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Abstract: In the advancement of medical image super-resolution (SR), the Deep Residual Feature
Distillation Channel Attention Network (DRFDCAN) marks a significant step forward. This work
presents DRFDCAN, a model that innovates traditional SR approaches by introducing a channel
attention block that is tailored for high-frequency features—crucial for the nuanced details in medical
diagnostics—while streamlining the network structure for enhanced computational efficiency. DRFD-
CAN’s architecture adopts a residual-within-residual design to facilitate faster inference and reduce
memory demands without compromising the integrity of the image reconstruction. This design strat-
egy, combined with an innovative feature extraction method that emphasizes the utility of the initial
layer features, allows for improved image clarity and is particularly effective in optimizing the peak
signal-to-noise ratio (PSNR). The proposed work redefines efficiency in SR models, outperforming
established frameworks like RFDN by improving model compactness and accelerating inference.
The meticulous crafting of a feature extractor that effectively captures edge and texture information
exemplifies the model’s capacity to render detailed images, necessary for accurate medical analysis.
The implications of this study are two-fold: it presents a viable solution for deploying SR technology
in real-time medical applications, and it sets a precedent for future models that address the delicate
balance between computational efficiency and high-fidelity image reconstruction. This balance is
paramount in medical applications where the clarity of images can significantly influence diagnostic
outcomes. The DRFDCAN model thus stands as a transformative contribution to the field of medical
image super-resolution.

Keywords: medical image super-resolution; RFDN; memory; channel attention

1. Introduction

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scanners of-
fer non-invasive methods for creating detailed images of various body organs and parts.
These images are commonly used in medical practice to detect and address issues ranging
from tumors to internal bleeding. The process of capturing these images can be hindered
by factors such as the capabilities of the equipment, the environment, and costs. Inac-
curate or low-quality images can affect the assessments made by healthcare experts and
computer-assisted systems. In the imaging of the eye’s fundus, certain abnormalities,
like microaneurysms or hemorrhages, can occupy very minute areas. Additionally, some
elements, such as soft exudates and specific growths, may not be easily visible. Therefore,
improving the resolution of these medical images is vital. The quality of these medical
images plays a significant role in making accurate clinical decisions. Preliminary processing
is essential to optimize the performance of Computer-Aided Diagnosis (CAD) systems. It
helps improve the quality, reduce noise, and enhance the image contrast. One challenge
faced in medical imaging is the often low resolution (LR) of images due to limitations
in equipment and time constraints during capture. To overcome this, researchers have
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developed various techniques to enhance the image resolution. The goal of SR is to produce
a high-resolution (HR) image from its LR version. These techniques span from interpolation
methods to reconstruction and learning-based methods. Recently, deep learning techniques
have been at the forefront, delivering promising results in multiple medical imaging areas
while preserving essential details. The advancement of deep learning algorithms has led
Single Image Super-Resolution (SISR) techniques using neural networks to outperform ear-
lier methods like interpolation-based, reconstruction-based, and learning-based approaches
on natural images [? ]. However, adapting deep neural networks to an enhanced resolution
in medical images remains a challenge. In clinical settings, these enhanced images are
further used for medical analysis, and the available datasets are often limited in size [? ].
As a result, enhancing the resolution in medical imagery demands innovative approaches.
This includes adjusting training datasets, revising loss functions, tweaking evaluation
metrics, and rethinking neural network designs, all to retain critical details and spotlight
key structures for medical experts [? ]. CNNs and generative adversarial networks (GANs)
have recently shown promise in enhancing the resolution of medical images [? ]. However,
integrating vision transformers (ViTs), which have demonstrated top-tier performance
in natural image refinement and medical image analysis [? ], remains a challenge. It is
important to delve into the strengths, potential, efficiency, and constraints of using ViTs for
medical image SR. Additionally, well-established CNN design techniques, like localization
processes, residual links, and feature blending, can potentially be incorporated into com-
bined CNN-ViT models to enhance the results. For instance, drawing from CNNs’ shared
weights and localization functions, a modified ViT known as the Swin Transformer has
been introduced for advanced image tasks [? ]. These innovative Swin layers have been
utilized in tasks related to natural image refinement [? ] and delineation [? ].

Leveraging prior insights from related medical imaging tasks, like segmentation,
can enhance SR endeavors. On one side, hurdles remain in assessing the quality of en-
hanced images, particularly in the medical realm [? ]. Typically, the quality assessment
of enhanced natural images covers the reconstruction accuracy and human perception.
With SISR techniques nearing the confines of signal fidelity metrics, the importance of
perceptual quality measures has grown [? ]. However, medical images present unique
challenges, having artifacts primarily stemming from the imaging system hardware and pa-
tient movement—issues seldom found in natural images. Metrics like PSNR and structural
similarity (SSIM) are commonly used in medical image SR research. Still, relying solely
on quality assessment techniques tailored for natural images may not be dependable for
medical SR tasks. To complement, researchers often gauge the quality of enhanced images
based on how they fare in subsequent medical image processing tasks, like segmentation [?
]. While quality metrics do not equate to diagnostic precision, medical professionals un-
deniably favor high-quality imagery for precise diagnosis. Beyond just machine-based
quality metrics, prior understanding from pretrained segmentation models can also aid in
optimizing medical SR models, akin to existing perceptual loss techniques.

