics and deep learning approaches were used
to extract features from gadolinium-enhanced MRIs of 399 patients enrolled at Peking Union Medical
College Hospital over the past 15 years. Paired imaging differentiations were performed on four
subtypes, including pituitary apoplexy, cystic pituitary adenoma (cysticA), Rathke’s cleft cyst, and
cystic craniopharyngioma. Results showed that the model achieved an average AUC value of 0.7685.
The model based on a support vector machine could distinguish cystic craniopharyngioma from
Rathke’s cleft cyst with the highest AUC value of 0.8584. However, distinguishing cystic apoplexy
from pituitary apoplexy was difficult and almost unclassifiable with any algorithms on any feature
set, with the AUC value being only 0.6641. Finally, the proposed methods achieved an average
Accuracy of 0.7532, which outperformed the traditional clinical knowledge-based method by about
8%. Therefore, in this study, we first fill the gap in the existing literature and provide a non-invasive
method for accurately differentiating between these lesions, which could improve preoperative
diagnosis accuracy and help to make surgery plans in clinical work.

Keywords: machine learning; radiomics; magnetic resonance imaging; cystic lesions

1. Introduction

Cystic lesions of the sellar-suprasellar region are a group of pathological changes in
the pituitary glands or their adjacent structures. They could be primary lesions, including
Rathke’s cleft cysts, cystic craniopharyngiomas, abscesses, arachnoid cysts, etc., or sec-
ondary changes from substantial lesions, including cystic pituitary adenomas (cysticA)
and pituitary apoplexy [1]. In a random autopsy study involving 1000 cases, 113 cases of
Rathke’s cleft cyst were found, with 37 cases with a diameter of at least 2 mm, which is
higher than pituitary adenomas (31 cases) [2].
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Although Transsphenoidal surgery is the primary surgical approach for treating sellar
lesions, different surgical strategies are required for various sellar lesions. In addition,
the optimistic therapeutic pathways remain controversial [3,4] and the pathological type
is the basis of clinical decision-making. For cystic pituitary adenomas, total resection is
the primary surgical approach. However, for Rathke’s cleft cysts and arachnoid cysts,
it is recommended to perform fenestration and partial resection. In the case of cystic
craniopharyngiomas, surgery should involve the removal of the cystic wall structure to
prevent recurrence [4–6].

The pituitary gland, as an endocrine organ in the human body, can be differentially di-
agnosed for sellar lesions through blood hormone screening. However, in the case of cystic
lesions in the sellar region, they typically present as cystic masses without causing abnormal
hormone secretion levels, which increases the difficulty of making a differential diagnosis.
As shown in Figure 1, different cystic lesions in the sellar region performed similarly in the
MR image. Nonetheless, this requires clinical physicians to have sufficient experience, and
currently, achieving an accurate preoperative diagnosis remains challenging.

Bioengineering 2023, 10, x FOR PEER REVIEW 2 of 13 
 

 

Although Transsphenoidal surgery is the primary surgical approach for treating sel-
lar lesions, different surgical strategies are required for various sellar lesions. In addition, 
the optimistic therapeutic pathways remain controversial [3,4] and the pathological type 
is the basis of clinical decision-making. For cystic pituitary adenomas, total resection is 
the primary surgical approach. However, for Rathke’s cleft cysts and arachnoid cysts, it is 
recommended to perform fenestration and partial resection. In the case of cystic cranio-
pharyngiomas, surgery should involve the removal of the cystic wall structure to prevent 
recurrence [4–6]. 

The pituitary gland, as an endocrine organ in the human body, can be differentially 
diagnosed for sellar lesions through blood hormone screening. However, in the case of 
cystic lesions in the sellar region, they typically present as cystic masses without causing 
abnormal hormone secretion levels, which increases the difficulty of making a differential 
diagnosis. As shown in Figure 1, different cystic lesions in the sellar region performed 
similarly in the MR image. Nonetheless, this requires clinical physicians to have sufficient 
experience, and currently, achieving an accurate preoperative diagnosis remains challeng-
ing. 

 
Figure 1. Sample of the segmentation after automatic labeling and manual quality control. Four 
typical cystic sellar lesions on T1CE were shown, including cystic pituitary adenoma (cysticA), pi-
tuitary apoplexy, cystic craniopharyngioma, and Rathke’s cleft cyst. The red mark was superim-
posed on the segmented area. 

