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Abstract: Humans learn from a lot of information sources to make decisions. Once this information is
learned in the brain, spatio-temporal associations are made, connecting all these sources (variables) in
space and time represented as brain connectivity. In reality, to make a decision, we usually have only
part of the information, either as a limited number of variables, limited time to make the decision,
or both. The brain functions as a spatio-temporal associative memory. Inspired by the ability of
the human brain, a brain-inspired spatio-temporal associative memory was proposed earlier that
utilized the NeuCube brain-inspired spiking neural network framework. Here we applied the STAM
framework to develop STAM for neuroimaging data, on the cases of EEG and fMRI, resulting in
STAM-EEG and STAM-fMRI. This paper showed that once a NeuCube STAM classification model
was trained on a complete spatio-temporal EEG or fMRI data, it could be recalled using only part
of the time series, or/and only part of the used variables. We evaluated both temporal and spatial
association and generalization accuracy accordingly. This was a pilot study that opens the field for
the development of classification systems on other neuroimaging data, such as longitudinal MRI
data, trained on complete data but recalled on partial data. Future research includes STAM that
will work on data, collected across different settings, in different labs and clinics, that may vary
in terms of the variables and time of data collection, along with other parameters. The proposed
STAM will be further investigated for early diagnosis and prognosis of brain conditions and for
diagnostic/prognostic marker discovery.

Keywords: spatio-temporal associative memory; STAM; neuroimaging data; spiking neural networks;
NeuCube; EEG; fMRI; neuroimage classification

1. Introduction

Memory is referred to as the brain’s ability to recall experiences or information that is
encountered or learned previously. If this information is recalled using only partial inputs,
we refer to it as Associative Memory (AM) [1,2]. There are three main types of memory in
the brain, namely sensory memory, short-term or working memory, and long-term memory,
which function in different ways. However, each of these types is manifested through brain
activities in space (areas of the brain) and time (spiking sequences), stored as connection
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weights and recalled always with only partial input information in time and space. AM in
the brain is always spatio-temporal.

Humans can learn and understand many categories and objects from spatio-temporal
stimuli by creating a spatial and temporal association between them. Inspired by the
human brain capability, AM has been introduced to the machine learning field to memorize
information and retrieve it from partial or noisy data. For example, neural network models
for associative pattern recognition were proposed by J. Hopfield [3] and B. Kosko [4]. In
2019, Haga and Fukai [5] introduced a memory system for neural networks based on an
attractor network, which is a group of connected nodes that display patterns of activity and
tend towards certain states. They applied the concept of excitatory and inhibitory nodes to
their proposed network to mimic the role of the hippocampus in balancing networks to
form new associations. The work above is related to vector-based data (e.g., static images)
and not to spatio-temporal data. None of them relate to spatio-temporal data and more
specifically, to neuroimaging (NI) data.

Spatio-temporal associative memory (STAM) is defined here as a system that is trained
for classification or prediction on all available spatio-temporal variables and data and
recalled only on part of the spatial or/and temporal components.

The idea of using a brain-inspired and brain-structured spiking neural network (SNN)
as a spatio-temporal associative memory (STAM) was first introduced in [6] as part of
the NeuCube SNN architecture, but the main concepts and definitions of STAM were
introduced in [7], where a NeuCube model, trained on complete spatio-temporal data,
creating spatio-temporal patterns in its connections, was recalled when only partial spatial-
or/and temporal information was provided as inputs.

In this paper, we introduced a general model of STAM for the classification of Neu-
roimaging (NI) data and then applied it for the development of STAMs on EEG and fMRI
spatio-temporal data. The paper is organized as follows. Section 2 presents the back-
ground concepts of spiking neural networks (SNN), NeuCube, and STAM on NeuCube [7].
Section 3 presents a STAM-NI as a general NI classification model, while Section 4 presents
a STAM-EEG model and Section 5 presents a STAM-fMRI classification model. Section 6
offers discussions about using the STAM-NI framework across bioengineering applications,
including multimodal neuroimaging data, and also what are the next challenges in the
development and the use of STAM as new AI techniques for the future.