While SR has seen significant advancements, current CNN-based models are not
without challenges. As the depth of these networks increases, they demand considerable
computational resources and memory, making them unsuitable for deployment on compact
devices like smartphones. Additionally, CNNs typically focus on localized image areas due
to the restrictive kernel sizes of their convolutional processes. This means they struggle
with efficiently modeling long-range dependencies within images. Thus, for optimal net-
work performance, it is crucial to consider both localized and broader image information.
Efficiency in terms of speed and memory usage is crucial for deploying SR models for
images on devices with limited resources. Recent innovations leverage techniques like
distillation and aggregation, making extensive use of channel splitting and merging to
maximize the utilization of available hierarchical features. On the other hand, sequential
network processes, which avoid regularly revisiting previous states and adding extra
nodes, can help minimize memory usage and decrease the time taken, making them more
efficient. Recent developments in efficient SR aim to decrease the number of parameters
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and FLOPs [? ]. They enhance the feature strength by optimizing feature usage with
intricate layer connection methods. However, such complex structures may not always
result in faster performance and can pose challenges when trying to implement them on
devices with limited resources. Based on this approach, we designed a lightweight net-
work structure primarily by layering multiple optimized convolution and activation layers
while reducing the dependency on feature fusion. We introduced a unique sequential
channel attention mechanism, where each pixel is allocated a significance based on its
local and global contexts to emphasize high-frequency details. Moreover, we modified
the residual block for SR and introduced a superior residual block to further hasten the
network’s inference. In light of this, we review the leading efficient SR model, RFDN [? ],
aiming to strike a better balance between image reconstruction quality and inference speed.
Initially, we reevaluate the effectiveness of various elements within the residual feature
distillation block introduced by RFDN [? ]. We recognize that, although feature distillation
considerably cuts down on the number of parameters and boosts overall performance,
it is not entirely optimized for hardware, thereby affecting RFDN [? ] processing speed.
To address this, we introduce a new model, the DRFDCAN. This model is designed to
simplify the network’s architecture while preserving its efficiency and capability. The
proposed work recognizes the limitations entrenched within the contemporary CNN-based
SR models. These challenges encompass formidable computational demands, escalating
memory requirements, and the intricate puzzle of effectively modeling long-range de-
pendencies within images. Efficiency emerges as a central tenet of our investigation. We
underscore the vital importance of efficiency, particularly concerning speed and memory
utilization, by emphasizing that such efficiency is not merely a desirable attribute but an
absolute imperative, especially given the prevalent use of resource-constrained devices
such as smartphones. The proposed method thoughtfully evaluates recent innovations
in the realm of SR. These innovations, including techniques like distillation, aggregation,
channel splitting, and merging, represent a concerted effort to unlock the full potential of
the hierarchical features within the SR domain. A notable facet of our research method
revolves around reducing model parameters and floating-point operations (FLOPs). This
reduction is achieved through intricate layer connection methods and judicious feature
usage, aligning perfectly with their overarching pursuit of efficiency. The emergence of
DRFDCAN stands as a crowning achievement of this scientific endeavor. The model
streamlines network architecture while preserving efficiency and elevating the SR process
to new heights.

The proposed work leads to pioneering strides by enhancing model compactness and
expediting the inference process without compromising image reconstruction quality. We
also introduced a specialized channel attention block designed to amplify high-frequency
features, leveraged a novel residual-within-residual network approach for enhanced pro-
cessing, and designed an innovative feature extractor that is adept at capturing intricate
edge and texture details. This study is further distinguished by its comprehensive exam-
ination of the elements influencing the processing speed and memory utilization within
SR models.

The main highlights of our work include:

• We reassess the efficiency of RFDN [? ] and delve into what slows it down. In-
troducing our innovative network, the DRFDCAN, we have been able to improve
model compactness and speed up inference without compromising on the accuracy of
SR restoration.

• We suggest a channel attention block tailored for high-frequency features to amplify
these details, and we introduce a residual-within-residual network approach that
leverages residual learning for quicker processing and reduced memory usage.

• By examining the intermediate features extracted using the feature extractor of the
contrastive loss, we found that features from the initial layers play a vital role in
models focused on PSNR. This observation led us to design a unique feature extractor
that captures more detailed information on edges and textures.
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• We thoroughly examine the elements that affect the processing speed and memory
usage of SR models.

2. Related Work

Medical image SR, an area that is rapidly gaining traction in research circles, focuses
on improving the clarity and resolution of medical images, making them more valuable for
clinical analyses. Initial approaches relied on traditional techniques such as interpolation
and example-based learning. However, with the advent of deep neural networks, more
sophisticated methods have emerged. These not only focus on enhancing the image quality
but also aim to balance computational efficiency. Contemporary strategies employ adver-
sarial training, ViTs, and lightweight models to achieve superior outcomes. This section
delves into various advancements in this domain, highlighting both their innovations
and limitations.

2.1. Introduction to Image SR Techniques

Before the widespread use of deep neural networks, initial approaches to medical
image SR largely depended on interpolation, reconstruction, and example-based learning
techniques [? ]. While these methods used multiple frames [? ] and reference sections [?
] to reconstruct HR images, their effectiveness was limited. This was mainly due to their
constrained ability to represent details and the insufficient information provided by the
training data. While SRCNN [? ] necessitates an initial up-sampling step to preprocess LR
images, this means that most subsequent processes happen in a high-dimensional space,
leading to increased computational demands. To address this, ref. [? ] introduced the Effi-
cient Sub-Pixel Convolutional Neural Network (ESPCN). By positioning the up-sampling
layer towards the end of the model, it ensures that feature extraction takes place in a
lower-dimensional space, greatly reducing computation and spatial complexity. Furthering
this [? ] expanded the network depth and employed the residual structure. This demon-
strated that deepening the network could enhance its output. Since these developments,
researchers have consistently advanced algorithm performance using various intricate
network designs, including but not limited to residual learning [? ], dense connections [? ],
and attention mechanisms [? ].