Current research on sellar cystic lesions focuses more on the qualitative description 
of MRI, which is also the most widely used method in clinical practice. Different compo-
nents (such as differences in protein percentage) in lesions show different signal strengths 
[7]. These known imaging features are the basis for the feasibility of automatic identifica-
tion through quantitative analysis. 

Radiomics, a recently emerging technique, extracts high-throughput features from 
digital imaging to quantitatively describe lesion characteristics, which builds a bridge be-
tween medical imaging and tumor phenotypes [8,9]. With the help of machine learning 
algorithms and artificial neural networks, investigating the intrinsic characteristics of 
high-throughput image features is easier and more systematic. Previous studies focused 
on malignant central nervous tumors with radiomic approaches, which showed charming 
performances on molecular subtype distinguishment [10,11]. Previous studies have inves-
tigated the use of radiomics in pituitary diseases, while few studies have focused specifi-
cally on cystic sellar lesions [12,13]. 

Figure 1. Sample of the segmentation after automatic labeling and manual quality control. Four typi-
cal cystic sellar lesions on T1CE were shown, including cystic pituitary adenoma (cysticA), pituitary
apoplexy, cystic craniopharyngioma, and Rathke’s cleft cyst. The red mark was superimposed on the
segmented area.

Current research on sellar cystic lesions focuses more on the qualitative description of
MRI, which is also the most widely used method in clinical practice. Different components
(such as differences in protein percentage) in lesions show different signal strengths [7].
These known imaging features are the basis for the feasibility of automatic identification
through quantitative analysis.

Radiomics, a recently emerging technique, extracts high-throughput features from dig-
ital imaging to quantitatively describe lesion characteristics, which builds a bridge between
medical imaging and tumor phenotypes [8,9]. With the help of machine learning algorithms
and artificial neural networks, investigating the intrinsic characteristics of high-throughput
image features is easier and more systematic. Previous studies focused on malignant
central nervous tumors with radiomic approaches, which showed charming performances
on molecular subtype distinguishment [10,11]. Previous studies have investigated the use
of radiomics in pituitary diseases, while few studies have focused specifically on cystic
sellar lesions [12,13].

The present study aims to differentiate between the four most common types of cystic
sellar lesions, namely Rathke’s cleft cysts, cystic craniopharyngiomas, cystic pituitary
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adenomas, and pituitary apoplexy, using radiomics and machine learning. The main
contributions are as follows:

1. A large number of patients diagnosed with cystic sellar lesions were enrolled to fill
the gap in the existing literature and provide a non-invasive method for accurately
differentiating between these lesions.

2. Paired imaging differentiations were performed on four subtypes, and the model
achieved an average AUC value of 0.7685.

3. The model achieved an average accuracy of 0.7532, which outperformed the traditional
clinical knowledge-based model by approximately 8%.

2. Related Works
2.1. Basic Characteristics of Cystic Sellar Lesions

Cystic Pituitary Adenomas or Pituitary Apoplexy: Approximately 48% of pituitary
adenomas are cystic, which can be categorized as hemorrhagic or ischemic cystic pituitary
adenomas, with hemorrhagic ones termed pituitary apoplexy. Cystic pituitary adenomas
often exhibit thickened cyst walls with accompanying fluid content. Internal septations are
commonly observed within the cyst, and the cystic changes tend to be eccentric within the
pituitary [14].

Rathke’s Cleft Cysts: Rathke’s cleft cysts originate from Rathke’s cleft and are found
in approximately 11% to 33% of patients undergoing pituitary biopsy. These cysts are
typically smaller than 2 mm and are located in the midportion of the pituitary. They appear
as round, thin-walled enhancements without internal septations or calcifications [14].

Craniopharyngioma: Due to the various origins of craniopharyngiomas, the resulting
cysts can be located within or above the Sella turcica and may exhibit calcifications and
multilocularity [15].

2.2. Clinical Knowledge-Based Method

Based on clinical prior knowledge, researchers have proposed a simple diagnostic
approach [16]. Firstly, categorization is based on the characteristics of the cyst: cysts
with calcifications are classified as craniopharyngiomas, those with fluid content as cystic
pituitary adenomas, and those with intracystic nodules as Rathke’s cleft cysts. Subsequently,
the assessment considers enhancement characteristics: absence of enhancement indicates
arachnoid cysts, thin and regular enhancement suggests Rathke’s cleft cysts, thick-walled
enhancement with septations suggests cystic pituitary adenomas, and thick, irregular, and
multilocular enhancement is indicative of craniopharyngiomas.