2. SNN, the NeuCube Framework, and the STAM on the NeuCube Concept
2.1. Spiking Neural Networks (SNN)

Spiking neural networks (SNN) are biologically inspired ANNs where information
is represented as binary events (spikes), similar to the event potentials in the brain, and
learning is also inspired by principles in the brain. SNNs are also universal computational
mechanisms [8,9]. Learning in SNN relates to changes in connection weights between two
spatially located spiking neurons over time (Figure 1) so that both “time” and “space” are
learned in the spatially distributed connections.

A well-known unsupervised learning paradigm inspired by the Hebbian learning
principle is spike-time dependent plasticity (STDP) [8], in which the synaptic weights
are adjusted based on the temporal order of the incoming spike (pre-synaptic) and the
output spike (post-synaptic). STDP is expressed in Equation (1), where τ+ and τ− are time
parameters and A+ and A− refer to temporal synaptic adjustment.

W
(
tpre − tpost

)
=

A+ exp
(

tpre−tpost
τ+

)
i f tpre < tpost,

A− exp
(
− tpre−tpost

τ−

)
i f tpre > tpost,

(1)

Many computational models and architectures have been developed with the use of
SNN (see for a review [9]). One of them, NeuCube [6,10,11] has been used for the proposed
STAM-NeuCube model and also for the STAM-NI, STAM-EEG, and STAM-fMRI models
developed here.
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Figure 1. Learning in SNN relates to changes in the connection weights between two spatially located
spiking neurons over time so that both “time” and “space” are learned in the spatially distributed
connections (http://en.m.wikipedia.org/wiki/neuron, accessed on 13 November 2023).

2.2. The NeuCube Framework

The NeuCube architecture is depicted in Figure 2 [6]. It consisted of the following
functional modules:

• Input data encoding module.
• 3D SNN reservoir module (SNNcube) that is designed according a spatial brain

template [12–14].
• Output function (classification) module, such as deSNN [11].
• Gene regulatory network (GRN) module (optional).
• Parameter optimization module (optional).
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Figure 2. The NeuCube brain-inspired SNN architecture (from [6], (©Elsevier, reproduced with
permission from Kasabov, N., NeuCube: A spiking neural network architecture for mapping, learning
and understanding of spatio-temporal brain data, Neural Networks, vol. 52, 2014)).

2.3. The STAM on NeuCube Concept

The main thrust of the proposed [7] STAM on NeuCube concept is that, since a
SNNcube learns functional pathways of spiking activities represented as structural path-
ways of connections when only a small initial part of input data is entered, the SNN will
‘synfire’ and ‘chain-fire’ learned connection pathways [15] to reproduce learned functional
pathways as polychronisation of neuronal clusters [16]. Some studies defined the state

http://en.m.wikipedia.org/wiki/neuron
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of a SNN as a dynamic chaotic attractor [17] that can be reached with the partial input
information. In [18,19] polychronous neuronal groups are studied that are activated from
partial inputs.

Spatio-temporal input data was first encoded into spike sequences and then spatio-
temporal patterns of these sequences were learned in a SNNcube of the NeuCube frame-
work that was structured according to a spatial template representing spatial information
of the modeled data. For brain data, templates such as Talairach [12], MNI [13], per-
sonal MRI [14], etc., can be used. For multisensory streaming data modeling, the location
of the sensors is used [9]. Connections are created and strengthened in the SNNcube
through STDP learning. Once data is learned, the SNNcube retains the connections as a
long-term memory.

To validate a STAM model, several types of accuracy tests were introduced in [7]:

• Temporal association accuracy: validating the full model on partial temporal data of
the same variables.

• Spatial association accuracy: validation of the full model on full or partial temporal
data, but on a subset of variables.

• Temporal generalization accuracy: validation of the full model on partial temporal
data of the same variables or a subset of them, but on a new data set.

• Spatial generalization accuracy: validation of the full model on full or partial temporal
data and a subset of variables, using a new data set.