Adversarial training, alongside perceptual loss, as described by [? ], has become
common in single-slice SR, largely due to the significant computational demands of 3D
operations, as noted by [? ]. Ref. [? ] presented a deep learning method combining trans-
formers and generative adversarial networks (T-GANs), which is proposed to enhance the
SR reconstruction of medical images. By integrating transformers into the GAN framework,
the model achieves superior texture extraction and focuses on critical areas through global
image matching. The training involves a multi-task loss function composed of content
loss, adversarial loss, and adversarial feature loss. Ref. [? ] presents the fine percep-
tive generative adversarial networks (FP-GANs) to enhance the resolution of MR images.
The FP-GANs tackle time and hardware limitations by employing a divide-and-conquer
strategy, separately processing the low-frequency and high-frequency components of MR
images. Through wavelet decomposition, the MR image is split into global approximation
and anatomical texture sub-bands, with each GAN focusing on its specific sub-band. The
generator uses multiple residual-in-residual dense blocks for improved feature extraction
and a texture-enhancing module to balance global and detailed features. In ref. [? ] the
study introduces a constrained CycleGAN. This model operates on unpaired images from
different ultrasound probes and integrates two new loss functions—identical loss and
correlation coefficient loss—to enhance structural consistency and backscattering patterns.
Instead of relying on post-processed images, CycleGAN directly uses envelope data from
beamformed radio frequency signals.

ViTs enhance various medical image processing tasks, such as reconstruction, as
shown by [? ]. Ref. [? ] introduced the L-former, which is a lightweight transformer
designed for generating realistic medical images, outperforming traditional GANs. Unlike
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typical transformer models, the L-former efficiently combines transformers for LR features
with CNNs for HR output, ensuring lower computational costs. Ref. [? ] addresses
challenges in multicontrast SR techniques for MRI. While multicontrast MRI SR can leverage
complementary information from different imaging contrasts for higher-quality images,
current methods fall short in two main areas: capturing long-range dependencies that
are crucial for complex MR images and fully utilizing multicontrast features at various
scales. To tackle these challenges, the paper introduces McMRSR++, a novel SR network
that employs transformers for long-range dependency modeling and features a multiscale
matching and aggregation method to harness multicontrast features effectively. Ref. [? ]
presents MRI-Net, a deep learning model based on U-Net architecture, designed to upgrade
low-resolution brain MRI scans to a higher resolution. This advancement could enhance
medical diagnosis and reduce the cost of high-resolution MRI imaging by improving lower-
resolution images. The network shows superiority at a 3 × 3 down-sampling index, but
its performance on different scales or subtler down-sampling, which is often required in
real-world applications, is not discussed.

2.2. Lightweight Models for Medical Image SR

However, the enhanced reconstruction achieved by deepening the network also leads
to a notable rise in computational demands and processing time [? ]. This poses a lim-
itation for the practical application of SR. As a result, many research efforts have been
directed towards developing lightweight SR algorithms to overcome this obstacle. Ref. [?
] introduced an efficient ViT that is tailored for SISR in medical imaging, incorporating
residual dense connections and local feature fusion. While ViTs have excelled in various
computer vision tasks, they face challenges in low-level medical image processing. The
proposed model overcomes these challenges and also integrates a perceptual loss based
on medical image segmentation to enhance image quality. While the method achieves the
best PSNR scores in six modalities, it does not dominate in all seven, suggesting room for
further improvement or adaptability challenges in certain modalities. This is achieved by
utilizing hierarchical features from residual branching and integrating a spatial attention
mechanism within the residual blocks. This is used to improve the resolution of chest CT
images used in diagnosing COVID-19, presented in [? ]. Recognizing that most existing
SR algorithms, optimized for natural images, are not apt for medical images and tend
to consume more computational resources by increasing the network depth, the study
introduces a novel method: the residual feature attentional fusion network (RFAFN). The
RFAFN employs a contextual feature extraction block (CFEB) for efficient feature extraction,
a feature-weighted cascading strategy (FWCS) that selectively fuses detailed information
and a global hierarchical feature fusion strategy (GHFFS) for better feature aggregation.
The presented method boosts the reconstruction quality by increasing the network depth,
making it resource-intensive and not ideal for machines with limited capacity.