2.3. Machine Learning Methods

Logistic Regression: Logistic Regression is a statistical method used for binary classi-
fication problems. Despite its name, it is a classification algorithm, not a regression one.
Logistic Regression models the probability that a given data point belongs to one of two
classes based on one or more input features. It uses a logistic function to make predictions
and is widely used for its simplicity and interpretability.

Support Vector Machine (SVM): Support Vector Machine is a supervised machine
learning algorithm used for classification and regression tasks. SVM aims to find a hy-
perplane that best separates data points into distinct classes. It works by maximizing the
margin between classes while minimizing classification errors. SVM is effective in handling
high-dimensional data and is known for its ability to handle complex datasets.

Random Forest (RF): Random Forest is an ensemble learning algorithm that combines
multiple decision trees to make predictions. It is particularly effective for both classification
and regression tasks. RF creates a set of decision trees with random subsets of the training
data and features. It then combines their predictions to reduce overfitting and improve
accuracy [17].

AdaBoost (Adaptive Boosting): AdaBoost is an ensemble learning algorithm that
combines weak classifiers to create a strong classifier. It focuses on improving the classifi-
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cation performance of models by giving more weight to incorrectly classified data points
in subsequent iterations. AdaBoost iteratively trains weak classifiers and combines their
results to create a powerful ensemble model [18].

Despite the existence of numerous machine learning models, there is currently no
machine learning model applied to the diagnosis of cystic sellar lesions.

3. Materials and Methods
3.1. Patients

This study retrospectively included pathologically and intraoperatively confirmed
patients with cystic sellar lesions diagnosed at Peking Union Medical College Hospital
(PUMCH) from June 2005 to November 2020. The included pathology types were Rathke’s
cleft cysts, cystic craniopharyngiomas, cystic pituitary adenomas, and pituitary apoplexy.
The criteria included the following: (1) adults with intraoperatively and histopathologically
confirmed Rathke’s cleft cysts, cystic craniopharyngiomas, cystic pituitary adenomas,
or pituitary apoplexy; (2) preoperative contrast-enhanced T1 (T1-CE)-weighted and T2-
weighted MRI; This study design was approved by the Institutional Review Board, and all
patients provided informed consent. Finally, 390 patients met the inclusion criteria.

3.2. MRI Data Acquisition and Preprocessing

Most preoperative MRI examinations were performed on a 3.0-T MRI scanner (Discov-
ery MR750, Chicago, IL, USA). A minority of patients were examined with a 1.5-T MRI scan-
ner. T1-weighted images (gadolinium chelate, PUMCH standard half dose 0.05 mmol/kg;
slice thickness 3–6 mm for 5–20 slices; 10 patients were scanned with 0.5–1.5 mm thickness
for 16–75 slices; echo time, 7.264–17 ms; inversion time, 400–613 ms) and T2-weighted
images (slice thickness 3.5–6 mm; 7–21 slices; repetition time, 3437–4860 ms; echo time,
79.92–107.648 ms) were obtained. All MR images have a minimum resolution of at least
256 × 256. The original DICOM data were converted to NIfTI format for later processing
and anonymity.

3.3. Image Segmentation

T2-weighted images were coregistered to T1-CE images for a clear delineation of
the tumor boundary as well as the elimination of head movement with ANTs (v2.3.5-30,
compiled under Ubuntu 20.04.2 LTS on amd64 architecture) [19]. The registration parameter
was the default for rigid bodies. All registered images were checked manually.

The three-dimensional region of interest (ROI), which included the cysts’ wall and
the cysts’ fluid, was automatically segmented initially with in-house software based on
U-Net. Cystic pituitary lesions in T1 contrast-enhanced images were manually segmented
to build a training set. The model was trained with PyTorch 1.6.0 (https://pytorch.org/)
and Python 3.8.8.

All of the automatic segmentations were manually corrected. They were manually
delimitated by two neurosurgeons using the ITK-SNAP software (http://www.itksnap.org/
pmwiki/pmwiki.php) (accessed on 17 October 2023) [20]. Figure 1 shows the segmentation
sample. The ROI was then evaluated by senior neuroradiologists. If the difference between
ROIs was ≤5% for the two neurosurgeons, the final ROIs were defined by the overlapping
area of the initial ROIs; if the difference between ROIs was >5%, the neuroradiologist made
the final decision.