Based on the general STAM-NeuCube concept, here we developed a specific STAM
for NI data, called STAM-NI and then applied it for the development of STAM-EEG and
STAM-fMRI, demonstrated on case study NI data.

3. The Proposed STAM-NI Classification Model and Its Mathematical Description

Spatio-temporal NI data are collected from specific brain locations over time. It is
important to incorporate both the spatial and temporal information from the NI data across
all measured variables over time in order to capture a meaningful pattern from the data in
a computational model.

SNN and the brain-inspired NeuCube architecture have proved to be efficient in
learning spatio-temporal NI data and capturing meaningful spatio-temporal patterns from
the data [9]. The challenge now is how to utilize this feature for the development of STAM
for the classification of NI data.

The following procedures and mathematical equations describe the proposed STAM-
NI classification framework:

(1) Spatial information from the NI data, e.g., 3D location of electrodes, was used to
structure a SNNcube and to define the locations of the input neurons to map the NI
variables. Suitable brain templates were used for this purpose [12–14].

(2) Every spatio-temporal NI sequence, measured as a variable Vi, was encoded into a
spike sequence using some of the existing methods [9]. This is illustrated in Figure 3.

(3) The encoded sequences of all NI variables V were used to train a SNNcube in unsu-
pervised mode using the STDP rule (Equation (1)), creating a connectionist structure.
Before training, the SNNcube was initialized with the use of the small-world con-
nectivity model, where neuron a was connected to other neuron b with a probability
Pa,b that depended on the closeness of the two neurons. The closer they are (the
smaller the distance between them Da,b), the higher the probability of connecting them
(Equation (2)).

pa,b = C × e−D2
a,b/λ2

(2)

λ is a parameter.
(4) The trained SNNcube was recalled (activated) by all NI spatio-temporal data samples,

one by one, using all variables as in step 3. For every sample Pi, a state Si of the
SNNcube was defined during the propagation of the input sequence. The state Si was
defined as a sequence of activated neurons Ni1, Ni2, . . ., Nil over time, that was used
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to train a deSNN classifier in a supervised mode [11], forming an l-element vector
Wi of connection weights of an output neuron Oi assigned to the class of the input
sequence Pi. For the supervised learning in the deSNN classifier, Equations (3) and (4)
were used:

Wj,i = α Modorder(j,i) (3)

∆Wj,i (t) = ej(t) D (4)

where Mod is a modulation factor defining the importance of the order of the spike
arriving at a synapse j of output neuron Oi, ej(t) = 1 if there is a consecutive spike at
synapse j at time t during the presentation of the learned pattern by the output neuron
I, and (−1) otherwise. In general, the drift parameter D can be different for ‘up’ and
‘down’ drifts, and α is a parameter.

(5) When a new input sequence Pnew is presented, either as a full sequence in time and/or
space (number of input variables) or as a partial one for STAM, a new SNNcube state
Snew was learned as a new output neuron Onew. Its weight vector Wnew is compared
with the weight vectors of the existing output neurons for classification tasks using
the k-nearest neighbor method. The new sample Pnew was classified based on the
pre-defined output classes of the closest, according to the Euclidean distance, output
weight vectors Wi (Equation (5)).

Class (Pnew) = Class (Pi), if |Wnew − Wi| < |Wnew − Wk|, (5)

for all output neurons Ok.
(6) The temporal and spatial association and generalization accuracy were calculated.
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4. The Proposed STAM-EEG Classification Method and Experimental Case Study
4.1. The Proposed STAM-EEG Classification Method

i. Defining the spatial and temporal components of the EEG data for the classification
task, e.g., EEG channels and EEG time series data.

ii. Designing a SNNcube that is structured according to a brain template suitable for the
EEG data (e.g., Talairach, or MNI, etc.).
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iii. Defining the mapping in the input EEG channels into the SNNcube 3D structure (see
Figure 4a as an example of mapping 14 EEG channels in a Talairach-structured SNNcube).

iv. Encoding data and training a NeuCube model to classify complete spatio-temporal
EEG data, having K EEG channels measured over a full-time T.

