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Abstract: Microbial cell factories offer an eco-friendly alternative for transforming raw materials into
commercially valuable products because of their reduced carbon impact compared to conventional
industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and
hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon
allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation
while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2

during the biosynthesis of regular metabolic necessities. This loss lowers the production yield
and compromises the benefit of reducing greenhouse gas emissions—a fundamental advantage of
biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere,
industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for
biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main
strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches
to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield
and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical
conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol,
and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6

sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a
feedstock for future biomanufacturing of fuels and chemicals are also discussed.

Keywords: metabolic engineering; CO2 fixation; feedstock; biomanufacturing; electrochemical
catalysis; microbial electrosynthesis

1. Introduction

Carbon emission to our ecosystem and its accumulation in its highly oxidized state,
carbon dioxide (CO2), are the primary contributing factors to global climate change [1].
Since the 1960s, the total CO2 emissions have rapidly increased, with a net annual escalation
rate of 2.11% in recent years [2]. The push for carbon neutrality necessitates reimagining
our feedstock sources. Over 90% of our chemicals and fuels are manufactured from fossil
feedstocks, driving the need to transition toward a more circular industry model. G20
economies have implemented carbon emission taxes ranging from $3 to $60 per ton to
incentivize CO2 capture from industrial processes [3]. The cost of carbon capture varies
based on the CO2 source [4]. This suggests that, in some countries, obtaining CO2 at zero
cost may be possible. Therefore, exploring the potential of capturing and utilizing CO2 is
essential to mitigate the global warming challenge.

Photosynthesis is the natural way to capture CO2 from the atmosphere and fix it into
sugars or carbohydrates, which can then be used as the feedstocks for microbial cells to
produce fuels and chemicals by green plants and algae. Therefore, biomanufacturing is con-
sidered more sustainable than chemical manufacturing with petroleum-based feedstocks.
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However, the production of biomass through the photosynthesis process still suffers the
challenge of high-cost processing and low-energy efficiency [5]. While photosynthesis is a
marvel of nature, its energy efficiency seldom surpasses 3%, constraining its industrial ap-
plicability. Moreover, using agricultural crops to provide feedstocks for biomanufacturing
poses a sustainability challenge as it hinders food production and threatens biodiversity
when natural areas are used for agricultural purposes.

Sugars such as glucose are the most widely used substrate for biomanufacturing in
laboratory and industrial settings for historical and practical reasons. However, employ-
ing glucose may repress gene expression and specific biosynthetic pathways for certain
biomanufacturing products. In most cases, glucose may also cause several limitations in
cell metabolism, resulting in carbon loss as CO2 [6]. This is particularly noticeable when
the product of interest requires long synthetic routes from the starting carbon source when
it has chemical properties distinct from the substrate or when unfavorable substrates are
used, ultimately leading to low product yield [7].

Despite the predominant dependence of current industrial biomanufacturing pro-
cesses on carbon-intensive carbohydrate substrates, including the C5/C6 sugars such as
xylose and glucose derived from cellulosic biomass, it is worth acknowledging that the
feedstock and raw materials significantly contribute to the overall cost of biomanufactur-
ing [8]. Reducing the cost can be achieved by using more economical raw materials and
designing new microbial cell factories that can efficiently utilize alternative feedstocks.
Some microorganisms exhibit the inherent capability or possess the potential to metab-
olize C1 and C2 substrates [9]. These C1 substrates, comprising CO2, carbon monoxide
(CO), methane (CH4), methanol (CH3OH), and formate (CHOO−) [10], and C2 substrates,
comprising mainly ethanol and acetate [11], hold the gains of being inexpensive, naturally
abundant, and straightforward manufacturing along with their abundant availability as
by-products and industrial wastes [9]. Owing to the worldwide attention to continuous
conversion of greenhouse gases, specifically CO2 [12] to recover its diminished economic
worth, scientists have a special interest in designing innovative CO2 fixation methods with
microbial entities, thereby assisting them in the synthesis of crucial substrate precursors (C1
and C2 chemicals) having the inherent capability to serve as biomanufacturing substrate in
numerous processes [13,14].

However, the utilization of CO2-derived C1/C2 chemicals for biomanufacturing is chal-
lenged by the inefficiency of conversion into desired bioproducts by native microorganisms,
resulting in relatively lower productivity, limited energy availability, and deprived carbon
yield, as compared with the utilization of C5/C6 sugars [14]. To address the associated
challenges, major efforts have been made in the field of synthetic biology and metabolic
engineering to evolve both natural microbes [15] and/or heterologous microorganisms
by engineering the pathways or enzymes to improve their C1 and C2 substrate-utilizing
capabilities [14,16–19]. Such interventions may range from enhancing native pathways to
integrating entirely novel ones crafted from a deep understanding of metabolic networks
and enzymology to improve carbon-fixation efficiency [19].

Furthermore, as we delve into microbial fermentation for carbon fixation, we stumble
upon its nuanced challenges. One of the pivotal concerns is the significant carbon loss,
especially in the format of CO2 during microbial fermentation [20,21], which comprises
the advantageous of using biomanufacturing as one of the major efforts in reducing green-
house gas emission [22]. Therefore, recycling the exhausted CO2 back to the microbial
fermentation process is also critical to the success of biomanufacturing.