3.4. Feature Extraction

The brightness of the T1-CE and T2-weighted images was normalized by centering
the voxels at the mean value with standard deviation (SD) based on all gray values using
the preset module of PyRadiomics (3.0.1, http://www.radiomics.io/) [21].

We extracted the radiomic features from both 3D images and the slices with maximum
lesions with a 2D feature calculation. Considering the thickness of the slices, 3D feature
extraction was finished after a resampling of 3mm. Therefore, the Laplace of Gaussian
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(LoG) filtering should have a sigma greater than 3.0. The resampling size of 2D images was
2mm. The sigma values for 3D images were 3.0 and 5.0, and the values for 2D images were
2.0, 3.0, 4.0, and 5.0.

Wavelet filtering (Coif 1) and LoG filtering were applied. A total of 1037 radiomics
features were extracted from the ROIs of three-dimensional images [21]. All radiomics
features were scaled based on the SD of the training set to avoid fluctuation.

3.5. Feature Selection, Model Construction, and Validation

Radiomics features were selected by the least absolute shrinkage and selection operator
(LASSO) in the training dataset with code constructed using Scikit-learn (v0.24.1, http:
//scikit-learn.org) [22].

The four types of cystic lesions were grouped in pairs. Four types of feature sets were
investigated (with or without filtering and 2D or 3D). The machine learning algorithms
were support vector machine (SVM), random forest, and AdaBoost (with a decision tree or
SVM as its basis).

We used five-fold cross-validation for evaluation. The average area under the receiver
operating characteristic curves (AUC) was assessed.

3.6. Establishment of Clinical Knowledge-Based Method

Because doctors with different clinical experiences may have variations in their judg-
ments, we have simply designed this model as a multi-stage model to obtain a general
diagnosis (Figure 2). First, doctors were required to assess intracystic components. Accord-
ing to the recent study [11], cysts with calcifications are classified as craniopharyngiomas,
those with a high fluid level as cystic pituitary adenomas, and those with intracystic nod-
ules as Rathke’s cleft cysts. Then, doctors were required to provide cyst wall enhancement
features: absence of enhancement indicates arachnoid cysts; thin and regular enhancement
suggests Rathke’s cleft cysts; thick-walled enhancement with septations suggests cystic
pituitary adenomas; and thick, irregular, and nodulariform enhancement is indicative
of craniopharyngiomas.
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4. Results
4.1. Patient Characteristics and Pathology Types

The enrolled patients were mainly female, with an age of 41.28 years (±15.08). The
proportion of men with cystic craniopharyngioma was slightly higher (54.1%), and the
proportion of women with other diseases was higher. In terms of age, the medians and
averages of the groups were close (average 41, median 40). Patients with cystic cranio-
pharyngioma tend to have a high proportion of young patients, but none of the other types
(see Tables 1 and 2 for baseline levels and Figure 3 for the histogram of age distribution).
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Table 1. Baseline of the patients.

Type n Age Mean (SD) Female (%) Male (%)

Sum 390 41.06 (15.14) 249 (63.8) 141 (36.2)
Apoplexy 205 42.38 (14.05) 133 (64.9) 72 (35.1)

Craniopharyngioma 37 35.30 (21.00) 17 (45.9) 20 (54.1)
Cystic Adenoma 71 41.58 (14.54) 50 (70.4) 21 (29.6)

Rathke’s Cleft Cyst 77 39.82 (14.72) 49 (63.6) 28 (36.4)
p-value 0.094
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Table 2. Age Distribution of the patients.

Age n Mean SD Median p25 p75 Min Max Skew Kurt

Sum 390 41 15 40 30 53 5 80 −0.03 −0.56
Apoplexy 205 42 14 42 32 53 10 80 0.13 −0.48

Craniopharyngioma 37 35 21 37 14 57 5 66 −0.001 −1.6
Cystic Adenoma 71 42 15 42 32 52 7 77 −0.077 −0.24

Rathke’s Cleft Cyst 77 40 15 36 28 53 10 75 0.28 −0.85

4.2. Image Segmentation and Feature Selection

This research carried out a total of 4 types of feature extraction methods: Three-
dimensional features containing wavelet filtering and edge detection filtering, 2D features
containing wavelet filtering and edge detection filtering, 3D features containing only
basic features, and 2D features containing only basic features. The first two groups are
common processing strategies in radiomics, and the latter two groups aim to make the
included features more intuitive and improve their interpretability. The extracted features
are summarized in Table 3. The heatmap of radiomics features is shown in Figure 4. After
feature selection, the most significant differential features were ranked, and the top three
influential omics features were listed in Table 4. It can be observed that the top three ranked
features are predominantly T2 features, with no inclusion of T1 features. This indicates
that T2 imaging exhibits high diagnostic performance in the diagnosis, aligning with our
diagnostic focus on T2 imaging for sellar cystic lesions.
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Table 3. Summary of Feature Extraction.

