
Citation: Ibarra, E.J.; Arias-Londoño,

J.D.; Zañartu, M.; Godino-Llorente, J.I.

Towards a Corpus (and Language)-

Independent Screening of Parkinson’s

Disease from Voice and Speech

through Domain Adaptation.

Bioengineering 2023, 10, 1316.

https://doi.org/10.3390/

bioengineering10111316

Academic Editors: Lorenzo

Frassineti, Antonio Lanata and

Claudia Manfredi

Received: 9 October 2023

Revised: 3 November 2023

Accepted: 10 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Towards a Corpus (and Language)-Independent Screening of
Parkinson’s Disease from Voice and Speech through
Domain Adaptation
Emiro J. Ibarra 1 , Julián D. Arias-Londoño 2 , Matías Zañartu 1 and Juan I. Godino-Llorente 2,*

1 Department of Electronic Engineering, Universidad Técnica Federico Santa María, Avenida España 1680,
Casilla 110-V, Valparaíso 2390123, Chile; emiro.ibarra@sansano.usm.cl (E.J.I.); matias.zanartu@usm.cl (M.Z.)

2 Escuela Técnica Superior de Ingeneiros de Telecomunicación, Universidad Politécnica de Madrid, Avda,
Ciudad Universitaria, 30, 28040 Madrid, Spain; julian.arias@upm.es

* Correspondence: ignacio.godino@upm.es; Tel.: +34-91072363

Abstract: End-to-end deep learning models have shown promising results for the automatic screening
of Parkinson’s disease by voice and speech. However, these models often suffer degradation in their
performance when applied to scenarios involving multiple corpora. In addition, they also show
corpus-dependent clusterings. These facts indicate a lack of generalisation or the presence of certain
shortcuts in the decision, and also suggest the need for developing new corpus-independent models.
In this respect, this work explores the use of domain adversarial training as a viable strategy to develop
models that retain their discriminative capacity to detect Parkinson’s disease across diverse datasets.
The paper presents three deep learning architectures and their domain adversarial counterparts. The
models were evaluated with sustained vowels and diadochokinetic recordings extracted from four
corpora with different demographics, dialects or languages, and recording conditions. The results
showed that the space distribution of the embedding features extracted by the domain adversarial
networks exhibits a higher intra-class cohesion. This behaviour is supported by a decrease in the
variability and inter-domain divergence computed within each class. The findings suggest that
domain adversarial networks are able to learn the common characteristics present in Parkinsonian
voice and speech, which are supposed to be corpus, and consequently, language independent.
Overall, this effort provides evidence that domain adaptation techniques refine the existing end-to-
end deep learning approaches for Parkinson’s disease detection from voice and speech, achieving
more generalizable models.

Keywords: convolutional neural networks; deep learning; domain adversarial; Parkinson’s disease;
transfer learning; corpus independence; shortcut learning

1. Introduction

Parkinson’s Disease (PD) is a neurodegenerative disorder caused by the gradual death
of dopaminergic neurons in the substantia nigra [1]. The impact of this neurodegenerative
condition on speech is characterised by a reduced vocal loudness, a monotonous voice,
a reduced fundamental frequency range, imprecise consonants and vowels, breathiness,
and inappropriate pauses [2]. These symptoms are collectively known as hypokinetic
dysarthria, and typically appear early in most patients with PD [3]. As a result, speech-
based and voice-based assessments of PD have become an essential research topic for
providing early diagnoses of PD. The primary advantage of automatic PD screening tools
lies in their ability to offer a non-invasive diagnosis, which can enable timely screening
applications and facilitate remote health monitoring [4].

In recent years, extensive work has been published, suggesting the potential of voice
and speech characteristics as biomarkers for the development of automatic screening tools
for PD. Among the state-of-the-art contributions are those based on traditional machine
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learning approaches, such as support vector machines, random forests, k-nearest neigh-
bours, regression trees, and naïve Bayes [4–10]. These methods were trained using both
acoustic features (including certain variants of the jitter, shimmer, and harmonic-to-noise
ratio) and complexity measurements to model the influence of PD on patient phonation [11].
However, recent studies that incorporate Mel-frequency cepstral coefficients have signifi-
cantly improved the accuracy and specificity of classification [12].

In addition to traditional machine learning algorithms, deep learning (DL) approaches
are gaining considerable popularity because of their ability to exploit high-level abstract
representations from not only the voice, but also the speech. DL techniques reported
for PD detection include mappings from handcrafted acoustic features to output labels
(PD/healthy) [13–16], as well as end-to-end systems that offer the advantage of directly
mapping the raw speech signal or time–frequency spectrograms to output labels [6,17–22].
In this respect, several architectures have been successfully used, such as multilayer per-
ceptrons (MLPs) [13,15], a combination of convolutional neural networks (CNNs) and
MLPs [6,17,18], recurrent neural networks (RNNs) [19], a combination of CNNs and long
short-term memory (LSTM) networks [16,20], or combinations of time-distributed 2D-CNN
and 1D-CNN [21,22]. Furthermore, some of these architectures have been implemented
by following a transfer learning (TL) strategy to adapt models from the already-grained
storing knowledge on similar problems [18,23–26].

Most reported DL methods have shown valuable results in the binary categorisation
between healthy controls (HCs) and PD when trained with a single dataset. However, even
though end-to-end DL approaches have shown promising results in extracting abstract
and discriminative features, the available corpora with voice/speech material from PD
patients usually contain a small number of speakers (usually less than 100 subjects). This
has led researchers focused on applying DL methods to combine data from several sources,
which were recorded in different conditions and from speakers with different demographic
characteristics (including their mother tongue). To this respect, and in order to address
the generalisation capabilities of trained models, the authors in [21,27,28] presented cross-
dataset experiments, reporting significant drops in precision of more than 20 absolute
points when using different corpora for testing and training. As shown in [29,30], although
the combination of multiple datasets is intended to model the representation space better
and to avoid overfitting due to data scarcity, it can also induce certain unwanted behaviours,
since DL approaches typically make use of shortcut learning strategies capable of reducing
the training loss function by learning characteristics associated with the dataset (e.g., the
language, microphone, recording equipment, acoustic environment, etc.) but not necessarily
related with the specific phenomenon under analysis (i.e., the presence of PD). Despite
this fact, which highlights a significant limitation of DL methods, also demonstrating a
noticeable degradation in their discriminative capabilities across corpora, the most recent
work continues to compare models based solely on their accuracy in a single corpus.