v. Analyse the model through cluster analysis, spiking activity, and the EEG channel
spiking proportional diagram (see for example Figure 4b,c).

vi. Recall the STAM-EEG model on the same data and same variables but measured over
time T1 < T to calculate the classification temporal association accuracy.

vii. Recall the STAM-EEG model on K1 < K EEG channels to evaluate the classification
spatial association accuracy.

viii. Recall the model on the same variables, measured over time T or T1 < T on new data
to calculate the classification temporal generalization accuracy.

ix. Recall the NeuCube model on K1 < K EEG channels to evaluate the classification
spatial generalization accuracy using a new EEG dataset.

x. Evaluate the K1 EEG channels as potential classification EEG biomarkers for an early
diagnosis or prognosis according to the problem at hand.

4.2. Experimental Results

The experimental EEG data consisted of 60 recordings of 14 EEG channels of a subject
who was moving a wrist: up (class 1), straight (class 2), and down (class 3). The data
included 20 samples for each class, each sample measured at 128 time points used to
discretize 1000 ms signal. First, a full NeuCube STAM-EEG classification model was
trained on all 60 samples and 14 variables. The parameter settings of the STAM-EEG
NeuCube model are shown in Table 1 (for explanation, see [6,11]).

Table 1. STAM-EEG Parameter Settings of a NeuCube model.

Dataset Information Encoding Method
and Parameters NeuCube Model STDP Parameters deSNNs Classifier

Parameters

sample number: 60,
feature number: 14

channels,
time length: 128,
class number: 3.

encoding method:
Step Forward (SF)

spike threshold: 0.5,
window size: 5,
filter type: SS.

number of neurons: 1471,
brain template: Talairach,

neuron model: LIF.

potential leak rate: 0.002,
STDP rate: 0.01, firing
threshold: 0.5, training

iteration: 1, refractory time:
6, LDC probability: 0.

mod: 0.8,
drift: 0.005,

K: 1,
sigma: 1.
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formations. (c) (Left): The size of the segments represents the spiking activity of the corresponding
input neuron to an EEG channel; the largest the section, the higher the impact this channel has on the
model; (Right): EEG electrode layout.

Parameter values of a NeuCube model influence a great deal the performance of the
model. There are several ways to deal with this problem. If there is domain knowledge
related to the data and the problem in hand, that would instruct some of the parameter
values, that will be a first step. Different combinations of the values of other parameters
can be experimented with using either a Grid search or evolutionary computation methods,
with an objective function to reduce the classification error [9]. The parameter values in
Table 1 are default parameters for a NeuCube model with the single aim to demonstrate
the methods and they can be further optimized.

The fully trained NeuCube STAM-EEG classification model was first analyzed for
connectivity and neuronal spiking activity (Figure 4a–c) and then tested for different
accuracies (Tables 2–5), also using a newly introduced here Retained Memory Accuracy
(RMA), calculated using Equation (6) below:

RMA =
Ar
A f

(6)



Bioengineering 2023, 10, 1341 8 of 17

where Af is the classification accuracy of the full STAM model, and Ar is the retained
accuracy of the model, validated received association or generalization on shorter time
windows of data or less number of variables.

Table 2. Temporal association accuracy of the STAM-EEG model from Figure 4a–c.

Time T1 (% of the
Full Time for

Training)

Number of Input
Variables

Training/Validation
% of Data
Samples

Temporal
Association

Accuracy
RMA

100% (full) 14 (100%) 100/100 100% 1

95% 14 (100%) 100/100 100% 1

90% 14 (100%) 100/100 98% 0.98

80% 14 (100%) 100/100 95% 0.95

Table 3. Temporal generalization accuracy of the STAM-EEG model from Figure 4a–c.

Time T1 (% of
the Full Time)

Number of Input
Variables Used

Training/Validation
% of Data Samples

Temporal
Generalization

Accuracy
RMA

100% (full) 14 (100%) 50/50 80% 1

95% 14 (100%) 50/50 80% 1

90% 14 (100%) 50/50 76% 0.95

Table 4. Spatial association accuracy of the STAM-EEG model from Figure 4a–c when feature T7
was removed.

