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Abstract: Type 2 diabetes mellitus (T2D) poses a significant global health challenge and demands
effective self-management strategies, including continuous blood glucose monitoring (CGM) and
lifestyle adaptations. While CGM offers real-time glucose level assessment, the quest for minimizing
trauma and enhancing convenience has spurred the need to explore non-invasive alternatives for
monitoring vital signs in patients with T2D. Objective: This systematic review is the first that
explores the current literature and critically evaluates the use and reporting of non-invasive wearable
devices for monitoring vital signs in patients with T2D. Methods: Employing the PRISMA and
PICOS guidelines, we conducted a comprehensive search to incorporate evidence from relevant
studies, focusing on randomized controlled trials (RCTs), systematic reviews, and meta-analyses
published since 2017. Of the 437 publications identified, seven were selected based on predetermined
criteria. Results: The seven studies included in this review used various sensing technologies, such as
heart rate monitors, accelerometers, and other wearable devices. Primary health outcomes included
blood pressure measurements, heart rate, body fat percentage, and cardiorespiratory endurance.
Non-invasive wearable devices demonstrated potential for aiding T2D management, albeit with
variations in efficacy across studies. Conclusions: Based on the low number of studies with higher
evidence levels (i.e., RCTs) that we were able to find and the significant differences in design between
these studies, we conclude that further evidence is required to validate the application, efficacy,
and real-world impact of these wearable devices. Emphasizing transparency in bias reporting and
conducting in-depth research is crucial for fully understanding the implications and benefits of
wearable devices in T2D management.

Keywords: type 2 diabetes; RCTs; vital signs; sensing technology

1. Introduction/Background

Telehealth applications, such as remote monitoring, hold considerable promise in the
management of chronic diseases such as type 2 diabetes (T2D) [1]. Telehealth applica-
tions are particularly useful when an effective treatment of the disease entails extensive
changes in the patient’s lifestyle. By helping patients self-manage their condition daily,
these applications can effectively reduce complications, improve the course of the disease,
and improve the quality of life of patients [2]. The cause of T2D is primarily due to an
unhealthy diet and insufficient physical activity, which can lead to excess body weight,
obesity, and the ineffective use of insulin by the body [3]. This disease can cause severe
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complications, including damage to small and large blood vessels and nerves, leading to
loss of vision, kidney failure, heart attacks, strokes, and lower limb amputations [4].

In 2021, the estimated prevalence of diabetes (both type 1 and type 2) in the age group
of 20 to 79 was 10.7% in the US [5] and 9.1% in Europe [6], making it a global health
challenge. In the same year, diabetes-related expenditures totaled USD 189.3 billion, and in
2019, approximately 2 million deaths globally resulted from T2D [6]. The World Health
Organization (WHO) recommends lifestyle changes, including a healthy diet, regular
physical activity, maintaining proper body weight, avoiding tobacco, and minimizing
alcohol consumption as key preventive measures for T2D. Based on evidence from various
studies in a recent review, the authors [7] showed that almost normalizing glycemic control
can be achieved if patients lose around 15% of their body weight, and such a weight
reduction was seen in more than 25% of patients with T2D. As a result, effective self-
management of T2D incorporates these lifestyle changes as well as CGM.

Although continuous glucose monitoring (CGM) has been beneficial in monitoring
glucose levels and managing T2D, there are some limitations associated with the tech-
nology, including the need for frequent calibration, the high cost of the device, and the
discomfort associated with wearing the sensor under the skin. On the contrary, fully non-
invasive methods are still being developed as alternatives (for an overview of the latest
developments in non-invasive CGM-alternatives, see Laha et al. (2022) [8]). In this light,
the use of non-invasive devices or sensing technologies to provide valuable information
and vital data monitoring presents a less intrusive and effective option for managing T2D.
Therefore, it is necessary to consider whether wearable devices are currently being used
effectively in the management and treatment of patients diagnosed with T2D and whether
there are studies available that provide evidence of the efficacy of vital data monitoring
using these devices.

Non-invasive wearable devices in monitoring vital signs, improving patients’ out-
comes or providing valuable insights into an individual’s health have increasingly gained
significant attention in recent years. Wearable monitors are electronic devices worn on
the body and include patches, clothing-based monitors, chest straps, upper arm bands,
and wristbands. The use of these devices have been reviewed in clinical settings [9], clinical
trials [10] and outpatient settings [11].