Thus, as reported for other applications [29], the results presented in the state-of-
the-art suggest that the available models suffer from certain biases and shortcuts. As
schematically shown in Figure 1, models show corpus-dependent clusterings when data
from different datasets are combined for training. This is mainly due to the small size of the
corpora typically used, but also due to the specific language and channel characteristics of
each corpus (differences in the recording equipment, recording parameters, room acoustics,
ambient noise, external sounds, etc.). Consequently, a reasonable assumption is that each
database encapsulates specific characteristics that could be associated with a distinct do-
main (including the language), and that DL architectures follow shortcut learning strategies
to model the specific conditions of the available corpora. This suggests that trained models
capture, in part, distinguishing characteristics between domains (i.e., corpora) rather than
only capturing generic features that effectively discriminate the underlying pathology
(which is supposed to be corpus and language independent).
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Figure 1. Schematic representation of the clustering effect in a 2D mapping with three corpora
(classification into HC/PD with linear decision boundaries). Left: corpus-dependent clustering;
Right: Corpus-independent clustering.

As a result, robust model representations are needed to mitigate these undesired
factors. We argue that an embedding domain adaptation strategy applied to the learning
representation process would narrow the existing gap between different corpora. The goal
is to train discriminative and invariant models to domain changes. From now on, we will
talk about the domain in reference to a certain corpus.

In view of the aforementioned, this work focuses on studying the potential of domain
adversarial (DA) training methods [30,31] to provide more generic and reliable models
for the automatic screening of PD using voice and speech. Results are expected to be
independent of the specific characteristics of the corpus. Although with a different strategy
to identify the domain, the DA training has been explored in other speech applications, such
as automatic speech recognition [32], speech emotion recognition [33,34], spoken language
identification [35], accent speech recognition [36], and voice conversion [37]. In the context
of PD screening, a first attempt of applying domain adaptation was presented in [38], which
used speaker identity-invariant representations from a single database (i.e., each domain is
assumed to correspond to one speaker), but excluding multi-dataset scenarios.

For this purpose, this paper presents a comparison of three DL architectures widely
used in the literature, but trained following DA methods, under the assumption that each
corpus corresponds to a different domain. This is carried out using four corpora, which
contain speakers with different mother tongue, demographic, and dialectal variations, and
who were recorded under different recording conditions.

The main contributions of this work are enumerated next:

• The development of more generalizable methods for the screening of PD by refining
the existing end-to-end DL approaches using voice and speech.

• The integration of DA training as a viable strategy to develop models that retain their
discriminative capacity to detect PD using the voice/speech from diverse datasets.

• The development of artificial models for the screening of a PD invariant to the mother
tongue, demographic, and dialectal variations, as well as corpus recording conditions.

• The reduction in existing learning shortcuts due to the domain (i.e., the corpus) for
the screening of PD from voice/speech.

• The reduction in the variability and inter-domain divergence computed within each
class (i.e., voice/speech from PD or HC speakers).

The paper is organised as follows. Section 2 introduces the material and methods
used in this paper. Section 3 mainly describes the results and an analysis of the different
experiments. Section 4 presents a discussion of the results. And Section 5 ends with
the conclusions.
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2. Materials and Methods

This section provides detailed information on the materials and stages involved in the
methodology.

The acoustic material used in this work is the sustained phonation of the vowel
/a/, and a classic diadochokinetic (DDK) exercise (repetition of the syllable sequence
/pa-ta-ka/). This acoustic material is available in the four corpora employed. The differ-
ences between the utterances of speakers from the different datasets are supposed to be
mainly due to language or dialectal variations.

For modelling, three deep learning (DL) models were chosen based on their promising
results presented in previous studies [21,26,39]. For each architecture, a baseline model
was developed by selecting the best hyperparameters for a binary categorisation of healthy
and pathological voices using a database of voice disorders. The networks trained with this
dataset were later adjusted to detect PD, following a TL strategy. For this purpose, the first
layer was frozen, and each model was re-trained for the new task. The performance of these
three baseline networks was evaluated within each corpus and with combined datasets.
Finally, the accuracy of the baseline architectures was compared with their DA counterparts.

2.1. Corpora

The four PD databases employed in this work have been widely used in the literature.
In the following, they are referred to as PD-GITA [40], PD-Neurovoz [27], PD-Czech [41],
and PD-German [42]. Each database includes both PD patients and HC subjects, with
patients diagnosed and labelled by neurologists following the Unified Parkinson’s Disease
Rating Scale (UPDRS) and the Hoehn and Yahr scale (H&Y). These databases vary in
demographics and sizes, as summarised in Table 1. In all cases, the data recordings were
conducted under controlled ambient conditions, with the staff instructing each participant
to perform various speech tasks, including the sustained phonation of vowel /a/ and a
DDK exercise. They have a reasonably good balance of age and sex.

These databases were freely available or transferred for research purposes by the
respective authors. A brief description of each database is given below.

Table 1. Demographic information, including gender, mean age (standard deviation), and age ranges,
for the PD-GITA, PD-Neurovoz, PD-Czech, and PD-German corpora.