This review aims to investigate the perspectives for using CO2 as a feedstock for
biomanufacturing. First, the one-step strategy is discussed, which uses novel metabolic
pathway design in microbes and engineering approaches to directly fix CO2 and convert
it into desired fermentation products. Due to the limitation of the efficiency of one-step
CO2 fixation, we further discuss the two-step strategy, which aims to integrate a first
electrochemical fixation of CO2 into C1/C2 products such as formate, methanol, acetate,
and ethanol and a second fermentation unit co-fed with the original C5/C6 sugars and
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the CO2-derived C1/C2 chemicals. The great potentials and challenges of using CO2 as
a feedstock for future biomanufacturing of various fermentation products are discussed.
Figure 1 shows an overview of the CO2 conversion approaches and the uses of CO2-derived
C1/C2 chemicals for biomanufacturing of common products is shown.
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Figure 1. An overview of the CO2 conversion approaches and using CO2-derived C1/C2 chemicals
for biomanufacturing of common products. Energy conversion and sources used in the conversion
are summarized on the left. After CO2 is converted from inorganic to organic carbon substrates,
various valuable chemicals can be biomanufactured through natural and synthetic microorganisms.
The figure was generated using Biorender.

2. State of the Art of Current Technologies

The conversion of CO2 into value-added chemicals using microbes as biocatalysts
is an exciting field of research with the potential to revolutionize biomanufacturing pro-
cesses [23]. For using CO2 as the feedstock for biomanufacturing, both one-step and
two-step strategies can be applied. Table 1 summarizes the general strategies for fixation of
CO2 for biomanufacturing. The one-step strategy uses the native or engineered pathways to
directly fix CO2 and convert it into desired fermentation products, typically with multiple
carbons. Since CO2 has the lowest energy format, producing high-value chemicals with a
higher energy format requires extra energy; this can be achieved by either plants, algae,
or cyanobacteria via a photosynthesis process that uses light as the energy source or other
microorganisms with cofeeding higher energy-intensive chemicals such as hydrogen gas.
The two-step strategy uses a hybrid electrochemical and biochemical conversion approach
to fix CO2 and convert it to the desired fermentation products at higher yield and efficiency,
where the first step uses an electrochemical catalysis process to convert CO2 into C1/C2
chemicals, followed by a second fermentation step to further convert C1/C2 chemicals into
desired products by native or engineered microorganisms.
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Table 1. General strategies for biotechnological fixation of CO2.

Methods Major Steps and Overall Reaction of CO2 Fixation

One-step/Direct
CO2 fixation and
conversion

• Calvin–Benson–Bassham (CBB) Cycle:

3CO2 + 12 ATP→ GAP (→ 1
2 Glucose)

• Wood–Ljungdahl Pathway (WLP):

2CO2 + CoA + 4H+ + 4e− → Acetyl-CoA + 2H2O

• Reductive Glycine Pathway (rGlyP):

3CO2 + 3H2 → Pyruvate

• Reductive Tricarboxylic Acid Cycle (rTCA):

2CO2 + CoA + 2ATP→ Acetyl-CoA

• 3-Hydroxypropionate (3HP) Bicycle:

2CO2 + 2ATP→ Glyoxylate; CO2 + Glyoxylate + ATP→ Pyruvate

• 3-Hydroxypropionate/4-Hydroxybutyrate (HP/HB) Cycle:

2CO2 (HCO3
−) + CoA + 4ATP→ Acetyl-CoA

• Dicarboxylate/4-Hydroxybutyrate (DC/HB) Cycle:

2CO2 (HCO3
−) + CoA + 3ATP→ Acetyl-CoA

Two-step CO2
fixation and
conversion

Step 1 (electrochemical catalysis):
CO2 + H2O + electricity→ C1/C2 chemicals

Step 2 (biomanufacturing):
C1/C2 → biofuels and chemicals

• CO2 + 2H2O + electricity→ CH3OH + 1.5O2
• CO2 + H2O + electricity→ HCOOH + 0.5O2
• 2CO2 + 3H2O + electricity→ C2H5OH + 3O2
• 2CO2 + 2H2O + electricity→ CH3COOH + 2O2
• CO2 + electricity→ CO + 0.5O2
• CO2 + 2H2O + electricity→ CH4 +2O2

• Direct use of C1/C2:

C1/C2 → fuels/chemicals + biomass

• Cofeeding C1/C2 and C5/C6 sugars:

C1/C2 + C5/C6 sugars→ fuels/chemicals +
biomass

2.1. One-Step Strategy—Direct Conversion

Internal carbon sequestration has taken many different forms throughout history.
Even before the evolution of eukaryotic plants utilizing photosynthesis and light to con-
vert CO2 and energy from light to compose simple sugars, single-celled organisms had
already developed mechanisms to capture atmospheric CO2 and transform it into essential
compounds for the cell’s development. These primitive mechanisms, especially those in
microorganisms like Acetogens and Methanogens, have been shown to be highly efficient
in, utilizing unique proteins and metabolic pathways for carbon sequestration [1]. Fur-
thermore, microorganisms, especially microalgae and cyanobacteria, exhibit significant
advantages over higher plants in their capacity for CO2 fixation as they can yield higher
solar energy retention and the potential for year-round growth compared to their more
complex plant counterparts [24]. While microalgae are well-recognized for their CO2 fixa-
tion capabilities, bacteria present advantages that cannot be overlooked [25]. Microalgae
cultivation can be subject to biocontamination over prolonged use from fungal and bacterial
species and often run into issues pertaining to even distribution of sun exposure over larger
microalgae ponds due to their preferred growth environments, vastly limiting their ability
to be utilized on an industrial scale without major alternations to the water infrastructure
the microalgae is grown on. Bacteria and some yeasts, on the other hand, have been widely
used in biotechnology industry due to their inherent compatibility to produce chemicals
and their rapid growth rates and life cycles. Further, they are more inclined to accept
DNA during genetic modification in the form of plasmids and genomic alternations. This
ability allows bacteria and yeast to have DNA introduced into their cells of enzymes to
complete metabolic pathways previously incompletely represented in the cells and allow
production of specialized products, including bioalcohols and essential fatty acids. Through
this biotechnological approach, CO2 can be directly converted into value-added products,
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offering an advantage over traditional methods like catalytic conversion, which demand
energy-intensive conditions [23].

In this section, we will provide an overview of the one-step strategy for directly
using CO2 as the feedstock for biomanufacturing, which includes (1) natural CO2 fixation
pathways, (2) synthetic CO2 fixation pathways, (3) host selection and reducing power
required for biomanufacturing with CO2, and (4) using microbial electrosynthesis to utilize
CO2 for biomanufacturing.

2.1.1. Natural CO2 Fixation Pathways

Several pathways facilitate the assimilation of atmospheric CO2 into organic materials,
as shown in Figure 2. Among all natural CO2 fixation pathways, the Calvin–Benson–Bassham
(CBB) cycle dominates and is responsible for 90% of global CO2 uptake [26]. Additionally,
pathways such as the Wood–Ljungdahl (WLP), reductive glycine pathway (rGlyP), reductive
tricarboxylic acid (rTCA) cycle, 3-hydroxypropionate bicycle (HP), 3-hydroxypropionate/4-
hydroxybutyrate (HP/HB) cycle, and dicarboxylate/4-hydroxybutyrate (DC/HB) cycle
play significant roles in CO2 utilization [27]. These processes, predominantly in autotrophic
microorganisms, often lead to vital metabolites like pyruvate or acetyl-CoA, each with unique
energy efficiency concerning ATP consumption [28].

Common Natural CO2 Fixation Cycles

Calvin–Benson–Bassham (CBB) Cycle: The CBB cycle stands as the premier identi-
fied biological CO2 fixation route and remains the primary carbon-fixation method in nature.
Since it shares numerous metabolites and enzymes with the pentose phosphate pathway
(PP pathway), it is also called the reductive PP pathway. Found in a variety of organisms
such as plants, algae, cyanobacteria, and specific chemoautotrophic microorganisms, this
cycle fundamentally operates through the enzymatic action of ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO). While RuBisCO’s central role in the CBB cycle is un-
deniable, its efficiency is often questioned. This enzyme catalyzes the transformation of
ribulose 1,5-bisphosphate (RuBP) into 3-phosphoglycerate (3-PGA), but its efficiency is
occasionally halved due to its tendency to favor O2 during photorespiration [29]. Known
for its limited catalytic activity, RuBisCO’s O2 preference over CO2 is complicating endeav-
ors aimed at engineering it for enhanced kinetics largely due to the intricate nature of its
substrate-binding pocket [30]. However, the major efforts to enhance the cycle’s efficiency
have been focused on engineering RuBisCO. For instance, a heterologous cyanobacterial
RuBisCO was successfully overexpressed in Ralstonia eutropha (Cupriavidus necator), bolster-
ing autotrophic growth and CO2 fixation capabilities [31]. Furthermore, a comprehensive
in vitro examination of 143 RuBisCO enzyme activities unveiled a promising type-II Ru-
BisCO variant from Gallionella sp., which is iron-oxidizing chemolithotrophic bacteria [32].
In another recent study, 10 copies of RuBisCO were introduced by a delta-integration
strategy into xylose-utilizing Saccharomyces cerevisiae and resulted in a 17% increase in
ethanol yield and a 7% decrease in CO2 emission [33]. Such advancements underscore the
potential to amplify CO2 assimilation rates by harnessing superior RuBisCO variants.