Time T1 (% of
the Full Time)

Number of Input
Variables

Training/Validation
% of Data
Samples

Spatial
Association

Accuracy
RMA

100% (full) 14 (100%) 100/100 100% 1

100% (full) 13 (93%) 100/100 100% 1

95% 13 (93%) 100/100 100% 1

90% 13 (93%) 100/100 86% 0.86

Table 5. Spatial generalization accuracy of the STAM-EEG model from Figure 4a–c when feature T7
was removed.

Time T1 (% of
the full time)

Number of
Input Variables

Training/Validation
% of Data Samples

Temporal
Association

Accuracy
RMA

100% (full) 14 (100%) 50/50 80% 1

100% (full) 13 (93%) 50/50 100% 1

95% 13 (93%) 50/50 80% 1

90% 13 (93%) 50/50 76% 0.95

Table 2 tested the temporal association classification accuracy of the model. Table 3
shows the temporal generalization accuracy when 50% of the data was used for training the
full model and 50% for validation. It showed that RMA = 1 when the model was validated
on T1 time of 95% and RMA = 0.95 for 80% of the time of the data used. Similar experiments
are shown in Tables 4 and 5 for evaluating the spatial association and generalization
accuracy of the model correspondingly. When one of the input variables (T7, ranked lowest



Bioengineering 2023, 10, 1341 9 of 17

according to Figure 4c) was removed when the model was validated, the RMA was still
very high.

The proposed STAM-EEG classification method is illustrated here on a simple EEG
problem, but its applicability is much wider across various studies involving EEG or ECoG
data. A large STAM-EEG model can be developed for a particular problem. This model
can be validated for its temporal and spatial association and generalization accuracy on a
particular subset of EEG channels, measured at shorter times. If the validation accuracies
are acceptable, then the model can be successfully used on smaller EEG data. This method
can be used for the early detection of brain events in an online mode, using only a shorter
time of activity of a small number of channels. Further applicability of the proposed
STAM-EEG classification method is discussed in Section 6.

5. STAM-fMRI for Classification
5.1. The Proposed STAM-fMRI Classification Method

i. Defining the spatial and temporal components of the fMRI data for the classification
task, e.g., fMRI voxels and the time series measurement.

ii. Designing a SNNcube that is structured according to a brain template suitable for
the fMRI data. This could be a direct mapping of the fMRI voxel coordinates or
transforming the voxel coordinates from the fMRI image to another template, such as
Talairach, MNI, etc. [20] (Figure 5a).

iii. Selecting voxel features/variables K from the full set of voxels (Figure 5b) and defining
their mapping as input neurons in the 3D SNNcube. (Figure 5c).

iv. Encode data and train a NeuCube model to classify a complete spatio-temporal fMRI
data, having K variables as inputs measured over time T.

v. Analyse the model through connectivity and spiking activity analysis around the
input voxels (Table 3).

vi. Recall the STAM-fMRI model on the same data and same variables but measured over
time T1 < T to calculate the classification temporal association accuracy.

vii. Recall the STAM-fMRI on K1 < K EEG channels to evaluate the classification spatial
association accuracy.

viii. Recall the model on the same variables, measured over time T or T1 < T on new data
to calculate the classification temporal generalization accuracy.

ix. Recall the NeuCube model on K1 < K variables to evaluate the classification spatial
generalization accuracy using a new fMRI dataset.

x. wRank and evaluate the K1 fMRI features/variables as potential classification biomark-
ers (Section 5.5).

5.2. STAM-fMRI for Classification of Experimental fMRI Data

The experimental fMRI data set used here was originally collected by Marcel Just
and his colleagues at Carnegie Mellon University’s Center for Cognitive Brain Imaging
(CCBI) [21]. The fMRI recorded 5062 voxels from the whole brain volume while a subject
was performing a cognitive reading task. There were two categories of sentences (affir-
mative and negative), each remaining on the screen for 8 s corresponding to 16 measured
brain images. There were a total number of 40 sentences.