Subjects Age (Years) Age Range (Years)

Corpus Female Male Female Male Female Male

PD HC PD HC PD HC PD HC PD HC PD HC

PD-GITA 25 25 25 25 60.1 (7.8) 60.7 (7.7) 62.2 (11.2) 61.2 (11.3) 44–75 43–76 33–77 31–86
PD-Neurovoz 21 23 23 24 70.0 (8.6) 69.5 (7.4) 67.0 (10.2) 61.0 (7.5) 56–86 58–86 41–80 53–77

PD-Geman 41 44 47 44 67.2 (9.7) 62.6 (15.2) 66.7 (8.7) 63.8 (12.7) 27–84 28–85 44–82 26–83
PD-Czech 20 20 30 30 60.1 (8.7) 63.5 (11.1) 65.3 (9.6) 60.3 (11.5) 41–72 40–79 43–82 41–77

2.1.1. PD-GITA

A total of one hundred native Colombian Spanish speakers (50 HC and 50 PD) were
recruited to create the PD-GITA speech database. They were recorded at Clínica Noel in
Medellín, Colombia. The recording protocol included various tasks, such as sustained
phonations of the vowels (/a/, /e/, /i/, /o/, and /u/), diadochokinetic evaluation,
repetition of different words, both complex and simple sentence repetitions, reading a text,
and delivering a monologue. The recordings were sampled at 44.1 kHz with 16-bits of
resolution, using a dynamic omnidirectional microphone (Shure, SM 63L). More details
about the database are given in [40].
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2.1.2. PD-Neurovoz

Ninety-one adult speakers (44 HC and 57 PD), native speakers of Castilian Spanish,
were recruited for the speech recordings in this database. The samples were collected by
the Otorhinolaryngology and Neurology Departments of Gregorio Marañón Hospital in
Madrid, Spain. This corpus includes recordings of sustained vowels, DDK tests, six fixed
sentences, and running speech describing a picture. Speech signals were recorded using an
AKG C420 headset microphone connected to a phantom power preamplifier. The sampling
rate was 44.1 kHz, and the quantisation was carried out with 16-bits. Detailed information
about this database can be found in [27,43].

2.1.3. PD-German

A total of one hundred seventy-six German native speakers were recruited to create
this database (88 HC and 88 PD). The speech recordings were collected at a hospital in
Bochum, Germany. They were engaged in various speech tasks, including sustained vowels,
DDK tests, reciting five sentences, reading an 81-word text, and delivering a monologue.
The recording samples were obtained using a headset microphone (Plantronics Audio
550 DSP; Plantronics Inc., Santa Cruz, CA, USA), placed 5 cm from the participant’s mouth,
with a sampling rate of 44.1 kHz and 16-bits of resolution. More detailed information about
the PD-German database can be found in [42].

2.1.4. PD-Czech

A total of one hundred native Czech speakers participated in this study (50 HC and
50 PD). The PD-Czech database was compiled at the General University Hospital in Prague,
Czech Republic. The speech tasks included in this corpus consist of the sustained phonation
of vowel /a/, DDK tests, reading of a set of 80 distinct Czech words, and delivering a
monologue. All samples were recorded using an external condenser microphone positioned
approximately 15 cm from the participants’ mouth. The sampling rate was 48 kHz with a
16-bit resolution. For additional information about this corpus, please refer to [41].

2.1.5. Saarbrücken Voice Disorders Database

The Saarbrücken Voice Disorders Database (SVDD) [44] was used to train the initial
models that were later adapted using a TL strategy. This database was compiled by
personnel from the Institute of Phonetics at the University of Saarland in Germany. The
corpus contains voice recordings from 687 healthy controls and 1355 individuals with
different pathological conditions. All of them are native German speakers. The SVDD
includes recordings of the sustained vowels /a/, /i/, and /u/ under four different loudness
conditions (normal, high, low, and low–high–low), vowels with rising–falling pitch, and
one sentence. All samples were recorded at 50 kHz with 16-bits of resolution. The SVDD
database is available online at [44].

2.2. Data Pre-Processing

All audio recordings from the PD-Czech and SVDD databases were resampled at
44.1 kHz to ensure a consistent sampling rate concerning PD-GITA and PD-Neurovoz.
Signals were then segmented into 400 ms segments with a 50% of overlap, as illustrated
in Figure 2. The window size was selected to preserve all subject recordings, considering
that some recordings of vowel /a/ in the PD-GITA dataset have a maximum duration of
490 ms. Additionally, all speech signals were normalised based on the maximum absolute
amplitude values.

Subsequently, all recordings were transformed into the time–frequency domain using
Mel-scale spectrograms [20,21,38]. For this study, we computed the Mel-scale representa-
tions using windows that were 40 ms long for the sustained phonation of vowel /a/ to
preserve the quasi-stationarity assumption and ensure independence from the location of
pitch pulses within the segment, as discussed in [45]. For DDK tests, fifteen-millisecond-
long frames were extracted, which yielded optimal results in a previous study [46]. In
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both cases, the hop length was set to 10 ms, and the number of Mel bands was set to 65.
Finally, the resulting Mel-scale spectrogram images (with their amplitude in dBs), each
sized 65 × 41 pixels, were normalised following a z-score scaling.

Figure 2. Graphical representation of the audio segmentation procedure and computation of the
Mel spectrograms.

2.3. Domain Adversarial Networks

Figure 3 illustrates the three DL architectures adapted for DA training: 2D-CNN, Time-
CNN-LSTM, and 1D-CNN. The choice of these base architectures is strongly motivated by
their success in classifying PD from voice and speech, as demonstrated in [6,16,17,20,21,26].
Additionally, their requirements in terms of memory and graphics processing unit (GPU)
are reasonable, and they are well documented and well understood. The choice of these
architectures is also motivated by a potential comparison of the results with previous works
in the state-of-the-art.

Each architecture was adapted, following the DA neural network framework proposed
in [31]. Consequently, all architectures consist of three modules: a feature extractor, a PD
detector, and a domain detector (i.e., a corpus detector). The feature generator serves
as a shared network between both the PD and the domain detectors, receiving the Mel
spectrograms as input. The PD detector’s role is to discriminate the primary learning task
(i.e., binary classification between PD and HC), trying to minimise the classification error.
However, the domain detector aims to maximise the error due to the dataset to which the
observation belongs, i.e., it promotes the information extracted from the spectrograms to
be unable to discriminate among corpora. The domain detector is linked to the feature
extractor through a gradient reversal layer (GRL), which maintains the input’s integrity
during forward propagation and reverses the gradient by multiplying it with a negative
scalar during backpropagation, as outlined in [30]. The application of the gradient reversal
ensures that the feature distributions across the four domains (datasets) become more
similar, which would lead to the generation of domain-invariant features.