Medical image SR has recently garnered significant attention from the research com-
munity. For instance, a proposed IMDN [? ] addresses these challenges, which belong
to computing limitations with cascaded information multidistillation blocks (IMDB) that
extract and fuse hierarchical features. A contrast-aware channel attention mechanism eval-
uates feature importance. Additionally, an adaptive cropping strategy (ACS) enables the
processing of real images of any size, allowing block-wise SR with a consistent and trained
model. The presented method fails to effectively super-resolve images at any arbitrary
scale factor, limiting their practical application. Another good example is the LCRCA
presented in ref. [? ], a lightweight skip-concatenated residual channel attention network
for image SR. While deep neural networks produce images that are closer to the original HR
versions, their extensive and sometimes unnecessary structures and parameters become
burdensome. The LCRCA is designed for high-quality SR in environments with limited
computational resources. It incorporates a deep residual block (DRB) for precise residual
information, a new channel attention mechanism called statistical channel attention (SCA)
to amplify the DRB’s feature maps, and a skip concatenation (SC) technique for efficient
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information flow. The proposed LCRCA, though efficient, still trades off some details for
its lightweight nature. Existing super-resolution methods often struggle with preserving
high-frequency details, leading to blurred features or introducing artifacts and structural
deformations. RMISR-BL [? ] addresses these issues through a pyramidal feature mul-
tidistillation network. Key components include a multidistilliation block that combines
pyramidal convolution and shallow residual blocks, a two-branch super-resolution network
for optimizing visual quality, and the use of contextual loss and L1 loss in a gradient map
branch to enhance visual perception. The introduction of pyramidal feature multidistilla-
tion and other advanced techniques resulted in increased computational demands. This
limits the method’s real-time applicability in resource-constrained environments and on
less powerful hardware.

3. Materials and Methods

In Section ??, we presented information about used datasets and metrics. In Section ??,
we introduce the proposed DRFDCAN, where we use a novel approach, known as a “residual
in residual” (RIR). The architecture is introduced for constructing exceptionally deep networks
that are composed of multiple residual groups, each interconnected with lengthy skip con-
nections. Within each residual group, there are several residual blocks linked by short skip
connections. Additionally, a channel attention mechanism is suggested to dynamically adjust
channel-specific features by accounting for relationships among different channels. In the next
section, Section ??, we summarize the baseline RFDN [? ] (Figure ??) with its shallow residual
block and shortcuts, which we try to overcome.
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3.1. Dataset-Specific Performance Analysis and Metrics

This section analyzes the performance of the DRFDCAN. Here, the discussion will
focus on the unique challenges and outcomes associated with each dataset. For the OASIS
dataset [? ], the discussion might revolve around the model’s ability to reconstruct high-
fidelity images from single-modality MRIs, considering factors such as the presence of
age-related atrophy or lesions. In the context of the BraTS dataset [? ], the efficacy of the
DRFDCAN in dealing with multimodal data is scrutinized. The discussion could highlight
the model’s capacity to enhance the contrast and details from different MR sequences,
which are crucial for the accurate delineation of tumor boundaries. With the ACDC dataset,
the focus might shift to how the DRFDCAN handles the dynamic range of cardiac images
and whether it can effectively capture the nuances of cardiac cycles, including the changes
in the heart’s structure during diastole and systole. For the COVID dataset, the section
would likely explore the model’s effectiveness in enhancing CT images that are vital for
detecting and assessing the progression of COVID-19-related lung anomalies.

In this study, we utilize four renowned medical image datasets to assess the SR
capabilities and resilience of our proposed approach, aiming to closely replicate real-world
clinical settings. Our testing grounds include the OASIS dataset [? ], offering single-
modality brain MR images; the BraTS dataset [? ], which provides multimodal brain MR
images; the ACDC dataset [? ], containing cardiac MR images; and the COVID dataset [? ],
which presents chest CT scans.

To gauge the quality of the reconstructed images, we employ two metrics: the PSNR
and the structural similarity index (SSIM). The PSNR serves as an indicator of the rela-
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tionship between the highest possible signal and the background noise, acting as a quality
assessment index based on its sensitivity to errors.

PSNR = 10× log10

(
(2n − 1)2

MSE

)
(1)

On the other hand, the SSIM quantifies the resemblance between two images, consid-
ering their luminance, contrast, and structural attributes.

SSIM(x, y) =

(
2µxµy + C1

)(
2σxσy + C2

)(
µx

2 + µ
y
2 + C1

)(
σx

2 + σ
y
2 + C2

) (2)

To comprehensively assess our model’s computational demands, consistent with
numerous studies [? ], we determine the Multi-Adds of our model using a predetermined
HR image size of 512 × 512.

3.2. Network Architecture

The architecture of our proposed model is illustrated in Figure ??b. The main building
model in DRFDCAN includes three parts: at first, there are three residual channel attention
network blocks (RCABs), convolution layers with 3 × 3 and 1 × 1 kernel sizes, and ESA.
ILR represents the input LR image, and ISR denotes the output of DRFDCAN (Figure ??).
At the beginning, the network extracts the coarse features using convolution layer 3 × 3,
as follows:

F0 = Cext(ILR) (3)

where Cext represents the convolution layer operation, and F0 denotes the extracted fea-
ture maps.
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To improve the performance of the baseline, we modify the channel attention block of
the deep residual channel attention networks (RCANs). Into the RCAN, the RIR structure
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is introduced, which comprises G residual groups (RG) and long skip connections (LSC).
Each RG is further composed of B RCAB, which is interconnected by short skip connections
(SSC) (Figure ??). We change the RIR connection architecture with a new one, where instead
of LSC, we use SSC. That RIR architecture enables the training of extremely deep CNNs,
exceeding 400 layers, for high-performance image super-resolution. In the proposed model,
we try to avoid using extremely networked layers, because this approach makes the model
too complex for computation. In our model, by using SSC, we make the model more
lightweight, and the process can be expressed by:

Fn = Hn
RCAB

(
Hn−1

RCAB

(
. . . H0

RCAB(F0)
))

; (4)

where HRCAB denotes the function of RG and Fn is the n-th layer of RCAB. In Figure ??,
channel attention (CA) has been integrated into RB. Two 3 × 3 convolution layers in RB
extract the smooth feature from LR, after which the obtained information becomes the input
for CA. The input feature is divided into channel attention and spatial attention layers,
and both layers extract coarser features and concatenate the final result. The output is a
reconstructed ISR super-resolution image.