3D 2D
T1CE T2WI T1CE T2WI

Shape 14 14 9 9
First-order 18 18 18 18

Texture

GLCM 24 24 24 24
GLRLM 16 16 16 16
GLSZM 16 16 16 16
GLDM 14 14 14 14

NGTDM 5 5 5 5
LoG 186 186 372 372

Wavelet 744 744 186 186
Total 1037 1037 660 660

Table 4. Top three ranked features.

Apoplexy Apoplexy Apoplexy CysticA Rathke Rathke

Craniopharyngioma CysticA Rathke Craniopharyngioma Craniopharyngioma CysticA

T1CE_wavelet-
LHH_ngtdm_
Complexity

T1CE_original_
shape_Elongation

T2RS_original_
glcm_MCC

T1CE_wavelet-
LLL_ngtdm_
Complexity

T2RS_log-sigma-5-0-
mm-3D_glcm_Idn

T1CE_wavelet-
LLH_ngtdm_
Coarseness

T1CE_wavelet-
LLL_glcm_Cluster

Prominence

T1CE_original_
shape_Flatness

T2RS_log-sigma-3
-0-mm-3D_glcm_

Correlation

T2RS_original_
gldm_Large

DependenceHigh-
GrayLevelEmphasis

T2RS_wavelet-
LHL_glcm_MCC

T1CE_wavelet-
LLL_glcm_
Correlation

T2RS_original_
gldm_Large

DependenceHigh-
GrayLevelEmphasis

T1CE_original_
shape_LeastAxis

Length

T2RS_log-sigma-3
-0-mm-3D_glcm_

JointAverage

T2RS_log-sigma-5 -0-
mm-3D_firstorder_

Skewness

T2RS_wavelet-
HLH_glcm_MCC

T2RS_original_
firstorder_Skewness

4.3. Radiomics Model Validation and Model Comparison

The performance of the machine learning algorithms is shown in Table 5. For the
Mann–Whitney U test for each feature separately, there were hundreds of features satisfying
p < 0.05 in each group. Therefore, in this study, the Mann–Whitney U test alone did not
reduce the number of features.

Table 5. Model performances. AUCs were compared between different methods.

Compare Method 3D 3D w/o Filters 2D 2D w/o Filters

Apoplexy vs.
Craniopharyngioma

Random Forest 0.6591 0.6682 0.6306 0.5986
Bagging SVM 0.6858 0.7019 0.5855 0.5895

SVM 0.6871 0.7011 0.6312 0.6228
AdaBoost DecisionTree 0.6140 0.5666 0.5628 0.5974

AdaBoost 0.7001 0.7070 0.6460 0.6110
Logistic Regression 0.6890 0.7102 0.6660 0.6435

Apoplexy vs. CysticA

RandomForest 0.6454 0.5556 0.6104 0.6300
BaggingClassifier_SVM 0.6108 0.5367 0.6320 0.6465

SVM 0.6249 0.5719 0.6520 0.6524
AdaBoost_DecisionTree 0.5911 0.5801 0.5914 0.5044

AdaBoost 0.6113 0.6141 0.6641 0.6593
Logistic_Regression 0.6060 0.5796 0.6406 0.6624

Apoplexy vs. Rathke

RandomForest 0.7820 0.7944 0.7787 0.7932
BaggingClassifier_SVM 0.8046 0.7721 0.7775 0.7385

SVM 0.8025 0.8032 0.7697 0.7728
AdaBoost_DecisionTree 0.6647 0.6043 0.6451 0.6276

AdaBoost 0.7902 0.7903 0.7827 0.7807
Logistic_Regression 0.7899 0.7883 0.7712 0.7408
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Table 5. Cont.