In order to obtain more generalisable results, a TL strategy was also followed from
other models created using large corpora trained for similar classification tasks. To this
respect, the baseline architecture (consisting of both the feature extraction module and the
PD detection module) underwent a pretraining to classify healthy speakers and patients
with voice disorders. This is carried out using the vowels available in the SVDD database.
Despite the fact that this dataset contains voices associated with various pathologies,
previous research has shown that a similar strategy can significantly improve the accuracy
of PD detection [18,23–26]. TL was implemented herein through freezing only the initial
layer of the feature extractor (highlighted in grey in Figure 3). The freezing of more layers
was refrained to ensure an adequate number of parameters that could be used for the
fine-tuning stage during the DA training.

In the three networks, the architecture of the PD detector and the domain detector
is similar, consisting of two fully connected layers with a dropout layer in between to
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regularise the weights. ReLu activation was used in the first hidden layers, and a softmax
activation function was applied for classification. Regarding the feature extractor module,
this component varies among the architectures. A brief description of them and their
specific configurations is presented below.

(a)

(b)

(c)
Figure 3. Diagram of the DL architectures adapted for DA training. (a) 2D-CNN; (b) Time-CNN-
LSTM; (c) 1D-CNN. A gradient reversal layer (GRL) is included between the feature extractor and
the domain detector. Figures adapted from [31].
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2.3.1. 2D-CNN Network

CNN is a well-known architecture for classifying data presented as a multi-dimensional
array, such as greyscale and colour images, time–frequency representations of audio, and
videos [47]. Therefore, CNNs have been widely employed for the screening of PD, con-
verting the audio signals into time–frequency representations [6,17,18,21,26,39]. The CNN
architecture implemented in this work is illustrated in Figure 3a. This network comprises
two-dimensional convolutional layers, where each convolutional layer is followed by a
batch normalisation, a ReLU activation function, max pooling (filter size: 3 × 3), and a
dropout layer. Subsequently, the dynamic features obtained by the first module are flat-
tened to connect with the first fully connected layer of both the PD detector and the domain
detector. Since similar architectures have been used in the literature but with varying filter
sizes, in this work, they are set using the cross-validation strategy discussed in Section 2.4.
The 2D-CNN network architecture takes one Mel-scale spectrogram as input at a time. To
determine the ultimate patient classification, a post-processing stage calculates the joint
probability for all spectrograms obtained from a single patient and assigns the patient to
the class with the highest joint probability.

2.3.2. Time-CNN-LSTM Network

The combination of time-distributed CNN and LSTM networks enables the mapping
of time-varying features from a multi-dimensional source [48]. In this architecture, the input
is treated as a temporal sequence, where a time-distributed convolution layer applies the
same transformation to each input frame. The role of the LSTM is to extract global temporal
features. In this study, the architectural configuration is illustrated in Figure 3b. Unlike
the 2D-CNN network architecture, in this case, the input is a sequence of n consecutive
frames of Mel spectrograms from the same recording, with zero padding applied when the
signal lengths are insufficient to complete n frames; a masking strategy removes the zeros
during the processing phase. Hence, this network comprehensively analyses all patient
information in a single forward pass, eliminating the necessity for any post-processing to
arrive at a final prediction for the patient. The initial stage comprises two time-distributed
2D-CNN layers. Similarly to the previous network, each convolutional layer is followed
by batch normalisation, a ReLU activation function, max pooling (with a filter size of
3 × 3), and a dropout layer. Subsequently, the flattened outputs of the time-distributed
CNN serve as the input sequential features for a bidirectional LSTM. The hidden states
of the LSTM cells are used as input features for both the PD and the domain detector.
Similar to the previous architecture, the size of the convolutional filters is set during the
experimental phase.

2.3.3. 1D-CNN Network

This architecture was proposed in [49]. It consists of several 1D-CNN layers, and its
temporal output is summarised through a convolutional attention mechanism, as illustrated
in the scheme in Figure 3c. The first layer of the network corresponds to a flatten operator
aiming to fit together the 2D spectrogram inputs with the 1D convolutional layers. The
network comprises three convolutional blocks with kernel sizes of 5, 11, and 21, respectively,
with max pooling layers (kernel size of 6) in between. Each convolutional block includes a
one-dimensional convolution, followed by batch normalisation, a ReLU activation function,
and a dropout layer. In the last 1D-CNN layer, half of the filters are subjected to a time-wise
softmax activation, which functions as an attention mechanism for the other half of the
filters [49]. Subsequently, the attention output serves as input features for both the PD and
the domain detector. Similar to the 2D-CNN network, a post-processing stage to obtain the
ultimate prediction per patient is also used.

2.4. The Experimental Setup

For all experiments, the training and evaluation were performed following a stratified
speaker-independent 10-fold cross-validation strategy, ensuring that there was no overlap
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of speakers across different folds. First, the hyperparameters of the baseline architectures
were tuned using Talos [50] with 10-folds extracted from the SVDD dataset. Table 2
summarises the hyperparameter search space. The model with the best performance on
the validation set among the 10 folds was selected for all experiments, including for the
DA training, where the domain detector network parameters were set to the same values
as the PD detection network parameters. All models were evaluated in terms of accuracy,
sensitivity, specificity, and F1 score.

Table 2. Search space for the hyperparameters used to train the baseline architectures.