ISR = Frec((Fsmooth(Fn) + F0)) (5)

where Frec function represents the reconstruction module, which is composed of a single
3 × 3 convolution layer and a non-parametric sub-pixel operation. Additionally, Fsmooth
corresponds to a 3 × 3 convolution operation.
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A standard loss function of the proposed model is as follows:

L(θ) =
1
N ∑N

i=1||FDRFDCAN(In
LR)− In

HR||1 (6)

where FDRFDCAN denotes the function of the DRFDCAN, θ represents the adjustable
parameter of the proposed model, and ||.||1 denotes the L1 regularization. ILR and IHR
represent input LR and coresponding HR images.

3.3. Rethinking the RFDB

Being inspired by the RFDN [? ], we rethink its main block, the residual feature
distillation block (RFDB). In Figure ??, the RFDB initially follows a progressive feature
refinement and distillation strategy, and it employs a 1 × 1 convolution to reduce the
number of channels. Finally, it incorporates an ESA layer and establishes a residual
connection. In detail, the feature refinement and distillation process comprise multiple
steps. For each stage, the RFDB utilizes a refinement module (RM) composed of a shallow
residual block (SRB) to enhance the extracted features. Additionally, it employs a distillation
module (DM), represented as a single 1 × 1 convolution layer, to distill the features. When
provided with input features Fin, the overall structure can be described as follows:

Fd_1Fc_1 = DM1(Fin), RM1(Fin)
Fd_2Fc_2 = DM2(Fc1), RM2(Fc1)

Fd_3Fc_3 = DM3(Fc_2), RM3(Fc_2)
Fd_4 = DM4(Fc_3)

(7)

In this equation, DMn and RMn refer to the n-th distillation and refinement modules,
respectively. Fd_n represents the features distilled in the n-th step, and Fc_n represents the
features refined in the n-th step, which will undergo further processing by subsequent
layers. Finally, all the distilled features generated from previous distillation steps are
concatenated together as follows:

Fdistillation = Concat
(

Fd1 Fd2 Fd3 Fd4

)
(8)

The concatenation operation goes along the channel dimension.
In total, the main block of the RFDN [? ], the RFDB, uses split division to reach two

feature extraction connections: a refinement layer, which obtains coarse features, and a
distillation layer where several convolution layers of 1 × 1 extract more information and
decrease the number of parameters. Though the RFDB has managed to reduce the number
of parameters, FLOPs, memory consumption, and runtime, SRB shows a high number of
attributes and low performance. Based on our observations, memory consumption and
PSNR stand out as critical attributes for IoT devices and lightweight models. Enhancing
these factors not only boosts the model’s performance but also optimizes its evaluation
time, making it more suitable for real-time applications (Figure ??). The graph depicts a
selection of image processing models, each represented as a point indicating their respective
performance in terms of PSNR and inference time. A clear trade-off is visible: as the
inference time decreases, moving towards the left, the PSNR tends to increase, moving
upwards, suggesting that quicker models also improve image quality. The proposed model
stands out, achieving the highest PSNR in the least inference time, positioning it as the
most efficient option among those shown. The baseline provides a point of reference, sitting
in the middle of the graph, while the CARN model showcases a balance of speed and
quality. Other models like the VDSR and DRCN are clustered to the right, indicating longer
inference times but also delivering high-quality images as reflected by their PSNR values.
In contrast, the FSRCNN and SRCNN [? ] are the slowest and produce lower-quality
images, signaling a potential area for improvement. (Figure ??b).

Residual channel attention block: The RCAB is the main block of the proposed model,
which can smoothly extract more features and reduce attributes and runtime while main-
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taining PSNR. As Figure ??b demonstrates, we remove the distillation layers to focus
further on the refinement ones. In this way, we avoid making the model deeper, while
using an RIR structure. The process can be described as

Fre f inement_1 = RM1(Fin)

Fre f inement_2 = RM2

(
Fre f inement_1

)
Fre f inement_3 = RM3

(
Fre f inement_2

) (9)

where Fin is given input features which feed first the RMn refinement layer, and Fre f inement_n
represents n-th extracted feature. Each refinement layer illustrates the n-th RCAB that
works using an RIR structure of connection. Two 3 × 3 convolution layers in RB obtain
more information to feed CA. Utilizing two pooling methods, max pooling and average
pooling aids with overcoming information loss issues. Both outputs from the pooling are
concatenated with each other to pass to the next refinement layer (Figure ??).

Fre f inement_1 = RM1(Fin)= FCA_1

(
FMp(F

RB_1
(Fin)) + FAp(F RB_1(Fin)) (10)

FRB_n and FCA_n represent the n-th RIR connection of the n-th refinement layer. FM_p and
FA_p denote max and avarage poolings. A final output of RCAB feeds the 1× 1 convolution
layer, and then the ESA block. Next comes concatenation of the final output and Fin, as
shown in Figure ??b:

Ff inal_output = Fin + Fre f inement_3

4. Experimental Results

In this section, the performance evaluation of the DRFDCAN is presented. The
assessment is meticulously designed to measure the model’s super-resolution capabilities
and robustness across different clinical imaging scenarios. This evaluation is critical to
ensuring that the model can be reliably deployed in real-world medical settings, where the
demand for high-fidelity image reconstruction is coupled with the need for rapid diagnostic
insights. The section will begin by detailing the evaluation metrics, such as PSNR, SSIM, to
provide a quantitative analysis of the SR images against the ground truth. Additionally,
qualitative assessments may also be incorporated, wherein expert radiologists visually
inspect the SR images for clinical usability.