When used in a specific medical context, factors such as patient history, medical con-
dition, accuracy, reliability, and the context being used, need to be carefully considered.
A recent review by Prieto-Avalos et al. (2022) has highlighted the considerable number
of wearable devices that are increasingly being used to monitor cardiovascular diseases,
which can be a complication of T2D. The authors note that heart rate (HR), blood oxygen
saturation (SpO2), and electrocardiogram technique (ECG) are the biomedical variables
most commonly measured in CVD monitoring using commercial wearable devices. How-
ever, the review also reveals that not all wearable devices meet the required standards for
accuracy and reliability [12].

Other reviews have focused on blood glucose monitoring using smart devices [13–15].
A meta-analysis on the use of wearable devices in the treatment of chronic diseases showed
benefits for patients with diabetes mellitus or heart disease. However, the focus was on
weight reduction, blood glucose, hemoglobin and exercise time [16]. However, the effects
of using wearable devices for vital sign monitoring have not been systematically reviewed.

This study aims to fill this research gap by systematically reviewing the literature
for studies using telehealth applications or smart devices (certified as medical devices) in
RCTs to remotely monitor patient vital signs. Furthermore, most commercially available
wearable sensors currently only track physical activities and heart rate. In this review, we
consider blood pressure, heart rate, temperature and respiratory rate as vital signs.

We explored the existing applications of wearable devices in managing T2D and
elucidated how these devices contribute to the effectiveness of various T2D therapies.
Although several studies have investigated the use of wearable devices for monitoring
vital signs in T2D [9,11,17], there is still a lack of robust and reliable evidence of their actual



Bioengineering 2023, 10, 1321 3 of 14

use and effects in patients with T2D. The majority of these studies are considered to be
of lower quality (i.e., no RCTs), limiting their clinical implications due to inherent risks
and uncertainties in their design and procedures. Thus, many limitations still exist in
understanding the impact of wearable devices for T2D management, which are partially
due to the limited diligence of previous studies. This work will mitigate these limitations
and provide ample evidence on and about the usability, utilization and existing and
potential impact of the use of wearables for T2D management.

The remainder of this paper is structured as follows: Section 2 lays out the literature
search strategy used to identify suitable studies that met our inclusion criteria and the
process of extracting relevant data from these studies. Sections 3.1 and 3.2 detail the
study selection and characteristics, respectively. Section 3.3 appraises the methodological
quality of the studies and summarizes the main findings. Section 4 evaluates the strengths
and weaknesses of the available evidence and provides an overall interpretation of the
results considering other evidence. Finally, Section 5 recommends potential areas for
future research.

2. Methods

Our review followed the guidelines provided by the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [18].

2.1. Systematic Literature Search, Information Sources and Article Selection

We employed the following search strategy to identify related publications (according
to the PICOS specifications) by their titles and abstracts in the electronic databases PubMed
(https://pubmed.gov, accessed on 8 November 2022), IEEE Xplore (https://ieeexplore.org,
accessed on 8 November 2022), and the Cochrane Central Register of Controlled Trials
(CENTRAL, https://cochranelibrary.com, accessed on 8 November 2022), as shown in
Box 1.

Box 1. Search strategy to identify related publications following the PICOS specifications.

Search Strategy:

(“T2D” OR “Type 2 Diabetes” OR “Type 2 Diabetes Mellitus”) AND
(“Sensors” OR “Sensor Devices” OR “Wearables” OR “Wearable Devices”)

All searches were conducted on 8 November 2022. This search strategy was supple-
mented by filter settings (RCTs, systematic reviews, meta-analyses).

The Population, Intervention, Comparison, Outcome, and Study (PICOS) frame-
work [19] was used as the framework for the literature search strategy in this study. Studies
are included if they satisfy all of the following criteria:

(i) Studies focusing on patients with type 2 diabetes mellitus;
(ii) Studies that used sensors or wearable devices to measure vital signs, including body

temperature (BT), blood pressure (BP), heart rate (HR), or respiratory rate (RR);
(iii) Studies with any control group;
(iv) Studies yielding any outcome;
(v) All evidence from randomized controlled trials (RCTs), systematic reviews (SRs),

or meta-analyses (MAs) published since the beginning of the year 2017.