Hyperparameter 2D-CNN Time-CNN-LSTM 1D-CNN Values

Training Batch size X X X 16, 32, 64
Dropout rate X X X 0.2, 0.5

Depth of conv. layer X X X 32, 64, 128
Units of each fully connected layer X X X 16, 32, 64

Kernel size of conv. layer I X X 4, 6, 8
Kernel size of conv. layer II X X 5, 7, 9

Number of units LSTM layer X 16, 32, 64
Number of frames (n) X 3, 5, 7, 9

The different architectures were trained using the Stochastic Gradient Descent (SGD)
algorithm with cross-entropy as the loss function. When training with imbalanced datasets,
such as the SVDD corpus and for the domain detector, a weighted cross-entropy loss
function was used, where the weights were automatically set to compensate for the data
imbalance. A learning rate schedule was used, initialised as 0.1.

The models were trained using a workstation equipped with two NVIDIA GeForce
RTX3090 GPUs with 24 gigabytes of VRAM memory each.

3. Results

The first set of experiments was carried out to compare the performance of the baseline
architectures with and without TL for each dataset. The first objective was to replicate
the accuracies reported in previous work and to demonstrate the boosting effect of TL
enhancing the PD detection, particularly for the sustained vowel /a/.

For the second series of experiments, the four speech corpora were combined to train
and test both the baseline architectures and their DA versions. The features extracted by
the models were categorised by class (PD and HC) and domain (PD-GITA, PD-Neurovoz,
PD-German, and PD-Czech) and plotted on a two-dimensional map using the Stochastic
Neighbour Embeddings distributed by the t (t-SNE) tool [51]. This visualisation tool helps
to evaluate the clustering effect of the extracted features and lets us compare the results
of the baseline and DA architectures. To quantify the differences in the distribution of
features labelled between domains within each class, a metric was also calculated using the
Kullback–Leibler (KL) divergence between the intra-class domain feature distributions [52],
as well as another metric based on the trace of the covariance matrix (TCM) of the intra-class
features [53].

3.1. Baseline Results

Table 3 presents a comparison of the results obtained for the three baseline architectures
and for the four available corpora. TL, in most cases, shows improvements in accuracy,
F1 score, sensitivity, and specificity, which is consistent with previous research in the
field [18,23,24,26]. Also, the accuracy obtained aligns with that obtained in previous
studies. For example, in [26], using a CNN adapted with TL, the mean accuracy scores
(with standard deviation) for the classification of PD reached 72 (17.5), 83.7 (13.5), and
71.0 (22.3) for PD-GITA, PD-German, and PD-Czech DDK recordings, respectively. In
this work, the highest accuracy for the same datasets was 80.1 (7.6), 64.0 (10.4), and 74.8
(10.2), respectively. Additionally, in [16], the reported precision for Time-CNN-LSTM and
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1D-CNN using vowel /a/ from the PD-GITA corpus was 76.2 and 72.0, respectively, while
in this work, it was 72.4 and 72.6, respectively (for comparison purposes, note the large
standard deviations).

In general, as shown in Table 3, the DDK tests exhibit better performance compared
to the sustained vowel /a/. The accuracy obtained for the DDK tests in some datasets
reached values above 80%, while, for vowel /a/, the maximum accuracy remains below
75%. A similar trend was also observed in [46]. Furthermore, it is important to consider the
significant variability of the results across different datasets and tasks for the three baseline
networks. For example, in the case of the sustained vowel /a/ using the PD-Neurovoz
dataset, the highest performance was achieved with a 2D-CNN. However, when evaluating
DDK utterances within the same dataset, the Time-CNN-LSTM outperformed the others.
On the contrary, the 1D-CNN yielded the highest accuracy for DDK tests when applied to
the PD-Czech dataset. These results highlight the limitations of developing PD detection
models based solely on a single corpus or a single task.

Table 3. Classification results following a 10-fold cross-validation. The mean (standard deviation) of
the accuracy (Acc.), F1-score, sensitivity (Sen.), and specificity (Spe.) were calculated for the three
baseline architectures, both with and without TL. These metrics were evaluated separately for each
corpus (PD-GITA, PD-Neurovoz, PD-German, and PD-Czech) and for two tasks: vowel /a/ and
DDK tests.

Vowel /a/ DDK Tests

Corpus Network TL Acc. F1-Score Sen. Spe. Acc. F1-Score Sen. Spe.

PD-GITA

2D-CNN X
68.6 (15.4) 69.9 (14.1) 70.0 70.3 78.8 (13.4) 79.0 (13.4) 81.8 76
70.5 (9.8) * 68.7 (11.6) 68.3 74.0 80.1 (7.6) 80.8 (6.7) 84.7 76.0

Time-CNN-LSTM X
66.7 (11.5) 68.4 (9.7) 68.0 67.3 75.5 (13.5) 74.9 (18.3) 72.9 76.3
72.4 (10.6) 71.9 (12.5) 70.0 76.1 77.3 (10.4) 78.2 (12.0) 76.8 76.3

1D-CNN X
70.0 (11.0) 71.1 (10.4) 76.3 64.7 64.0 (11.8) 72.7 (7.4) 94.0 34.0
72.6 (10.2) 73.4 (9.3) 77.0 68.0 71.7 (13.1) 77.0 (9.2) 92.0 52.0

PD-Neurovoz

2D-CNN X
73.9 (12.0) 67.9 (24.5) 68.5 79.0 77.8 (15.5) 76.8 (19.8) 80.5 76.0
74.9 (10.9) 71.1 (14.7) 68.5 81.0 75.4 (17.5) 71.8 (27.3) 73.5 78.5

Time-CNN-LSTM X
62.8 (16.7) 61.5 (17.3) 62.5 62.5 83.5 (13.3) 86.5 (10.0) 85.5 81.7
71.8 (17.0) 69.6 (21.1) 68.9 74.3 88.6 (11.2) 89.5 (10.7) 88.7 88.3

1D-CNN X
71.3 (10.5) 68.6 (11.5) 66.0 77.0 77.8 (16.6) 73.4 (27.0) 73.0 83.0
71.5 (6.6) 70.4 (8.9) 73.5 70.5 79.0 (13.8) 76.7 (18.5) 75.5 83.0