Compare Method 3D 3D w/o Filters 2D 2D w/o Filters

CysticA vs.
Craniopharyngioma

RandomForest 0.7387 0.7695 0.7161 0.7209
BaggingClassifier_SVM 0.7989 0.7308 0.6982 0.7769

SVM 0.7607 0.7610 0.7770 0.7737
AdaBoost_DecisionTree 0.6544 0.6377 0.7274 0.5924

AdaBoost 0.8096 0.7452 0.7468 0.7438
Logistic_Regression 0.7598 0.7202 0.7376 0.7237

Rathke vs.
Craniopharyngioma

RandomForest 0.8263 0.8355 0.8348 0.7842
BaggingClassifier_SVM 0.8141 0.8217 0.8451 0.8122

SVM 0.8176 0.8165 0.8534 0.8509
AdaBoost_DecisionTree 0.7506 0.6155 0.7358 0.7871

AdaBoost 0.8224 0.8213 0.8534 0.8522
Logistic_Regression 0.8085 0.8165 0.8534 0.8584

Rathke vs. CysticA

RandomForest 0.6701 0.6716 0.6917 0.6949
BaggingClassifier_SVM 0.7660 0.6859 0.7019 0.6440

SVM 0.7511 0.6939 0.7028 0.6570
AdaBoost_DecisionTree 0.6418 0.6053 0.6149 0.5832

AdaBoost 0.7506 0.6798 0.7361 0.7006
Logistic_Regression 0.7235 0.6759 0.7254 0.6635

To evaluate the ability of a single feature to distinguish different lesions, we used
a single feature as a single index classifier for classification. It was worth noting that
whether in the 2D or 3D feature extraction mode, the distinguishment of Rathke’s cleft
cyst and cystic craniopharyngioma or Rathke’s cleft cyst and pituitary apoplexy had many
single features with an AUC value > 0.80, while there was no single feature with an AUC
value > 0.70 in the distinguishment of pituitary apoplexy and cystic pituitary adenoma.

4.4. Comparison with Clinical Knowledge Base Methods

Although some models achieved an AUC value of 0.8, to better illustrate the clinical
applicability of the model, we compared the model with the highest diagnostic capability
against experienced clinicians. To mitigate potential bias introduced by clinical expertise,
we employed a decision tree approach [16], where clinical doctors assessed the presence of
intracystic components and cyst wall enhancement features. The final diagnosis was based
on the decision tree. The results showed that, across all six tasks, machine learning models
outperformed human judgments, with an average accuracy rate approximately 8% higher
than that of doctors (Table 6).

Table 6. Comparison between proposed methods and clinical knowledge-based methods.

Machine Learning Clinical Knowledge-Based
Method

Apoplexy vs. Craniopharyngioma 0.7708 0.6876
Apoplexy vs. CysticA 0.686 0.5404
Apoplexy vs. Rathke 0.7633 0.7493

CysticA vs. Craniopharyngioma 0.7675 0.5823
Rathke vs. Craniopharyngioma 0.8293 0.8135

Rathke vs. CysticA 0.7022 0.6758

Mean Accuracy 0.7532 0.6748

5. Discussion

Among the various basic statistical machine learning algorithms, AUC values > 0.70
can be achieved in the identification of most lesions. Support vector machine-based
models performed the best in each comparison group, whether they were used directly
or integrated with AdaBoost or Bagging methods. Logistic regression was performed
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secondary to the support vector machine. It suggested that classical machine learning
algorithms still performed stably and reliably. Decision tree-based algorithms performed
relatively poorly. They are accompanied by the disadvantage of overfitting [23]. This was
responsible for their relatively poor performance in this study.

The preoperative diagnosis of cystic lesions in the sellar region is crucial for surgical
planning. For arachnoid cysts and Rathke’s cleft cysts, sometimes only fenestration and
partial resection are necessary. However, for pituitary adenomas and craniopharyngiomas,
total resection is the primary surgical approach, aiming to achieve a high rate of complete
removal to reduce tumor recurrence. Craniopharyngiomas, in comparison to pituitary
adenomas, have a less fixed location but possess a distinct capsule structure that allows
for complete excision along the capsule. The preoperative diagnostic accuracy in clinical
practice is only 0.67, indicating ongoing challenges in the differential diagnosis of such
conditions. This study compared clinical knowledge-based methods and found that the
proposed machine learning model based on radiomics outperformed clinical doctors’
diagnostic criteria across all tasks. This suggests that the model can assist in clinical
diagnosis to a certain extent and aid in formulating surgical plans.