A full STAM-fMRI model was developed for the classification of fMRI samples into
two classes (class 1: affirmative sentence and class 2: negative sentence). Signal to noise
ratio (SNR) feature selection method was applied to the fMRI data to select vital fMRI
variables with a high power of discrimination between the defined classes. As shown
in Figure 5b, we selected 20 top important voxels that had SNR values higher than the
0.4 threshold. These 20 fMRI features are used as input variables to train the STAM-fMRI
model for classification.
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Figure 5. (a) Mapping of the 5062 fMRI voxels into a 3D SNN model of the NeuCube framework;
(b) selecting top-20 voxels as input variables using SNR ranking (on the y-axis) of top voxels (on the
x-axis) related to the affirmative versus negative sentences. The top features are selected according to
their SNR values that were greater than a threshold = 0.4. (c) a full STAM-fMRI model implemented
in NeuCube trained and tested on 100% of the data using all 20 features; (d) its training accuracy is
100%, but the validation association and generalization accuracies are further tested below.

Figure 5a shows how 5062 voxel coordinates were mapped into a 3-dimensional
SNNcube. Table 6 shows the brain region of interest (RoI) associated with these top-20
selected fMRI features and the evolved connectivity in the 3D SNN STAM model around
the input features, as follows: LT (3), LOPER (3), LIPL (1), LDLPFC (6), RT (2), CALC (1),
LSGA (1), RDLPFC (1), RSGA (1), RIT (1). The full names of the areas are: left temporal
lobe (LT); left opercularis (LOPER); left inferior parietal lobule (LIPL); left dorsolateral
prefrontal cortex (LDLPFC) and right dorsolateral prefrontal cortex (RDLPFC); calcarine
sulcus (CALC); right supramarginal gyrus (RSGA).

Table 6. The level of the evolved connectivity of each input feature neuron, representing a local brain
area when a person is reading a negative (Neg) vs. affirmative (Aff) sentence can be used for feature
selection and bio-marker discovery; the higher the value, the more important the input feature is.

Area LT LOPER LIPL LOPER LDLPFC LOPER LT LDLPFC RT CALC

N
eg 1.4 0.92 1.87 1.03 2.08 1.12 1.48 0.44 0.2 0.89

A
ff 0.9 0.56 1.01 0.87 1.03 0.65 0.89 0.23 0.1 0.43

area LSGA LDLPFC LT LDLPFC RT LDLPFC LDLPFC RDLPFC RSGA RIT Avg

N
eg 1.84 1.03 1.9 0.45 1.1 1.26 0.56 0.19 0.43 1.4 1.7

A
ff 1.04 0.68 1.1 0.17 0.8 0.24 0.22 0.11 0.32 0.9 0.6
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The training classification accuracy of the full STAM-EEG classification model was
100% (Figure 5c,d) and the associative temporal and spatial testing accuracy of the model
was further tested and presented below.

Figure 6a presents three snapshots of deep learning of eight-second fMRI data in a
SNNcube when a subject was reading a negative sentence (time in seconds). Figure 6b
captures the internal structural pattern, represented as spatio-temporal connectivity in the
SNN model trained with eight-second fMRI data streams. The corresponding functional
pattern is illustrated in Figure 6c as a sequence of spiking activity of clusters of neurons in
a trained SNNcube. The internal functional dimensionality of the SNN model shows that
while the subject was reading a negative sentence, the activated cognitive functions were
initiated from the Spatial Visual Processing function. Then it was followed by the Executive
functions, including decision-making and working memory. From there, the Logical and
Emotional Attention functions were involved. Finally, the Emotional Memory formation
and Perception functions were evoked.
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Figure 6. (a) Three snapshots of learning of 8-s fMRI data in a STAM-fMRI model when a subject is
reading a negative sentence (time in seconds); Positive connections are colored in blue and negative
connections in red. (b) Internal structural pattern represented as spatio-temporal connectivity in the
SNN model trained with 8-s fMRI data stream; (c) A functional pattern represented as a sequence of
spiking activity of clusters of spiking neurons in a trained SNN model. The arrows show the order of
activation of different spatially distributed neuronal areas after fMRI data is presented to an already
trained SNNcube.