PD-German

2D-CNN X
58.9 (10.1) 59.5 (13.8) 64.2 52.8 54.2 (10.2) 53.3 (13.8) 54.4 54.2
60.6 (10.3) 61.6 (11.9) 65.4 55.3 54.3 (12.9) 53.0 (17.4) 55.1 53.2

Time-CNN-LSTM X
60.3 (10.0) 60.3 (10.1) 62.0 60.1 59.3 (13.1) 59.7 (16.8) 66.8 52.7
63.6 (6.1) 64.6 (6.0) 67.5 60.8 64.0 (10.4) 64.1 (12.4) 70.7 58.1

1D-CNN X
59.4 (7.6) 60.8 (9.2) 64.4 54.2 52.7 (7.8) 47.5 (10.1) 44.1 61.0

62.9 (11.7) 62.7 (10.8) 62.4 63.3 56.1 (9.2) 55.7 (9.4) 55.8 56.3

PD-Czech

2D-CNN X
66.0 (17.0) 60.6 (19.5) 58.0 73.5 64.9 (15.5) 61.7 (15.2) 58.0 71.5
67.0 (17.0) 60.0 (21.5) 57.5 75.5 66.9 (14.7) 61.5 (18.1) 56.0 77.5

Time-CNN-LSTM X
62.4 (20.3) 50.9 (28.6) 50.8 75.6 58.5 (15.4) 55.6 (18.1) 56.7 65.8
64.1 (18.3) 57.5 (20.4) 56.1 73.3 61.7 (19.4) 60.5 (20.9) 61.2 67.3

1D-CNN X
64.5 (11.2) 57.3 (15.2) 57.0 71.5 71.9 (15.9) 69.5 (19.3) 66.0 78.0
66.4 (10.7) 57.9 (23.6) 61.0 71.5 74.8 (10.2) 73.0 (11.9) 70.0 79.5

* Best results in boldface.

3.2. Domain Adversarial Results

The results for accuracy, F1-score, sensitivity, and specificity obtained for both the
baseline architectures and their corresponding DA versions are presented in Table 4. In this
series of experiments, the architectures were trained and tested by combining data from all
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four datasets. The precision of these experiments is also summarised in Figure 4 compared
to those obtained for the baseline architectures using a single corpus, as reported in Table 3
using TL. The bar graphs in Figure 4 reveal a noticeable trend: a decrease in accuracy for
the baseline architectures trained and tested, mixing the different corpora available, which
is also consistent with the results reported in previous studies [28,54]. However, the DA
network effectively mitigates this trend. This effect is particularly noticeable in the case of
the 1D-CNN with DA training, where the accuracy with mixed corpora either exceeds or
closely matches that obtained with a single dataset (except for vowel /a/ from PD-GITA).

Table 4. Classification results following a 10-fold cross-validation. Mean percentages (with standard
deviation) of the accuracy (Acc.), F1-score, sensitivity (Sen.), and specificity (Spe.) for both baseline
and DA networks trained with vowel /a/ and DDK tests, and using mixed datasets from PD-GITA,
PD-Neurovoz, PD-German, and PD-Czech.

Vowel /a/ DDK Tests

Network DA Test Acc. F1-Score Sen. Spe. Acc. F1-Score Sen. Spe.

2D-CNN

PD-GITA 59.3 (13.6) ** 59.9 (10.6) 60.7 61.3 69.2 (13.4) 67.3 (18.5) 68.8 70.0
PD-Neurovoz 63.5 (10.5) 59.7 (16.1) 62.0 67.0 74.4 (15.5) 73.7 (18.8) 75.5 73.0
PD-German 57.2 (13.0) 57.5 (14.1) 59.5 54.2 65.8 (11.1) 65.1 (11.9) 65.1 65.8
PD-Czech 64.3 (14.9) 52.6 (20.6) 48.5 77.5 64.8 (14.8) 56.8 (25.1) 52.0 78.0

X

PD-GITA 56.0 (14.1) 55.5 (16.5) 58.0 59.0 72.9 (14.4) 71.8 (16.2) 72.0 74.0
PD-Neurovoz 69.4 (12.3) 67.4 (11.9) 65.5 73.5 74.9 (18.2) 72.9 (20.3) 72.0 78.5
PD-German 64.1 (11.2) 63.3 (12.0) 62.4 65.6 65.8 (10.7) 62.6 (12.1) 58.6 72.9
PD-Czech 64.2 (14.9) 54.7 (25.6) 55.5 71.5 62.8 (17.7) 55.2 (26.5) 52.0 74.0

Time-CNN-LSTM

PD-GITA 62.0 (8.9) 62.4 (14.3) 67.7 60.7 61.2 (14.6) 57.7 (22.7) 60.3 62.0
PD-Neurovoz 58.6 (18.3) 58.3 (24.3) 65.5 52.5 74.4 (9.0) 73.3 (10.1) 71.0 78.0
PD-German 58.4 (13.4) 57.8 (12.0) 56.7 59.6 61.7 (6.1) 60.5 (7.0) 60.6 62.2
PD-Czech 62.3 (21.1) 50.7 (31.6) 48.0 75.0 65.7 (11.1) 62.0 (13.2) 58.0 73.5

X

PD-GITA 59.6 (9.4) 53.6 (16.1) 53.0 72.0 64.1 (13.1) 59.4 (20.1) 60.7 68.0
PD-Neurovoz 67.3 (16.6) 67.0 (18.7) 73.0 62.5 76.5 (10.8) 77.3 (10.9) 79.5 74.0
PD-German 63.5 (7.5) 62.3 (10.9) 63.2 63.1 64.0 (8.5) 63.1 (9.0) 62.9 64.6
PD-Czech 57.4 (10.6) 47.0 (20.9) 46.0 67.5 61.7 (13.8) 58.3 (17.3) 56.0 67.5