To ensure the robustness and generalizability of the model, tests are conducted across
various datasets:

The OASIS dataset [? ] for single-modality brain MR images,
The BraTS dataset [? ] for multimodal brain MR images,
The ACDC dataset [? ] for cardiac MR images, and
The COVID dataset [? ] for chest CT scans.

The datasets are chosen to reflect the diversity of imaging modalities and the complex-
ities inherent in different anatomical regions, pathologies, and imaging conditions.

4.1. Implementation Detail

The proposed method and other leading-edge models are tested using PyTorch. We
carried out all tests using an Nvidia Quadro RTX 8000 GPU Corporation in the U.S. For
data augmentation, we used random rotations at angles of 90◦, 180◦, and 270◦, along with
horizontal flipping. We utilized a batch size of 64 and employed the Adam optimizer with
parameters β1 set to 0.9, β2 at 0.99, and ε at 10−8 for training our model. We started with a
learning rate of 5 × 10−4, which we reduced by half every 50,000 iterations, continuing for
a total of 300,000 iterations.
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4.2. Comparison with State-of-the-Art Methods

To showcase the effectiveness of our method, we set it against several top-tier lightweight
super-resolution networks such as SRCNN [? ], RDST [? ], RFAFN [? ], IMDN [? ], RFDN [? ],
RMISR-BL [? ], and LCRCA [? ]. For each of these networks, we utilize the source codes that are
officially released by their respective authors and retrain them using the identical dataset and
training specifications that were used for the proposed mode in our study.

In this analytical segment in Table ?? we scrutinize various state-of-the-art models
and their performance in the domain of super-resolution, as manifested through distinct
metrics on a particular dataset. The proposed model emerges as a clear victor in terms of
image quality, boasting the highest PSNR at 29.51 dB.

Table 1. Illustrate comparison of lightweight models based on OASIS dataset.

×4

Model PSNR [db] SSIM Memory [M] Inference Time [ms]

RFDN [? ] 29.11 82.20% 788.19 28.03

SRCNN [? ] 27.55 80.42% 2387.93 36.58

RDST [? ] 29.17 82.32% 790.25 29.74

RFAFN [? ] 29.22 83.01% 780.18 28.41

IMDN [? ] 29.12 82.23% 856.02 28.07

LCRCA [? ] 29.16 82.36% 895.36 28.45

MRI-Net [? ] 29.20 81.57% 1258.81 29.72

Proposed model 29.51 91.56% 630 24.07

This metric indicates its superior ability to reconstruct images that closely resemble the
originals. In a comparative assessment with the proposed model, other models manifest a
noticeable lag in performance. Specifically, when observing the PSNR values, SRCNN [? ]
records a difference of 1.96 dB less than the proposed model. Similarly, RFDN [? ], RDST [?
], RFAFN [? ], IMDN [? ], and LCRCA [? ] trail behind by 0.40 dB, 0.34 dB, 0.29 dB,
0.39 dB, and 0.35 dB, respectively. MRI-Net [? ] stands in the middle ground in terms
of PSNR, suggesting that while its image enhancement quality is good, it is not the best
among the compared models. In terms of SSIM, MRI-Net [? ] is closer to the lower end,
which may imply that while it can enhance the resolution, it might not preserve structural
features as well as the top-performing models. MRI-Net [? ] has a relatively high memory
consumption, which could be a drawback for deploying it in environments with limited
memory resources. The inference time of MRI-Net [? ] is competitive, although not the
fastest, which suggests that it could still be used in near-real-time applications.

Figure ?? highlights the importance of optimizing for both performance and efficiency.
In the context of medical imaging, where these models might be used, the graphs suggest
that the most valuable models are those that can produce high-quality images quickly and
with less demand on memory resources, allowing for fast and efficient diagnosis without
compromising on the clarity of the images needed by medical professionals.

These discrepancies underscore a relative shortcoming in image clarity for these mod-
els when positioned against the proposed model. Turning our attention to SSIM, a critical
metric that assesses structural and visual congruency with the original HR images, the
proposed model again takes the lead with an exceptional 91.56%. Conversely, RFAFN [? ]
trails with an SSIM of 83.01%, hinting at a certain level of structural deviation in its outputs.
From a resource-efficiency standpoint, the proposed model demonstrates admirable fru-
gality, consuming a mere 630M of memory. This is strikingly lower than its counterparts,
marking it as a viable choice for scenarios with stringent memory constraints. At the other
end of the spectrum, SRCNN [? ] consumes a substantial 2387.93 M, making it the most
memory-intensive model amongst those evaluated.
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In the area of real-time performance, the proposed model clinches another win with
the swiftest inference time of 24.07 ms. This rapidity indicates its suitability for applications
demanding instant results. In contrast, SRCNN [? ] registers the lengthiest inference time
of 36.58 ms, which may limit its utility in time-sensitive scenarios. Drawing parallels with
other models, the likes of RFAFN [? ], RDST [? ], and LCRCA [? ] offer commendable
metrics, showcasing near neck-to-neck performances in PSNR and SSIM. Their memory
consumption and inference times are also competitive, situating them as strong contenders
in the super-resolution landscape. However, placing all these models under an overarching
lens, the proposed model emerges as a paradigm of balance, harmonizing impeccable
image quality with resource and time efficiency. While models like the SRCNN [? ] have
created the foundation for super-resolution, they now seem to be eclipsed by the newer,
more optimized entrants in the arena.