Wood–Ljungdahl Pathway (WLP): The WLP, referred to as the reductive acetyl-CoA
(rAc-CoA) pathway, is an exemplar of efficient non-photosynthetic carbon fixation. Re-
quiring only one ATP molecule to produce pyruvate is notably more energy-conserving
than the CBB cycle, which expends seven ATPs for the same result [5]. The WLP, primarily
recognized in acetogens, operates exclusively under anaerobic conditions [34]. Microbes
utilizing the rAC-CoA pathway often produce acetate or methane as end products [35].
Recently, Jang et al. constructed a Clostridium acetobutylicum strain to install heterologous
WLP carbonyl branch genes from Clostridium difficile and performed CO2 fixation and
increased biobutanol production [36].
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Figure 2. An overview of natural direct CO2 fixation pathways. (A) Calvin-Benson-Bassham (CBB)
cycle; (B) Wood–Ljungdahl Pathway (WLP); (C) Reductive glycine pathway; (D) Reductive TCA cycle;
(E) 3-Hydroxypropionate (3HP) Bicycle; (F) 3-Hydroxypropionate/4-Hydroxybutyrate (HP/HB)
Cycle; (G) Dicarboxylate/4-Hydroxybutyrate (DC/HB) Cycle. Metabolites: ribulose 5-phosphate,
Ru5P; ribulose 1,5-bisphosphate, RuBP; 3-phosphoglycerate, 3PG; 1,3-bisphosphoglycerate, 1,3BPG;
glyceraldehyde 3-phosphate, GAP; fructose 1,6-bisphosphate, FBP; fructose 6-phosphate, F6P;
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xylulose 5-phosphate, Xu5P; dihydroxyacetone phosphate, DHAP; erythrose 4-phosphate, E4P; sedo-
heptulose 1,7-bisphosphate, SBP; sedoheptulose 7-phosphate, S7P; ribose 5-phosphate, R5P; tetrahy-
drofolate, THF; (3S)-citramalyl-CoA, CM-CoA; mesaconyl-C4-CoA, MC-C4-CoA; mesaconyl-C1-
CoA, MC-C1-CoA; beta-methylmalyl-CoA, βMM-CoA; propionyl-CoA, P-CoA; 3-hydroxypropionyl-
CoA, 3-HP-CoA; 3-hydroxypropionate, 3-HP; malonyl-CoA, Mal-CoA; (S)-malyl-CoA, M-CoA; (S)-
methylmalonyl-CoA, S-MM-CoA; (R)-methylmalonyl-CoA, R-MM-CoA; acetoacetyl-CoA, AcAc-
CoA; acryloyl-CoA, Acr-CoA; crotonyl-CoA, C-CoA; 4-hydroxybutyrate, 4-HB; 4-hydroxybutyryl-
CoA, 4-HB-CoA; succinate semialdehyde, SSA; (S)-3-hydroxybutyryl-CoA, (S) 3-HB-CoA; malonate
semialdehyde, MSA; phosphoenolpyruvate, PEP. Enzymes: Ribulose-1,5-bisphosphate carboxy-
lase, RuBisCo; phosphoribulokinase, prkA; carbon monoxide dehydrogenase, CODH; acetyl-CoA
synthase, ACS; formate dehydrogenase, FDH; serine hydroxymethyltransferase, GlyA; pyruvate syn-
thase, PFOR; ATP-citrate lyase, ACL; acetyl-CoA carboxyltransferase, ACC; propionyl-CoA carboxy-
lase, PCC; phosphoenolpyruvate carboxylase, PPC. Multi-step reactions are presented by continuous
arrows. Special parts of WLP are shown dashed arrows. The figure was created with BioRender.

Reductive Glycine Pathway (rGlyP): The initial CO2 assimilation steps in the WLP
parallel the reductive glycine pathway (rGlyP), which was first proposed to be synthetic,
and then found to be natural [37]. This is because the rGlyP instead employs a glycine cleav-
age/synthase system (GCS) that incorporates CO2 and ammonium into 5,10-methylene-
THF to produce glycine and recycle THF [28]. Highlighting their potential in microbial CO2
utilization, the WLP and the rGlyP stand out for their ATP efficiency in carbon fixation [38].
The most important advantage of the rGly pathway over the WLP is that the rGlyP can be
operate both in aerobic and anaerobic microorganisms [39]. Strategies such as overexpress-
ing the essential enzymes can further augment CO2 assimilation efficiency. For instance,
Eubacterium limosum, when introduced with the GCS, exhibited an improved growth rate
and acetate production [40]. Taking it further, even industrial microbes like Pseudomonas
putida were engineered to assimilate CO2 and other C1-chemicals such as formate and
methanol by introducing heterologous expression of the core-modules of the rGlyP [41].
With the help of adaptive laboratory evolution, a rGlyP-introduced formatotrophic E. coli
strain was further developed to utilize CO2 and formate as sole carbon sources [42].

Reductive Tricarboxylic Acid Cycle (rTCA): Initially discovered in the green sulfur
bacterium Chlorobium limicola, the rTCA functions as the reverse counterpart to the tradi-
tional TCA (or Krebs cycle), primarily in strictly anaerobic or microaerobic autotrophic
eubacteria [43]. Although studies on the rTCA cycle’s application in metabolic engineering
remain limited, emerging research, such as one involving E. coli, has shown promising
results in recycling CO2 and optimizing the production of acetate and ethanol [44].