1D-CNN

PD-GITA 64.9 (9.4) 65.1 (10.4) 68.7 63.0 74.9 (12.1) 74.7 (13.6) 77.0 74.0
PD-Neurovoz 70.8 (14.2) 71.8 (13.2) 77.0 66.0 81.4 (13.0) 82.7 (11.9) 86.5 75.5
PD-German 64.2 (10.2) 64.0 (10.8) 64.6 63.1 69.3 (14.1) 69.7 (13.8) 72.2 65.8
PD-Czech 64.1 (11.1) 57.2 (15.4) 56.5 71.5 66.8 (17.2) 62.4 (27.1) 64.0 69.5

X

PD-GITA 64.5 (10.8) 64.3 (15.4) 70.0 60.3 72.2 (17.1) 69.7 (19.7) 67.0 78.0
PD-Neurovoz 72.0 (15.2) 69.4 (20.7) 73.0 72.0 82.6 (15.7) 82.7 (15.8) 82.5 83.0
PD-German 63.4 (5.45) 63.9 (8.3) 67.0 60.0 70.2 (14.0) 72.8 (11.8) 78.1 62.0
PD-Czech 66.8 (17.5) 59.4 (25.7) 59.5 73.5 72.8 (12.6) 67.9 (20.2) 66.0 79.5

** Best results in boldface.

Figures 5 and 6 depict the t-SNE representations of the features extracted by the
baseline and DA networks for the training and validation sets, respectively, using DDK
tests. For each architecture, the t-SNE plot corresponds to the fold that reported the
best accuracy during the validation process. Figure 5 represents the t-SNE mapping of
the features extracted during training for the three baseline architectures. The mapping
evidences distinct clusters associated with each corpus. On the other hand, Figure 6,
represents the t-SNE mappings for the DA networks, showing only two clusters: one
for HC, and another for PD. The same trend is observed for the validation set (Figure 6),
especially for the 2D-CNN and 1D-CNN. A similar behaviour was observed when using
the sustained vowel /a/. However, in this case, the clusters in the validation set were less
evident due to the lower discrimination capability and consequently reduced classification
performance obtained.
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(a) (b)

Figure 4. Bar chart of PD detection accuracy for the baseline networks using a single corpus (SC),
mixed corpora (MC), and DA, for: (a) q sustained vowel /a/; (b) DDK tests.

In contrast to the results for the baseline architectures, t-SNE mappings report that
DA networks are able to extract features with similar distributions across the four domains,
identifying only two main clusters associated with both classes (i.e., HC and PD), and re-
moving undesirable corpus-dependent clusterings. These similarities were also quantified
using the KL divergence between the intra-class domain feature distributions, and the
TCM for the intra-class domain features. The results of the KL divergence are presented in
Table 5, where DA networks exhibit lower distances between pairs of domain distributions
compared to the baseline architectures. Table 6 presents the results using the TCM for the
intra-class domain features, showing that the baseline architectures present higher values
than the DA networks, indicating a greater spread for each class.

Table 5. KL divergence between intra-class feature distributions for domain pairs: PD-GITA (G),
PD-Neurovoz (N), PD-German (Ger), and PD-Czech (C). These values represent the mean for 10 folds.

Vowel /a/ DDK Tests

Network DA Label G-N G-Ger G-C N-Ger N-C Ger-C G-N G-Ger G-C N-Ger N-C Ger-C

2D-CNN

HC 43.6 35.4 41.9 42.8 41.6 43.4 28.3 24.7 19.6 30.7 29.5 20.1
PD 42.3 37.8 43.3 43.4 39.8 43.4 26.3 24.1 20.5 27.4 25.0 20.1

X HC 28.3 26.0 27.3 30.0 30.3 28.1 8.9 9.5 7.6 9.7 9.6 8.1
PD 28.0 25.6 30.1 28.4 29.5 30.4 10.2 8.0 8.5 9.0 8.2 7.6

Time-CNN-LSTM

HC 27.9 23.5 27.9 28.5 24.0 28.8 12.9 7.4 4.7 14.3 14.0 8.4
PD 24.1 23.6 27.1 27.9 25.1 30.1 11.3 10.9 6.4 13.2 11.6 9.2

X HC 18.9 19.5 20.3 21.4 21.1 21.0 6.4 3.3 3.7 6.7 7.1 3.6
PD 17.6 19.8 21.4 20.6 21.7 22.8 8.9 5.7 4.2 6.3 5.6 5.6

1D-CNN

HC 27.5 23.5 25.5 30.6 26.4 27.9 19.5 19.0 19.3 23.9 18.7 23.0
PD 27.5 23.4 29.5 28.1 28.6 29.2 17.1 15.8 15.0 19.9 16.2 17.8

X HC 22.5 22.8 21.9 24.5 23.9 22.6 12.0 13.2 11.9 14.7 11.7 14.7
PD 21.3 18.7 22.4 22.3 23.3 24.5 10.6 11.1 11.5 11.8 11.9 12.9
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(a) (b)

(c) (d)

(e) (f)

Figure 5. T-SNE of the extracted features in the last layer of the PD detector module for the training
set using DDK tests: (a) 2D-CNN; (b) DA 2D-CNN; (c) Time-CNN-LSTM; (d) DA Time-CNN-LSTM;
(e) 1D-CNN; (f) DA 1D-CNN.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. T-SNE of extracted features in the last layer of the PD detector module for the validation set
trained using DDK tests: (a) 2D-CNN; (b) DA 2D-CNN; (c) Time-CNN-LSTM; (d) DA Time-CNN-
LSTM; (e) 1D-CNN; (f) DA 1D-CNN.
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Table 6. Mean TCM values for the intra-class domain features calculated for 10 folds.