Following this, five reviewers (A.P., L.J., J.I.D.O., S.U., and T.N.) independently
screened all titles and abstracts. The full text of the studies was further examined if
at least one reviewer deemed a publication relevant for the review. Conflicting views were
resolved through discussions between the five reviewers. Our search was also extended
to the reference lists of all eligible articles. The full text of these selected studies was then
analyzed. Two reviewers, assigned in alternating partnerships, checked the relevance of

https://pubmed.gov
https://ieeexplore.org
https://cochranelibrary.com
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each study for our review according to the inclusion criteria mentioned above. Unanimous
decisions were reached in cases of disagreement. All studies that met the criteria were
included for data extraction.

2.2. Data Extraction, Risk of Bias Assessment Tool and Quality Scales

Two independent reviewers extracted data using an electronic spreadsheet. The ex-
tracted data fell under the following categories:

• Brief description of the study design,
• Technical details of the device used,
• Demographic information of the participants and
• Main results—primary and secondary endpoints.

Assessing bias in studies is crucial as it can explain variations in the results of studies
included in a systematic review. We assessed the risk of bias using Cochrane’s recom-
mended tool for randomized controlled trials (RCTs). This tool uses a domain-based
evaluation, where appraisals are made separately for different domains. Based on these
appraisals, ratings are then assigned to indicate the risk of bias in each domain [20,21]. This
was carried out by assigning ‘low risk’, ‘high risk’, or ‘unclear risk’ to each of the domains,
namely, selection bias, performance bias, detection bias, attrition bias, and reporting bias.
In case of disagreements during the extraction process, the two reviewers (AP and JIDO)
discussed until a consensus was reached. If necessary, a third reviewer was consulted.
The Cochrane tool was instrumental in our assessment of the risk of bias of RCTs in our
systematic review. Regular quality checks ensured consistency between reviewers. Our
methods were designed to maintain the integrity of the review process and provide a
comprehensive and unbiased review of the wearable devices used to monitor vital signs in
patients with type 2 diabetes.

3. Results
3.1. Study Selection

Figure 1 presents the PRISMA four-phase flow diagrams that illustrate the differ-
ent stages involved in identifying and selecting studies that focused on applying and
reporting sensing technologies for measuring vital signs in patients with type 2 diabetes.
The flow diagram is essential to ensure the evaluation is conducted rigorously and pre-
cisely. Using the aforementioned search strategies, 437 abstracts were retrieved from three
databases—PubMed, IEEE Xplore, and CENTRAL, on the 8 November 2022. After a thor-
ough manual search for duplicate records, 57 instances were identified and removed. Then,
an initial screening based on the titles and abstracts was done. 324 records were excluded.
The reference lists of the remaining papers were scanned; however, they did not reveal any
additional publications for inclusion in the review.

After conducting a comprehensive analysis of the entire text of the research papers,
two were study protocols for RCTs with no published results. Despite multiple attempts
to contact the authors and garner responses from the studies, their results were unobtain-
able [22,23]. After careful analysis of the remaining studies, we excluded fortynine due
to insufficient evidence, lack of reported vital signs, use of invasive methods, or failure
to consider T2D, as illustrated in Figure 1. As a result, only seven studies were finally
included in this systematic review.
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Figure 1. PRISMA four-phase flow diagram outlining identification and selection procedures for the
studies included in the qualitative synthesis.

3.2. Study Characteristics

Importantly, two systematic reviews, Price et al. (2022) [24] and Mattison et al. (2022) [25],
did not feature any other RCTs relevant for our research, except the study by Frias et al.
(2017) [26] which has already been included in our review. As a result, the reviews by
Price et al. (2022) and Mattison et al. (2022) were not considered further. Tables 1 and 2
provide an overview and summary of all studies included in this systematic review of
non-invasive wearables for monitoring vital signs in patients with type 2 diabetes mellitus.
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Table 1. Overview and summary of all included publications on non-invasive wearables for monitoring vital signs in patients with type 2 diabetes mellitus.