Less Common Natural CO2 Fixation Cycles

3-Hydroxypropionate (3HP) Bicycle: The 3HP bicycle, or Fuchs–Holo bicycle, was
first discovered in the thermophilic phototrophic bacterium Chloroflexus aurantiacus [45].
This cycle is considered unique due to its two cyclic CO2 assimilation pathways that
collaboratively share initial reactions for CO2 assimilation, forming a complex bicyclic
system. The 3HP bicycle consumes approximately 2.3 mol ATP to reduce 1 mole of CO2 to
pyruvate, similar to the CBB cycle [46]. The 3HP bicycle’s key enzymes, such as propionyl-
CoA synthase and malonyl-CoA reductase, have been leveraged to construct efficient
cell factories for 3-hydroxypropionic acid [47]. Recently, the details of this uncommon
mechanism have been revealed in filamentous anoxygenic phototrophs. Mesaconyl-CoA
C1-C4 CoA transferase is found to catalyze the intramolecular CoA-transfer, which can be
used for enzyme engineering to produce value-added chemicals [48].

3-Hydroxypropionate/4-Hydroxybutyrate (HP/HB) Cycle and Dicarboxylate/
4-Hydroxybutyrate (DC/HB) Cycle: Remarkably, the HP/HB and DC/HB cycles, preva-
lent in certain archaea, demonstrate higher energy efficiency in anaerobic environments,
with the DC/HB cycle being particularly efficient, requiring only 1.6 mol ATP to reduce
one mol CO2 to pyruvate [46]. From an evolutionary perspective, the capability of the



Bioengineering 2023, 10, 1357 8 of 41

3HP bicycle and the HP/HB cycle to assimilate bicarbonate rather than CO2 is notable.
This adaptability likely stems from the higher intracellular concentration of bicarbonate
compared to CO2. This feature and oxygen tolerance potentially contribute to their evolu-
tionary survival [49]. From an application standpoint, there have been attempts to harness
these pathways for biotechnological purposes. (S)-3-hydroxybutyryl-CoA dehydrogenase,
which is one of the important enzymes of the HP/HB cycle, has been characterized, and
different enzymes from Nitrosopumilus maritimus and Metallosphaera sedula were compared
to explore the enzymatic differences in these processes within the DC/HB and HP/HB
cycles, which helps protect marine habitats [50]. However, attempts to fully recreate and
utilize these pathways in common microbial hosts like E. coli have faced challenges [5].

2.1.2. Synthetic CO2 Fixation Pathways

Synthetic CO2 fixation pathways have garnered significant attention as potential al-
ternatives to enhance carbon assimilation efficiency, transcending the inherent constraints
observed in natural pathways. The focus lies in developing pathways with optimized
thermodynamic and kinetic properties while overcoming difficulties associated with key
enzymes like RuBisCO [30,32]. One noteworthy example is the crotonyl-CoA/ethylmalonyl-
CoA/hydroxybutyryl-CoA (CETCH) cycle. Assembled using 17 enzymes derived from
nine distinct organisms, the CETCH cycle has displayed a greater rate of CO2 fixation
and a reduced ATP requirement compared to the CBB cycle [26]. Its efficiency is partly
attributed to the use of the enoyl-CoA carboxylase/reductase enzyme, which showcases
high carboxylation activity. However, translating the in vitro success of the CETCH cy-
cle into in vivo applications remains a challenge [49]. To overcome this challenge, the
same group developed a new pathway called the HydrOxyPropionyl-CoA/Acrylyl-CoA
(HOPAC) cycle, which consists of 11 enzymes from 6 different organisms and is similar to
the natural 3HP cycle but with the introduction of new in-between reactions to increase the
ATP efficiency to 33% [51].

Another synthetic CO2 assimilation route is the Gnd–Entner–Doudoroff (GED) path-
way. By inducing specific gene deletions in E. coli, researchers demonstrated the energy-
efficient reductive carboxylation of ribulose-5-phosphate via this pathway. Despite its
potential, the complete cyclic GED pathway has only been partially shown in vivo [52].
Another advancement was made when researchers synthesized starch from CO2 and hydro-
gen in a cell-free system. This process coined the artificial starch anabolic pathway (ASAP),
comprised 11 core reactions, and showcased an impressive CO2-to-starch conversion rate.
This rate was approximately 8.5 times faster than starch synthesis observed in corn [53].
Since pathway length also generates problems for energy efficiency, novel pathways like
the POAP cycle and the ICE-CAP pathway have been proposed [54]. The POAP cycle,
comprising merely four steps, potentially offers a more streamlined and efficient approach
to carbon sequestration. The ICE-CAP pathway, on the other hand, utilizes CO2 alongside
high-energy C1 compounds, such as methanol or formaldehyde, obviating the need for
ATP and cofactors like NAD(P)H [55].