Vowel /a/ DDK Tests

Network DA HC PD HC PD

2D-CNN X
43.6 42.3 50.0 35.4
11.3 13.9 10.2 10.4

Time-CNN-LSTM X
4.2 3.7 3.2 3.0
3.4 3.1 2.6 2.4

1D-CNN X
2.2 2.8 2.9 2.5
1.4 1.5 1.4 1.4

4. Discussion

DL methods have shown promise in extracting discriminative features for the detection
of PD from voice and speech. However, due to ethical constraints and the large amount of
resources needed to collect the required corpora, existing studies often suffer from limited
training data, leading researchers to combine recordings from different sources. However,
this mixing of datasets results in a loss of precision when networks are trained with one
dataset and tested on another. This is attributed to certain biases and shortcuts learnt by DL
networks related to dataset-specific characteristics, which include not only the language of
the speakers, but also the channel characteristics of each corpus (i.e., recording equipment,
recording parameters, room acoustics, ambient noise, external sounds, etc.).

On the other hand, previous analyses of end-to-end DL architectures for PD classifi-
cation using voice and speech recordings have mainly relied on comparing architectures
trained with a single corpus. However, the experiments conducted on individual and
multiple datasets reveal that the models obtained lack generalisability: although they
demonstrate high performance when trained on a single database, their performance drops
significantly when trained using multiple corpora.

A detailed analysis of the results provided in the state-of-the-art shows that traditional
end-to-end DL architectures are not able to learn the expected corpus-independent charac-
teristics of PD. This is due to the presence of shortcuts in the learning process, which are
manifested as corpus-dependent clusterings of the features extracted. As aforementioned,
they are mainly explained not only due to the small size of the corpora used, but also due
to language differences, demographics of the population, and variances in the channel
characteristics of each corpus.

In order to address these issues, this work explores the use of DA training as a
strategy to develop new artificial models capable of detecting PD from voice and speech by
combining data from different corpora. In this regard, this paper uses three off-the-shelf DL
architectures and their DA counterparts, the latter developed under the assumption that
each corpus corresponds to a different domain. The architectures developed were evaluated
with sustained vowels and DDK recordings extracted from four different corpora with a
variety of dialects or languages, demographics, and channel characteristics. Additionally, in
order to obtain more robust models, this work combines DA training with a TL approach.

The results reported based on the objective distance metrics used in this article (KL
divergence between the intra-class domain feature distributions, and TCM for the intra-
class domain features) and based on the t-SNE plots of the features extracted from the
baseline architectures trained using several datasets evidence the aforementioned extremes.
They show a clear clustering related to the variability of the domain (i.e., the corpus), rather
than a clustering based only on discriminatory characteristics of PD. It is important to
note that this limitation is more evident for 2D-CNN, which has been widely used for the
detection of PD [6,23–26].

On the other hand, results reported based on the objective distance metrics used and
based on the t-SNE plots extracted from the DA networks show that learnt features from
the four corpora follow a similar clustering for both classes considered (i.e., HC and PD).
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Such clustering has demonstrated to be corpus independent and does not rely on language
differences and potential variances in the channel characteristics.

These results align with our preliminary work in which we implemented a DA CNN
trained with DDK recordings extracted from PD-GITA and PD-Neurovoz [54]. The new
experiments presented in this paper, including new corpora, different tasks, and new
architectures, provide new evidence that DA training improves the generalisability of the
models obtained.

On a different note, the study also indicates that architectures trained using sustained
vowels are less efficient compared to those trained with DDK tests. These findings are
consistent with the research in [46], which emphasises the importance of articulation for the
automatic detection of PD. The absence of articulatory information from sustained vowels
explains why the accuracy is below 70% (Figure 4a) for standard training or 75% using a
TL approach (Table 3).

The results suggest that DA training introduces a certain degree of interpretability
in the artificial models, but this technique still relies on DL architectures with limited
explainability. On the other hand, despite the encouraging results obtained, the corpora
used are still too small to ensure that the results could be extrapolated to larger datasets.

5. Conclusions

We discussed some challenges in developing accurate PD screening models using
voice and speech data, particularly when combining training data from different sources.
In this regard, we suggest DA training as a potential solution to mitigate shortcut learning
effects and dataset-specific biases, as well as to improve model generalisation across
different corpora. This makes the models developed more interpretable, thus improving
the possibility of transfer to clinical practice.

This study investigates three end-to-end DL approaches, along with their respective
DA networks, for the detection of PD in a multi-corpus scenario. Our analysis of the
extracted features revealed that traditional DL methods perform corpus-dependent cluster-
ings of the features, hindering the generalisation capabilities of DL models for PD detection.
On the other hand, the study provides evidence suggesting that DA strategies mitigate
this effect.

In light of these findings, we consider DA to be an effective approach for creating
robust corpus-independent PD detection models from voice and speech. Our exploration
has highlighted the potential of DA methods as a promising approach to accomplish this
objective. Thus, they provide a practical pathway toward creating language-independent
and corpus-invariant PD detection models.

This research contributes to ongoing efforts to improve the detection of PD and paves
the way for further investigations into domain adaptation techniques in medical speech
analysis. We believe that the insights gained from this study will be valuable for the
advancement of the field.
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Abbreviations

The following abbreviations are used in this manuscript:

1D-CNN One-Dimensional Convolutional Neural Network
2D-CNN Two-Dimensional Convolutional Neural Network
C PD-Czech
CNN Convolutional Neural Network
DA Domain Adversarial
DL Deep Learning
DDK Diadochokinetic test
G PD-GITA
Ger PD-German
GRL Gradient Reversal Layer
HC Healthy control
H&Y Hoehn and Yahr Scale
KL Kullback–Leibler
LSTM Long Short-Term Memory
MC Mixed Corpora
MLP Multilayer Perceptron
N PD-Neurovoz
PD Parkinson’s Disease
RNN Recurrent Neural Network
SC Single Corpus
SGD Stochastic Gradient Descent
SVDD Saarbrücken Voice Disorders Database
TCM Trace of the Covariance Matrix
Time-CNN-LSTM Time-Distributed CNN and LSTM Networks
TL Transfer Learning
t-SNE Stochastic Neighbour Embeddings Distributed by t
UPDRS Unified Parkinson’s Disease Rating Scale
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