In traditional machine learning models of each group, Rathke’s cleft cyst and cystic
craniopharyngioma, cystic pituitary adenoma, and craniopharyngioma were relatively
easy to identify by all algorithms. Rathke cleft cyst and cystic pituitary adenoma, pituitary
apoplexy, and Rathke cleft cyst, pituitary apoplexy, and craniopharyngioma performed
moderately. It is hard to distinguish pituitary apoplexy from cystic pituitary adenoma in
any model. The average accuracy values of different models for various lesion combinations
evaluated in leave-one-out validation (LOOV) were consistent with the model performance
and effect ranking of five-fold cross-validation.

Among the comparison groups, it is very difficult to differentiate cystic pituitary
adenoma from pituitary apoplexy, and the performances of all models were poor. Necrosis
and cystic degeneration occur in 5–18% of pituitary tumors, a process often associated with
apoplexy [24,25]. In studies of cystic fluid components in cystic pituitary adenomas, most
cystic fluids have detectable levels of hemoglobin, and some cystic fluids have a high level
of hormones [26]. Secretory cystic degeneration and hemorrhagic cystic degeneration may
coexist in cystic pituitary adenomas. In a study including 14 patients initially evaluated as
having cystic pituitary adenomas, after careful verification, only 2 were finally confirmed to
have cystic pituitary adenomas without hemorrhagic changes, and the remaining patients’
lesions had hemorrhagic components [27]. This finding suggests that a large proportion of
cystic pituitary adenomas may have hemorrhagic manifestations, which is also consistent
with the diagnosis of pituitary apoplexy in pathology. Based on these previous studies
and the difficulties in image identification in this study, we hypothesize that some cystic
pituitary adenomas form gradually after apoplexy, and the other components may arise
from the secretion of the cyst wall. Therefore, cystic pituitary adenomas and pituitary
apoplexy were hard to distinguish from MRI.

Cystic craniopharyngioma and Rathke’s cleft cyst, cystic craniopharyngioma, and
cystic pituitary adenoma performed well in most predictive models. These results suggest
that there are clear differences in their imaging. Previous studies have described the image
identification of craniopharyngioma in terms of volume, calcification, and shape [28]. That
is the basis for its outstanding differences in radiomic features. Generally, it is believed
that the volume of the craniopharyngioma is important for identification. Although a
considerable number of craniopharyngiomas in this study are larger in size than Rathke’s
cleft cysts, their main volume distribution ranges are similar.

In this study, the traditional machine learning models construct four feature groups
according to the dimension, with/without LoG processing or wavelet filtering. The per-
formance of each group of models for discrimination is roughly similar, and the trend of
the difficulty of discriminating different combinations of lesions is the same. This indicates
that although the 3D features cover more layers and more information, the information
provided by the 2D maximum layer is sufficient for radiomic identification.
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Possible future research directions in this field include a more detailed description
of lesions and the differentiation of pathological subtypes. If more molecular markers
could be found in the future, their imaging manifestations are also expected to be further
investigated. Recently, there have been many advances in digital image processing methods,
such as attention mechanisms and capsule networks [29,30]. Because of the lagging of their
applications in clinical medicine, these methods have not been fully utilized. If they can
be properly used in image analysis of cystic lesions of the sellar region, it will hopefully
unearth more information and make more accurate predictions.

6. Limitations

There are several limitations to this study. First, this study is a retrospective study
rather than a prospective one. This could introduce various biases, including selection
bias and confounding bias. For example, all included patients were required to undergo
MRI scans at our hospital, while those with MRI scans conducted at external institutions
were excluded from this study. As a result, the included population consisted primarily
of newly diagnosed patients. Second, this study focused only on preoperative imaging
features, without prognosis. Third, some rare but non-negligible pathological types were
not covered in this study. Fourth, patients were collected from a single center, and an
external dataset should be collected for future study and evaluation.

7. Conclusions

In this study, the image differential diagnosis of cystic lesions of the sellar region was
performed, and radiomics methods were used with T1CE and T2WI sequences. Results
showed that the model achieved an average AUC value of 0.7685 and an average Accuracy
of 0.7532, which outperformed the traditional clinical knowledge-based method by about
8%. In conclusion, we first provide a non-invasive method based on radiomics and machine
learning methods for accurately differentiating between these lesions, which could improve
preoperative diagnosis accuracy and help to make surgery plans in clinical work.
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