One computational study, utilizing a repository of around 5000 known enzymes,
unveiled the Malonyl-CoA-Oxaloacetate-Glyoxylate (MOG) pathways. These proposed
pathways, which display ATP efficiency over the conventional CBB, might be revolutionary.
They use rapid carboxylases and are oxygen-tolerant. However, some enzymes in MOG
pathways are thermally sensitive, and their end-product, glyoxylate, when integrated
into central metabolism, could revert to CO2, causing this study performed only in in
silico [56]. Nevertheless, designing and implementing synthetic pathways is not without its
challenges. When introduced into diverse microbes, these synthetic pathways can disrupt
the metabolic balance, necessitating further optimization to realign central metabolic fluxes.
Despite this, the capabilities of these synthetic pathways, especially when combined with
other technological advancements like biocompatible semiconductor materials or cell-free
systems, offer promising avenues for the future of carbon sequestration and utilization [57].
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2.1.3. Host Selection and Reducing Power
CO2-Fixing Autotrophs and Synthetic Hosts

Microorganisms that can synthesize organic substances by fixing inorganic carbon,
leveraging energy from either light or inorganic chemicals, are classified as autotrophs.
Depending on their energy source, these autotrophs bifurcate into two groups: photoau-
totrophs, which harness energy via photosynthesis, and chemoautotrophs, which extract
energy from chemical reactions [58].

Photoautotrophs, such as cyanobacteria and microalgae, derive energy from photo-
synthesis. These organisms house photosynthetic pigments, allowing them to harness
energy from light and water [59]. Notably, they assimilate CO2 primarily via the Calvin–
Benson–Bassham (CBB) cycle. Due to their superior solar energy utilization and rapid
growth rates compared to terrestrial plants, they have gained considerable attention as
potential bioproduction platforms [60]. Cyanobacterial strains like Synechocystis sp. and
Synechococcus sp., for instance, have made significant strides in metabolic engineering,
and these advancements enable them to produce valuable chemicals [61,62]. Furthermore,
certain eukaryotic microalgae have been explored for lipid and alkane production, though
their genetic manipulation is somewhat restricted due to limited transformation efficiencies
and genetic tool availability [63].

On the other hand, chemoautotrophs, including certain bacteria, obtain energy through
chemical reactions. A prominent example is the hydrogen-oxidizing bacteria Cupriavidus
necator, which can oxidize substances like H2 [64] or formate [65]. This bacterium is
known for its ability to naturally accumulate polyhydroxybutyrate (PHB), a precursor for
bioplastics, comprising up to 70% of its biomass [66]. Furthermore, genetic engineering
has expanded its repertoire to produce chemicals such as branched-chain alcohols and
alkanes [67,68]. Another chemoautotroph of interest is Acidithiobacillus ferrooxidans, which
can absorb electrons from Fe2+ or directly from a cathode in bioelectrochemical systems [69].

Acetogens represent another subset of chemoautotrophs, which are strictly anaerobic
bacteria and use specifically WLP. Certain acetogens, like Clostridium ljungdahlii, Clostridium
autoethanogenum, and Acetobacterium woodii, are naturally equipped to produce chemicals
such as acetate, ethanol, and 2,3-butanediol [70]. Genetic tools have been applied to
acetogens to expand their production portfolio, with some species even being utilized
for large-scale industrial applications [71]. Yet, their ATP regeneration capacity poses
challenges in producing ATP-intensive products.

In heterotrophic hosts, organisms like E. coli and S. cerevisiae do not initially possess
functional CO2 fixation pathways or photosystems. However, scientific endeavors have
partially succeeded in transplanting such systems into these hosts, thus ushering in a
mixotrophic mode of nutrition [72]. Shifting the spotlight to synthetic autotrophic mi-
croorganisms, model organisms like E. coli, Saccharomyces cerevisiae, and Corynebacterium
glutamicum have been engineered to metabolize CO2. For instance, E. coli has been en-
gineered to fix CO2 by co-expressing RuBisCO, phosphoribulokinase, and FDH, using
formate as a reducing agent [73]. On the other hand, S. cerevisiae, despite the successful
expression of RuBisCO from Cupriavidus necator, has failed to grow on sole CO2 [74]. Recent
advances have also demonstrated that autotrophic production platforms can effectively
integrate autotrophic and heterotrophic hosts, melding their beneficial traits. A notable
instance involves the non-engineered autotrophic acetogen Sporomusa ovata paired with
engineered E. coli strains. S. ovata, harnessing semiconductor nanowires, fixes CO2 and
excretes acetate—a substrate-engineered E. coli strain that can produce valuable compounds
like n-butanol or PHB under aerobic conditions; up to 52% of acetate-to-product yield was
reported for PHB production by E. coli [75]. Similarly, another two-reactor system combines
the thermophilic acetogen Moorella thermoacetica and yeast Yarrowia lipolytica, where the
former’s acetate output serves as a feedstock for the latter, engineered for increased lipid
synthesis [76]. Such systems still need improvement converting CO2 into valuable end
products, achieving sustainable energy conversion efficiencies.
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Successfully applying microbial hosts with CO2 fixation capabilities depends on
deeply understanding their physiology, biochemistry, and genetics. Both photoautotrophic
and chemoautotrophic microbes offer unique opportunities for bioproduction, with ad-
vances in genetic tools and metabolic engineering paving the way for more efficient
autotrophic cell factories. These microbial systems, in combination with advances in
metabolic engineering, hold immense potential to revolutionize the sustainable production
of value-added compounds.