From Table ??, the superior performance of the proposed model is unequivocal, espe-
cially at the ×2 magnification, where it consistently registers the highest PSNR and SSIM
values across datasets such as BraTS in Figure ??, OASIS in Figure ??, ACDC in Figure ??,
and COVID-CT in Figure ??. Notably, while the proposed model remains preeminent at ×2
magnification, the competitive landscape becomes more nuanced at the ×4 magnification.
In this context, RFAFN [? ] achieves the highest PSNR of 30.45, but the proposed model
retains its supremacy in SSIM with a score of 85.12%.
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Table 2. The table provides a comprehensive assessment of various super-resolution models evaluated
over different datasets and magnifications using the PSNR and SSIM metrics.

×2

BraTS ACDC COVID-CT

Mode PSNR SSIM PSNR SSIM PSNR SSIM

RFDN [? ] 33.65 91.89% 32.84 91.24% 36.87 93.58%

SRCNN [? ] 30.45 90.20% 32.58 92.15% 35.89 92.65%

RDST [? ] 33.89 92.27% 33.65 93.41% 36.74 94.87%

RFAFN [? ] 33.56 92.84% 35.28 94.86% 37.46 95.45%

RMISR-BL [? ] 29.46 89.54% 30.08 90.23% 32.89 90.78%

LCRCA [? ] 32.56 92.11% 31.02 90.84% 35.48 91.99%

MRI-Net [? ] 31.89 91.57% 31.58 90.99% 32.63 91.14%

Proposed model 34.20 94.68% 35.15 94.78% 37.89 96.08%

×4

BraTS ACDC COVID-CT

Model PSNR SSIM PSNR SSIM PSNR SSIM

RFDN [? ] 30.11 83.55% 29.21 82.35% 31.87 83.99%

SRCNN [? ] 28.53 80.89% 27.55 80.24% 28.78 81.24%

RDST [? ] 30.11 79.58% 27.05 79.23% 33.69 87.99%

RFAFN [? ] 30.45 81.25% 29.24 80.99% 32.14 89.88%

RMISR-BL [? ] 30.27 92.68% 27.52 80.41% 31.88 89.12%

LCRCA [? ] 30.21 81.75% 29.12 82.84% 30.84 82.13%

MRI-Net [? ] 29.38 81.00% 27.15 79.89% 29.56 82.17%

Proposed model 31.55 85.12% 30.74 84.26% 34.87 89.86%
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Figure 9. SR findings for a randomly selected slice from the COVID-CT (COVID-19 CT: https://zenodo.
org/record/3757476, accessed on 2 June 2023) testing dataset are displayed.

At the ×4 magnification, certain models, especially the foundational super-resolution
model SRCNN [? ], encounter challenges. MRI-Net [? ] performance drops noticeably
at a ×4 magnification for both metrics, indicating that its SR capabilities are more con-
strained with cardiac MR images when the upscaling task is more challenging. The decline
in SRCNN [? ] performance at this magnification underscores the advancements that
contemporary models have achieved in methodology and optimization. Nonetheless, in
the COVID-CT dataset at a ×4 magnification, the proposed model reasserts its preemi-
nence with an unmatched PSNR of 34.87 and SSIM of 89.86%. This superior performance
accentuates its adaptability and robustness across varying datasets and magnifications.
RDST [? ], RMISR-BL [? ], and LCRCA [? ] demonstrate variable performances in different
datasets, but none consistently outperform the proposed model. While pioneering models
like SRCNN [? ] have established foundational benchmarks, they appear to be surpassed
by more advanced and refined successors that adeptly balance quality and efficiency. In this
array of state-of-the-art models, the proposed model distinctly emerges as the exemplar,
representing the pinnacle of current super-resolution achievements.

The above analysis underscores the brisk advancements in the super-resolution realm,
with contemporary models, particularly the proposed one, leading the charge by offering
both superior quality and efficiency.

5. Conclusions

Super-resolution techniques, especially in the domain of medical imaging, have un-
dergone substantial advancements. The criticality of image quality in medical diagnostics
necessitates innovations that balance clarity with computational efficiency. Traditional
CNN-based SR models, despite their capabilities, grapple with computational constraints,
particularly on devices with limited resources. Analyzing the performance of the state-of-

https://www.creatis.insalyon.fr/Challenge/acdc/databases.html
https://www.creatis.insalyon.fr/Challenge/acdc/databases.html
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the-art RFDN model [? ] brought to light certain inefficiencies, especially concerning pro-
cessing speed in real-world deployments. In response to these challenges, our DRFDCAN
has emerged as a promising alternative. It successfully simplifies the network structure,
ensuring faster inference while either maintaining or even enhancing image reconstruction
quality. The inclusion of a dedicated channel attention block for high-frequency features
signifies the model’s adeptness at capturing intricate details. Furthermore, the integration
of a more sophisticated residual block underscores our commitment to improving the
processing speed without compromising the integrity of the image enhancement. A notable
revelation from our research is the pronounced significance of the initial layer features in
models that prioritize PSNR. Harnessing this knowledge, we have crafted a distinctive
feature extractor, tailored to distill intricate edge and texture details more effectively. The in-
terpretability of deep learning models like DRFDCAN, crucial for clinical trust, remains an
area that is ripe for exploration. Adversarial robustness is another concern, as the integrity
of medical diagnoses must be safeguarded against potential manipulations. The integration
of SR technologies into existing medical workflows, adherence to ethical considerations,
and regulatory compliance also pose significant challenges that must be met with deliberate
and focused research efforts.