5.3. The Full STAM-fMRI Classification Model Is Recalled on Partial Temporal fMRI Data

Here the trained full STAM-fMRI model in Section 5.2 was recalled on 70% and 50%
of the time length of the same data used for the training (Figure 7).

The classification temporal association accuracy for both experiments was 100%. Using
less than 50% of the time series resulted in an accuracy of less than 100%.

5.4. Testing the Full STAM-fMRI Model on a Smaller Portion of the Spatial Information (a Smaller
Number of fMRI Variables/Features)

Here, the STAM-fMRI model from Section 5.2, trained on 20 features, was validated
only on 18 of them, by removing the last two from the SNR ranking (Figure 5b). The spatial
classification association accuracy was again 100% (Figure 8). The accuracy decreases when
less than 18 input variables are used.
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Figure 7. Parameters for spike encoding and validation of the STAM-fMRI model from Section 5.2.
Left panel: For validation, only 70% (0.7) from the initial time points of the fMRI samples, equaled
to 5.6-s data, are used, rather than using 8 s of the data for training the full model. Right panel:
The model is tested/validated only on 50% of the temporal length (4 s) of the training data. The
classification temporal association accuracy for both experiments is 100%. Using less than 50% of the
time series results in an accuracy of less than 100%.
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5.5. Potential Bio-Marker Discovery from the STAM-fMRI

A fully trained STAM-fMRI classification model can be analyzed in terms of the most
activated brain regions related to reading affirmative and negative sentences. Figure 9
shows the distribution of the average connection weights around the input features lo-
cated in the left and right hemispheres of the trained SNN models related to reading
different sentences.
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Figure 9. Distribution of the average connection weights around the input voxels located in the
left and right hemispheres of the trained SNN models related to negative sentences (in (a)) and
affirmative sentences (in (b)). The dominant voxels for the discrimination of the negative from the
affirmative sentences are LDLPFC, LIPL, LT, and LSGA.

5.6. STAM for Longitudinal MRI Neuroimaging

STAM systems can be developed also for longitudinal MRI data (STAM-longMRI),
such as the one used in [22], where 6 years of MRI data has been modeled to predict
dementia and AD in 2 and 4 years ahead from a large cohort of data. A STAM-longMRI
system can be trained on the full length of longitudinal MRI data and used to be recalled in
a shorter time for early prediction of future events.

6. Discussions, Conclusions, and Directions for Further Research
6.1. Potential Applications of the Proposed STAM-NI Classification Methods

The potential applications of the STAM-NI classification methods proposed here
become evident in various fields, including post-stroke recovery prediction, early diagnosis,
and prognosis of mild cognitive impairment (MCI) and Alzheimer’s disease (AD), as well
as depression and other mental health conditions. These applications can be NI techniques
such as EEG and fMRI to analyze spatio-temporal patterns of brain activity and make
accurate and early predictions or classifications.

One notable application is in post-stroke recovery prediction. By training a STAM
model on NI data collected from stroke patients, the model can learn the spatio-temporal
patterns associated with successful recovery. Subsequently, the model can be recalled using
only partial NI variables or time points to predict the recovery trajectory of the same patient
or a new stroke patient. This capability can assist clinicians in personalized treatment
planning and rehabilitation strategies [23,24].

Another application lies in the early diagnosis and prognosis of MCI and Alzheimer’s
disease. By training a STAM model on longitudinal NI data, such as EEG and fMRI
recordings, from individuals with and without MCI/AD, the model can learn the complex
spatio-temporal patterns indicative of disease progression. The model can then be utilized
to classify new individuals based on their NI data, enabling early detection and intervention
for improved patient outcomes [25,26].

Depression is another mental health condition that can benefit from the STAM frame-
work. By training a STAM-NI model on NI data, such as resting-state fMRI, from indi-
viduals with depression, it can capture the spatio-temporal associations related to the
disorder. This trained model can subsequently be used to classify new individuals as either
depressed or non-depressed based on their NI data, aiding in early diagnosis and treatment
planning [27].