Energy Supplies for Microbial CO2 Fixation

Reducing powers such as NAD(P)H, FADH, ferredoxin red (FdRED), and menaquinol
serve as driving forces in microbial CO2 fixation, which is pivotal for metabolism. Regener-
ation of these reducing powers entails the extraction of high-energy electrons from either
organic and/or inorganic compounds, or light. Light remains the most prevalent energy
source utilized by photoautotrophs like plants, algae, and photosynthetic microorgan-
isms [77]. Photosystems I and II (PS I and PS II) are the primary photo-reaction complexes
in photolithotrophic organisms like plants, algae, and cyanobacteria [78]. They absorb light
wavelengths ranging from 400 to 700 nm, facilitating the photocatalytic splitting of water
to produce ATP and NADPH, thereby providing the requisite energy for CO2 fixation [79].
PS I absorbs light and uses it to excite a low-energy electron from chlorophyll, which then
produces FdRED and eventually NADPH. PS II compensates for the electron extracted
from PS I by a subsequent electron transfer, originally sourced from a water-splitting re-
action [78]. Recently, Chroococcidiopsis thermalis has demonstrated growth in far-red light
through specialized photosystems, highlighting the potential for engineering increased
efficiency in light utilization [80]. However, there is an inherent energy loss of around
60% in the electron transfer between PS I and II, limiting the efficiency of this system [81].
Efforts to address this inefficiency include the integration of artificial photosensitizers, such
as incorporation of cadmium sulfide nanoparticles with Moorella thermoacetica to facilitate
the photosynthesis of acetic acid from CO2 [82].

On the other hand, chemolithotrophs utilize inorganic compounds to extract high-
energy electrons for regenerating their reducing powers. The hydrogen-oxidizing bacteria,
for instance, employ hydrogenases to consume H2 and regenerate reducing powers. These
hydrogenases come in two known varieties: membrane-bound, which uptake hydrogen to
produce ATP, and soluble NAD-reducing hydrogenases, which produce NADH [83,84]. For
example, E. coli possesses membrane-bound hydrogenases, with Hyd-1 or Hyd-2 catalyzing
hydrogen uptake to generate ATP [85]. Ralstonia eutropha, a natural hydrogen-utilizing
autotroph, has been studied for its hydrogenase-driven ATP and NADH generation, which,
expressed as in the soluble hydrogenase form in E. coli, have shown promise in enhancing
intracellular NADH levels [86]. As another example for inorganic compounds to exploit
high-energy electrons, iron-oxidizing bacteria oxidize Fe2+ ions to generate NADH [87].
Meanwhile, nitrifying bacteria like ammonia-oxidizing bacteria and nitrite-oxidizing bac-
teria obtain high-energy electrons by oxidizing nitrogen compounds [88,89]. Notably,
sulfur-oxidizing bacteria, derive their electrons from the oxidation of various sulfur com-
pounds through intricate pathways to regenerate reducing powers such as menaquinol,
NADH, and FdRED [90]. A smaller group of bacteria focuses on the oxidation of PO3

3− to
PO4

3−, using phosphite dehydrogenase to transfer electrons and regenerate NADH [91].
In summary, microbial CO2 fixation relies heavily on various pathways to regenerate

essential reducing powers, utilizing light and chemicals as energy sources. Whether
through photosystems in photoautotrophs or hydrogenases in chemolithotrophs, these
microorganisms have developed diverse mechanisms to ensure efficient CO2 fixation,
underpinning their importance in the planet’s carbon cycle. To regenerate more reducing
power, using renewable electricity can also be one of the options for both keeping the
carbon-neutral environment and regenerating more reducing agents, as mentioned in detail
in the next subsection.
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2.1.4. Microbial Electrosynthesis

As shown in Figure 3, microbial electrosynthesis (MES) is an innovative bioelec-
trochemical approach that leverages electroactive microorganisms to convert renewable
electrical energy into value-added products [92,93]. Rooted in bioelectrochemical sys-
tems (BES) principles, MES offers a sustainable route to harness CO2 for the synthesis
of biofuels and commodity chemicals, some of which include methane, acetate, formic
acid, and ethanol, among others, potentially mitigating the detrimental impacts of CO2
emissions [94]. At its core, MES operates by utilizing a biofilm on an electrode as a catalyst,
which contrasts with traditional methods that employ chemical catalysts [23].
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The MES architecture is intricate [96]. The anodic chamber operates abiotically, where
water undergoes splitting to generate protons, electrons, and oxygen. Electrons generated in
this chamber are channeled toward the biocathode via an external circuit when an external
voltage is applied to the electrochemical cell. Conversely, electrophilic bacteria, primarily
acetogens, inhabit the cathodic chamber, which maintains anaerobic, biotic conditions. CO2
acts as an electron acceptor in the MES system, undergoing fixation and conversion at
the cathode [97]. Certain electroactive microbes have demonstrated the ability to shuttle
electrons intra- and extra-cellularly in this environment [98]. Herein, specialized microbes
like Sporomusa species and engineered strains of Clostridium have exhibited the potential to
generate biofuels directly from CO2 [99,100]. A classic example demonstrates an acetate
production rate of 142.2 mg/L/d and a carbon conversion efficiency of 84% when utilizing
enriched mixed homoacetogenic bacteria [101]. Notably, other microbes such as Clostridium
scatologenes ATCC 25,775 employ the WLP pathway for CO2 fixation, generating acetic acid,
butyric acid, and ethanol by using H2 as reducing power [102].