Study
Study Experiment
(Aim, Duration,
Intervention)

Study Design Study Population Vital Signs Measured Sensing Technology
and Devices

Application of the
Sensor Primary Outcome Secondary Outcomes

Frias, Juan, et al. (2017)

• Aim: investigate use
of digital medicine
in treating T2D

• Duration: 12 weeks
• Intervention:

combined DMO
after failed treatment

RCT

• 109 participants
• 13 recruitment sites
• No information

on age
Heart rate

• Ingestible sensor
inside a placebo pill

• Adhesive wearable
sensor patch

• Mobile device
• Web portal

• Sensor in pill collects
data on medication
adherence

• Wearable patch
measures body
activity, angle, HR,
and step count

Digital med
significantly reduced
systolic BP at week 4
compared to usual care

• Changes in other
clinical measures

• Medication
adherence

• Step count, physical
activity and rest
duration

• DMO ns diff in
HbA1c redn
compared to usual
care at week 12

• ns diff in fasting
plasma glucose chg
observed

Li, Jing, et al. (2021)

• Aim: effects of
mobile app-based
exercise program on
physical activity
levels

• Intervention: App to
track exercise
progress

RCT
• 85 participants
• 18–64 years Heart rate

• Dynamometer (Fab
Ent, model 12-0240)
for muscle strength

• Lunar iDXA
dual-energy X-ray
absorptiometer (GE
Healthcare) for bone
mineral density
body composition

• HR band Recovery
Plus Inc and
Recovery Plus
Health app

• Measures exercise
frequency, intensity,
time, volume and
progression

• Determines if
participant reaches
target heart rate
during exercise

• Body fat percentage
• Cardiorespiratory

endurance

• Blood glucose level
• Insulin level
• Homeostasis model

assessment of
insulin resistance
(HOMA-IR)

• Muscle strength
• Cholesterol level
• Intervention group:

significantly
younger, less likely
to have history of
hypertension

von Korn, Pia, et al.
(2021)

• Aim: compare
telemedical
intervention with
usual care

• Duration: 6 months
intervention and
6 months follow-up

• Intervention:
exercise program
and counseling,
follow-up without
counseling

RCT

• Different studies
with n = 296 to
n = 15,487
participants

• 18+ years

Heart rate
H7 heart rate sensor,
Polar, Kempele,
Finland

• Data recording:
LeIKD app

• Change in HbA1C
(%) after 6 months
between groups

• Health literacy,
physical activity,
eating behavior and
quality of life

• Cardiovascular risk
factors and major
cardiovascular
events

• Healthcare costs at 6
and 12 months
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Table 2. Overview and summary of all included publications on non-invasive wearables for monitoring vital signs in patients with type 2 diabetes mellitus.

Study
Study Experiment
(Aim, Duration,
Intervention)

Study Design Study Population Vital Signs Measured Sensing Technology
and Devices

Application of the
Sensor Primary Outcome Secondary Outcomes

Rodriguez-León,
Ciro, et al. (2021)

• Aim: use of mobile
and wearable
technology for
monitoring
parameters related
to diabetes mellitus

Systematic Review
No information about
number of participants
and age available

Heart rate

• Smartphones
• Wearables: 30 types

of sensors
• Accelerometer used

in 73% of studies
• Glucose monitoring

in 46% of studies
• Heart rate monitors

in 27% of studies

Collect data on:
• Physical activity
• Heart rate
• Blood glucose levels
• Other

Commercial devices:
• Chest straps
• Lower limb bands
• Wristbands
• Flash glucose

monitors
Research prototypes:

• Hip-worn strap
• Chest strap
• Smart insole

• Mobile and wearable
tech for monitoring
diabetes mellitus
parameters

• Predominant use of
wearables for
objective continuous
measurements

• Most commonly
used sensors:
accelerometer,
glucose and heart
rate monitors

• Wearable devices for
diabetes-related
monitoring

• Need for
privacy/security
attention, emerging
sensor tech,
and validated trials

• Few studies on
diabetes
complications

Coombes, Jeff S., et al.
(2021)

• Aim: examine
feasibility,
acceptability,
and efficacy of the
PAI e-Health
program in people
with T2D

• Duration: 12 weeks
• Intervention: PAI

e-Health program

RCT

• No information
about number of
participants

• 20+ years

Heart rate and blood
pressure

• CGM, ECG, PPG
• Metabolic analyzer
• Blood pressure

monitor
• Wristband heart rate

monitor (Lynk2)
• PAI health app (PAI

Health, Vancouver,
Canada)