The burgeoning fields of transfer learning and few-shot learning offer promising
methods for DRFDCAN to quickly adapt to new tasks, potentially revolutionizing its appli-
cation to rarer diseases or novel imaging modalities. These approaches could significantly
diminish the data requirements for training high-performance SR models, a particularly
pertinent advantage in the medical domain, where data availability can be limited due
to privacy concerns and regulatory constraints. The proposed DRFDCAN model stands
as a significant advancement in medical SR, but fully harnessing its potential will require
navigating the complex interplay of technical limitations, ethical considerations, and emerg-
ing research directions. Future work should focus on expanding the generalizability and
robustness of the model, exploring the ethical landscape of artificial intelligence in health-
care, and ensuring compliance with evolving regulatory standards. The insights from our
study thus not only pave the way for the next generation of SR models but also establish a
comprehensive roadmap for the responsible and effective integration of these technologies
into medical diagnostics.

The evolution of SR, as showcased by our work, signifies a paradigm shift towards
models like DRFDCAN. These models prioritize both computational efficiency and un-
paralleled image reconstruction, which is particularly pivotal in the medical field, where
diagnostic accuracy hinges on image clarity. The insights gleaned from our study pave the
way for future research, emphasizing the importance of balancing the trifecta of speed, accu-
racy, and computational demands in the ever-evolving realm of medical super-resolution.

6. Discussion

The development and application of the DRFDCAN holds promise for future diagnos-
tic facilities through several significant outcomes. Firstly, the model’s ability to enhance
image clarity could revolutionize the precision of diagnostics. This clarity allows for the
detection of minute pathological details, which is critical in diagnosing diseases at an early
stage when they are most treatable. Moreover, the computational efficiency of DRFDCAN
could enable its integration into diagnostic workflows without the need for extensive
hardware upgrades. Such efficiency supports the use of SR in a broader range of clinical
settings, including those with limited resources. The ability to process images quickly
also means that results can be obtained faster, which is crucial in acute medical situations
where time is of the essence. If DRFDCAN proves to be adaptable to different imaging
modalities, it would be a significant boon, offering a unified SR solution across diverse
diagnostic platforms. This flexibility would ensure that high-resolution imaging is not
a specialized service but a standard offering, improving diagnostic services across the
board. Furthermore, in imaging modalities where radiation is a concern, DRFDCAN could
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contribute to patient safety. By allowing for lower radiation doses while still maintaining
image quality, the model can help in minimizing the risk associated with repeated exposure.

The proposed model’s prowess in image reconstruction is highlighted by its superior
PSNR values, which surpass those of established models such as SRCNN [? ], RFDN,
RDST [? ], RFAFN [? ], IMDN [? ], and LCRCA [? ]. For instance, SRCNN [? ], an earlier
convolutional-neural-network-based model, lags significantly, with a PSNR difference
of 1.96 dB compared with the proposed model. This considerable gap underscores the
advancements made by the proposed model in producing high-fidelity images. Similar
patterns emerge with the SSIM metric, where the proposed model maintains a lead with an
impressive 91.56%, indicating its exceptional capability to preserve the structural integrity
and texture of the enhanced images. This is particularly noteworthy in comparison to
RFAFN [? ], which exhibits an SSIM of 83.01%, pointing to potential compromises in struc-
tural fidelity. From a computational resource standpoint, the proposed model demonstrates
a remarkable efficiency. It consumes only 630 M of memory, which is significantly less than
the SRCNN [? ] hefty 2387.93 M. This makes the proposed model not only more suitable for
environments with limited hardware capabilities but also aligns with the increasing need
for energy-efficient AI models, thereby contributing to sustainable computing practices
in healthcare. The ability of the DRFDCAN to maintain its performance across various
planes and types of images speaks to its robustness and potential for widespread clinical
application. As medical imaging technology evolves, such an SR tool could become integral
to the development of automated diagnostic systems, enhancing not only image resolution
but also facilitating the integration of artificial intelligence in diagnosis, ultimately leading
to improved patient outcomes.
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Abbreviations
Definition Abbreviation
SR Super-resolution
CNN Convolutional neural networks
RFDN Residual Feature Distillation Network
DRFDCAN Deep Residual Feature Distillation Channel Attention Network
PSNR Peak signal-to-noise ratio
MRI Magnetic Resonance Imaging
CT Computed Tomography
CAD Computer-Aided Diagnosis
HR High-resolution
LR Low-resolution
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SISR Single Image Super-Resolution
GANs Generative adversarial networks
ViTs Vision transformers
RIR Residual in residual
DRCAB Residual local feature block
ESA Enhanced Spatial Attention
RCABs Residual channel attention network block
RCAN Residual channel attention networks
LSC Long skip connections
SSC Short skip connections
CA Channel attention
RM Refinement module
SRB Shallow residual block
DM Distillation module
SSIM Structural similarity index
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