Furthermore, the STAM systems hold potential for applications in neurodevelopmental
disorders, such as autism spectrum disorder (ASD). By training a STAM model on EEG
data, it can identify distinctive spatio-temporal patterns associated with ASD, contributing
to early diagnosis and intervention [28]. Similarly, the framework can be applied to
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investigate brain disorders related to aging, such as Parkinson’s disease or age-related
cognitive decline [29].

By incorporating multimodal spatio-temporal data, including clinical, genetic, cogni-
tive, and demographic information, during the training phase, a STAM model can enable
comprehensive analyses. This integration of multiple modalities aims to enhance the
model’s ability to make accurate predictions or classifications, even when only a subset of
the modalities is available for recall. Such a capability can provide valuable insights for
personalized medicine, treatment planning, and patient management [30].

One challenge in the STAM system design is how it can effectively associate different
data modalities during learning, enabling successful recall even when only one modality is
available. For instance, can a STAM model learn brain data from synesthetic subjects who
experience auditory sensations when they see colors? Addressing this challenge requires
leveraging prior knowledge about brain structural and functional pathways, as well as
stimuli data and corresponding spatio-temporal data from subjects. Current understanding
of structural connectivity and functional pathways during perception can be utilized to
initialize the connectivity of the SNN Cube before training [31–33].

Another open question pertains to how sound, image, and brain response data
(e.g., EEG, fMRI) can be inputted as associated spatio-temporal patterns into dedicated
groups of neurons. This concept aligns with the principles employed in neuroprosthetics,
where stimulus signals are delivered to specific brain regions to compensate for damage,
effectively “skipping” damaged areas [34,35]. Experiments conducted using the STAM-NI
framework have the potential to provide insights and ideas for the development of new
types of neuroprosthetics that leverage spatio-temporal associations in neural activity.

Wider applications of the proposed STAM models can be anticipated, such as predict-
ing air pollution [36] with the use of neuromorphic hardware [37–40].

6.2. Future Development and Challenges of the STAM-NI Methods

STAM-NI methods can be developed in the future to address the following challenges:

- Developing new functions in the NeuCube SNN, enabling a better STAM system
design that are inspired by neurogenetic [41] and brain cognition [42–44] and
also enhancing already existing SNN models for transfer learning and knowledge
discovery [45–47].

- Normalizing or/and harmonizing NI data across various data sources [48]. Establish-
ing an effective “mapping” between training variables and synchronized time units
will be crucial.

- Implementation of STAM models on neuromorphic microchips, consuming much less
energy and being implantable for online adaptive learning and control [37–40,49]. The
choice of a hardware platform for the implementation of a practical STAM system
would depend on the specific task requirements.

- STAM-NI, which works under different temporal conditions, e.g., with data collected
at varying intervals. At present the same time unit is used for training and for
(e.g., milliseconds, seconds, etc.). If the recall data is measured in different time
intervals, we can apply interpolation between the data points so that they will match
the training temporal units. Such data interpolation has been successfully used in
brain data analysis using the NeuCube SNN [22].

- STAM-NI, for different spatial settings. At this stage, we have explored the model
when data for training and recall are in the same spatial setting and same context. We
can explore further the ability of the model for incremental learning of new variables,
that can be mapped spatially. In this case, the network of connections in the 3D SNN
will form new clusters that connect spatially the new variables and may also develop
links with the “old” variables.

- STAM-NI, which accounts for the variability of the variables themselves. In real-world
scenarios, variables may have different characteristics, and their relationships may
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evolve. We will consider how a STAM framework performs with diverse types of
variables, including those with different temporal dynamics and spatial distributions.

- In conclusion, the proposed STAM-NI classification framework and its specific models
STAM-EEG and STAM-fMRI are not aimed to substitute existing methods and systems
for NI data analyses. Rather, they are extending their functionality for better NI data
modeling, data understanding, and early event diagnosis and prognosis.
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