• Bioimpedance scale

• CGM: abdomen
• Portable metabolic

analyzer: face
mask/mouthpiece

• ECG electrodes:
chest

• Blood pressure
monitor: upper arm

• Wristband heart rate
monitor: wrist

• PPG sensor: wrist

Feasibility, acceptability,
and efficacy of the PAI
e-Health Program

• Glycemic control
• Cardiorespiratory

fitness
• Exercise capacity

(time-on-test)
• Body composition
• Sleep time
• Health-related

quality of life
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3.2.1. Wearable Technology

The studies reviewed employed a variety of sensing technologies and devices to
measure physiological vital signs and other health parameters, from ingestible sensors
in pills to wearables and smartphones. Heart rate was a universal vital sign consistently
monitored across the studies reviewed. Frias et al. (2017) used an ingestible sensor enclosed
in a placebo pill to track medication adherence in patients as the pill traveled through
the digestive system. The authors also used an adhesive wearable sensor patch and a
smartphone to collect data on gastrointestinal activity, body movement and orientation,
heart rate, and step count. These data were transmitted to a mobile phone via a dedicated
app and a web portal for easy access and analysis [26]. Similarly, Li et al. (2021) employed
a wireless chest-worn heart rate monitoring device along with the Recovery Plus Health
app. A Lunar iDXA dual-energy X-ray absorptiometer (GE Healthcare, Chicago, IL, USA)
was used to assess bone mineral density and body composition, while a hydraulic grip
handheld dynamometer (model 12-0240 by Fabrication Enterprises, NY, USA ) measured
muscle strength. Participants in the intervention group were equipped with these sensors
to accurately measure exercise frequency, intensity, duration, volume, and progression.
In their study, the key aim was to determine whether participants reached their target heart
rate during physical activities. Cardiorespiratory endurance was also assessed, requiring
participants to perform a 3-min YMCA step test that measures an individual’s aerobic
capacity [27]. In addition, in studies like the prospective and multicentre RCT by Korn et al.
(2021), participants were tasked to perform daily endurance sessions monitored by a
heart rate sensor (model H7 heart rate sensor by Polar, Kempele, Finland). The data was
recorded in the LeIKD app (IDS Diagnostic Systems, Frankfurt am Main, Germany) [28].
As highlighted in the systematic review by Rodriguez-León et al. (2021), heart rate sensors
were employed in 27% of the studies in predicting exercise intensity, calorie consumption,
and activity recognition.

Besides vital signs monitoring, various sensing technologies and devices were consid-
ered in the reviewed studies including wearables, smartphones, and 30 different types of
sensors. Among the reviewed studies, the accelerometer sensor was used most frequently
(73%), followed by glucose monitoring sensors (46%). Wearable devices played a crucial
role in collecting data related to physical activity, heart rate, blood glucose levels, and other
vital health parameters. The monitoring of participants’ activity and health is facilitated
through the use of commercial devices like chest straps, lower limb bands, wristbands,
and flash glucose monitors. Additionally, three innovative research prototypes, namely
a hip-worn strap, a chest strap, and a smart insole, were used to gather physical activity
data [29]. The trial conducted by Coombes et al. (2021) broadened the scope by employing
a variety of devices. A wristband heart rate monitor (model Lynk2 by Accuro, Oakbrook
Terrace, IL, USA) and the Personal Activity Intelligence Health App (by PAI Health, Van-
couver, BC, Canada) were used to measure the heart rate and store data, respectively.
Various devices were used to monitor physiological variables, including a CGM system,
a metabolic analyzer, an electrocardiogram (ECG), a blood pressure monitor, and a body
composition analyzer. A bioimpedance scale and photoplethysmography (PPG) sensor
were also used. The placement or positioning of these devices on the participant’s body
was strategic. The CGM device was worn on the abdomen, ECG electrodes were placed
on the chest, the blood pressure monitor was positioned on the upper arm, the portable
metabolic analyzer was connected to a face mask or mouthpiece, and the wristband heart
rate monitor and PPG sensor were worn on the wrist, during measurements [30].

3.2.2. Outcomes

The primary outcomes of the seven studies included in this systematic review varied
depending on the research question, intervention, and technology used. Frias et al. (2017)
focused on using digital medicine offerings (DMO) to treat uncontrolled hypertension
and type 2 diabetes. The primary outcome was a significant reduction in systolic blood
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pressure at week 4 and a nonsignificant difference in HbA1c at week 12, with no significant
differences in fasting plasma glucose change compared to routine care [26].

Li et al. (2021) conducted a prospective, multicenter RCT to investigate the effects of
a mobile app-based exercise program on physical activity levels. The primary outcomes
were body fat percentage and cardiorespiratory endurance and the secondary outcomes
included blood glucose level, insulin level, homeostasis model assessment of insulin
resistance (HOMA-IR), muscle strength, and cholesterol level [27].

In another RCT, von Korn et al. (2021) compared the effects of individualized
telemedical-supported lifestyle intervention with routine care over a duration of six
months, followed by another six months of follow-up without feedback. The primary
outcome observed within groups was the change in HbA1C, while the secondary outcomes
measured included health literacy, physical activity, eating behavior, quality of life, cardio-
vascular risk factors, major cardiovascular events, as well as healthcare costs at the 6 and
12-month marks [28].

The systematic review by Rodriguez-León et al. (2021) assessed the use of mobile
and wearable technology in monitoring parameters related to diabetes mellitus, with an
emphasis on the prevalence of wearable devices providing continuous measurements.
The accelerometer, glucose, and heart rate sensors were the most commonly used sensors.
Other analyzed outcomes are attention to privacy and security issues, emerging sensor
technologies, and validated clinical trials [29].

Finally, Coombes et al. (2021) evaluated the effectiveness of a lifestyle intervention
program in improving glycemic control and various health outcomes in an RCT. The study
further assessed the feasibility, acceptability, and efficacy of an e-health software for self-
monitoring patients with T2D [30].

3.3. Risk of Bias Assessment and Quality Appraisal

The risk of bias summary presented in Figure 2 follows the revised Cochrane risk-of-
bias tool for randomized trials (RoB-2) [20]. Our two authors (A.P. and J.I.D.O.) assessed
all RoB-2 signaling questions, providing either of the following evaluation options for
each question: “yes”, “probably yes”, “probably no”, “no”, or “no information”. For each
reviewed trial, the assessment for whether, based on the domain, is categorized as low risk,
high risk, or has some concerns is decided. The domains cover the randomization process
bias, intervention assignment bias, missing outcome data bias, outcome measurement
bias, and reported result selection bias. Based on these domains, an overall risk of bias
was determined.

Figure 2. Evaluating trial quality and reporting on the studies by Frias et al. (2017) [26], Li et al.
(2021) [27], von Korn et al. (2021) [28], and Coombes et al. (2021) [30]. Risk-of-bias assessment using
RoB 2 tool [31] across five domains in included RCTs.

Notably, three RCTs [27,28,30] demonstrated a low risk of bias in the randomization
process. While there were concerns for intervention allocation bias across all included
studies, the risk of bias due to missing outcome data was low. The outcome measurement
bias was high in three studies and medium in one. In terms of selective outcome reporting,
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one study indicated a low risk of bias, two had a medium risk, and one exhibited a high risk.
Figure 2 provides an overview of risk-of-bias assessment for the five domains according to
the RoB-2 tool for each of the included RCTs.

As shown in Figure 3, the overall risk of bias is high in three studies and medium
in one, hence indicating significant variation in the quality of trial conduct and reporting
across the studies analyzed. A more detailed illustration is provided in Appendix A.

Figure 3. Overview of risk-of-bias assessment using RoB 2 tool [31] across five domains in included
RCTs [26–28,30] given as percentages.

4. Discussion

This systematic review examined the use of non-invasive wearable devices for moni-
toring vital signs in patients with T2D. The results indicate that while these devices have
considerable potential in monitoring vital signs and managing T2D, there is a need for more
robust first-class evidence to validate their practical use and effects in patients with T2D.

Our results are consistent with previous research that has shown the potential of
telehealth applications to support the prevention and treatment of chronic diseases, in-
cluding T2D. However, a closer examination of the studies within this review reveals a
reliance on heart rate monitoring devices for primary outcome measurements such as
changes in blood pressure, heart rate, HbA1c, or body fat percentage. To address this
limitation, we recommend that future studies expand their focus on using more wearable
sensors to measure a broader range of vital signs, including body temperature, blood
pressure, and respiratory rate. To ensure the meaningfulness of data comparison, it is
crucial to establish standardized criteria for comparing data obtained through various
sensing technologies.

Some potential criticisms of this review include the limited number of included studies
and the risk of bias revealed in several assessment domains, such as outcome measurement
bias and bias in the selection of reported results. These biases have most likely influenced
the results reported in the studies, making it compelling to interpret the findings cautiously.
It has become necessary to address these limitations by conducting high-quality RCTs that
rigorously assess the efficacy, safety, and long-term impact of wearable devices in T2D
management. These RCTs should also consider addressing methodological limitations, such
as randomization process bias, outcome measurement bias, and reporting bias, to enhance
the validity and reliability of the findings.

Wearable technology could have economic implications for the healthcare system.
For instance, the continuous stream of data provided by these devices could lead to the
early detection of complications, potentially reducing hospitalizations and subsequent
healthcare costs. For instance, by analyzing patterns in vital sign data, machine learning
algorithms may assist in the early detection of fluctuations in glucose levels.

Interestingly, the integration of machine learning in analyzing the massive data streams
generated by these wearable devices holds vast potential for T2D management and treat-
ment. Therefore, the integration of machine learning could significantly enhance the
applications of these wearable devices by making them more precise, proactive, and patient-
centred. Machine learning algorithms, which have previously proven successful in lever-
aging and analyzing the vast amounts of data collected from wearable sensors to provide
personalized insights, potentially play a revolutionary role as predictive models for predict-
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ing T2D [32–35]. Machine learning can help optimize treatment plans, predict individual
responses to lifestyle changes, and provide real-time feedback to patients, thus enabling
better disease control and personalized and timely interventions in revolutionizing T2D,
which can extend to other chronic diseases. Although none of the included studies deliv-
ered first-class evidence on the use of machine learning in this context, further research is
recommended to validate and optimize predictive models for T2D management.

Wearable devices could empower patients to take a more active role in their disease
management, leading to improved self-care and better health outcomes. Therefore, the inte-
gration of wearable technology in T2D management is very promising for revolutionizing
patient care, and ongoing advancements in this area can substantially improve the lives of
patients with T2D.

Finally, despite the immense potential of diabetes health technology using non-
invasive monitoring devices for T2D, there is poor evidence of standardized regulations and
guidelines to promote the interoperability and data security of mobile health technology.
This evidence is also lacking in the reviewed studies because the different studies employed
a range of devices to monitor the same vital sign data. Improving interoperability and stan-
dardization among wearable devices can ease seamless data sharing and integration. There
is a need for regulatory bodies and healthcare organizations to develop guidelines and stan-
dards for mobile health apps to ensure safety and clinical validity and ensure the protection
of patient information through appropriate data security measures. The development and
use of non-invasive methods for monitoring T2D have been constrained by the indirect
nature of measurements, the need for calibration, and the challenges of achieving accuracy
and usability. There is a crucial need to address these challenges through standardization,
improving calibration procedures, enhancing accuracy, and ensuring the suitability of these
devices for general use and research in order to unlock their full potential in revolutionizing
diabetes care [36].

5. Conclusions

This systematic review provides a rigorous evaluation of the use and efficacy of non-
invasive wearable devices to monitor vital signs in patients with T2D. We scrutinized the
reporting and quality of published research, considering the profound potential implica-
tions for patients, healthcare practitioners, and researchers. As effective self-management
of T2D demands the continuous need for blood glucose monitoring and adopting lifestyle
changes, despite still being in their nascent stage of development, fully non-invasive
CGM methods have emerged as a promising approach for managing T2D, mirroring the
considerable potential of advancements in telehealth applications.

In our review, we have adhered to quality assurance guidelines and conducted com-
prehensive examinations of available high-standard studies published in recent years.
Nevertheless, this review further highlights the persistent gaps in the literature and the
need for additional rigorous and unbiased controlled trials to provide more definitive
evidence and facilitate meaningful cross-comparisons among studies.

Furthermore, the limited diversity in sensing technologies and the inherent biases
in the current studies pose significant complexities in the accurate interpretation and
conclusion of the findings. Future research should prioritize transparency and accuracy
in bias reporting to understand the true impact and benefits of using wearable devices in
T2D management. With the right application and rigorous research, these technological
innovations could revolutionize diabetes care, shifting from periodic clinical check-ups to
continuous at-home monitoring, facilitating proactive disease management, and promoting
better patient autonomy.
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