The true potential of MES lies in its scalability and flexibility. The efficiency and
spectrum of products from MES can be influenced by adaptive measures like improved
electrode materials, specialized bioreactor designs, and genetically engineered biocata-



Bioengineering 2023, 10, 1357 12 of 41

lysts [103]. Indeed, bioreactor optimization, which included strategies like increasing
biomass retention and media dilution rate, showcased an acetate production with a titer
of 13.5 g/L [104]. Beyond acetate, MES also promises the generation of other valuable
bioproducts like butyrate, caproate, and polyhydroxybutyrate (PHB) [105–107].

However, MES also faces challenges for wider applications. Current systems grapple
with issues like low CO2 conversion rates, high-energy input, and the nuances of maintain-
ing effective microbial communities [108]. Fortunately, recent innovations have exhibited
promise to enhance system efficiency. For instance, thermal conditions have been found to
influence these processes; Moorella thermoautotrophica exhibited an enhanced rate of acetate
and formate production at 55 ◦C as opposed to 25 ◦C [109]. The microbes’ biodiversity in
MES also plays a pivotal role in its efficiency. Notably, autotrophic sulfate-reducing bacteria
(SRM) have displayed potential as excellent biocatalysts, elevating the performance of BES
in CO2 fixation [110]. These bacteria hold the potential to improve hydrogen production
and water sulfate removal. In a recent study, a co-culture of Desulfopila corrodens and
Methanococcus maripaludisco magnified methane production twenty-fold compared to M.
maripaludisco alone [111]. Electro-catalyst-assisted MES systems have been developed with
electrical-biological hybrid cathodes to improve product rates and variety. Here, Zn-based
electrodes have outperformed others; one system achieved an acetic acid production rate
of 1.23 g/L [112].

Overall, the CO2 bioelectrorefinery concept, as heralded by MES, is an embodiment
of a circular bioeconomy, envisioning an integration of CO2 capture, renewable energy,
and sustainable production of chemicals and fuels [113]. While strides have been made,
the commercial realization of MES awaits advancements in electrode materials, microbial
communities, and process optimization to rival traditional biomass-based processes. Nev-
ertheless, the trajectory of MES research promises a sustainable and innovative path to a
cleaner, greener future [114].

2.2. Two-Step Strategy—Fixing CO2 into C1/C2 Chemicals via Electrochemical Catalysis and
Converting C1/C2 Chemicals into Bioproducts via Biomanufacturing

The two-step/indirect CO2 fixation and conversion strategy takes the advantages of
the current advances from both electrochemical CO2 fixation into C1/C2 chemicals and
the synthetic biology to further convert the derived C1/C2 chemicals into the fuels, chemi-
cals, and pharmaceuticals via biomanufacturing process. A primary advantage of these
substrates is their non-competitive nature with alimentary resources, which contributes
to an economically sustainable framework while diminishing carbon efflux into the bio-
sphere [115]. Nevertheless, it has been widely studied that the C1/C2 substrates can be
produced from CO2 via an electrochemical catalysis process [116], which uses renewable
electricity from solar, wind, or hydraulic power to capture and fix CO2 into specific C1/C2
products at high yield and selectivity. This two-step CO2 fixation and conversion approach
can potentially reduce the dependence on fossil oil-based fuels and chemicals and mitigate
the impact of greenhouse gas emissions on the environment [117].

2.2.1. Using CO2-Derived C1 Chemicals for Biomanufacturing

Gaseous one-carbon (C1) substrates like CO and CH4 are from industrial wastes like
steel mills and biomass gasification, whereas liquid C1 substrates, such as formate and
methanol, are derived from CO2 or waste gas conversions [118]. As the direct CO2 splitting
into CO and oxygen is a thermodynamically unfavorable reaction due to the stability of
CO2 at ambient temperatures, the response demands a large amount of energy for ini-
tiation [119]. Although this reaction was attempted to be feasible by membrane reactor
systems by lowering the energy input, the conversion rates are too low to be efficient at
an industrial scale. Moreover, conversion efficiencies might cause futile separation of the
resultant products, CO and O2, to handle at higher temperatures [120]. Initiatives have
been undertaken to capture CO2 and transform it catalytically into a range of high-value
products by employing hydrogenation and oxidation processes. However, these chemical
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conversions of C1 compounds pose significant challenges, including costly catalysts, ex-
treme conditions such as high temperatures (around 450 ◦C) and pressures (approximately
30 MPa), and the emission of hazardous by-products such as carbon monoxide. These
factors contribute to the overall expense and unsustainability of the technology [121].

The liquid C1 substrates are advantageous as they are storable and fully soluble,
supporting higher production. Microbes can transform C1 substrates into products like
alcohols, acids, and plastic components. Specific bacteria can process CO or CH4 and
create multi-carbon compounds [122]. Some also use formate and methanol, which are
essential in the C1 pathway [118]. In the following section, natural autotrophs and industrial
strains that have been engineered to fix CO2 and recent advances in molecular biology and
metabolic engineering for creating more effective CO2 fixation pathways will be discussed.
Typical C1 chemical fixation pathways are shown in Figure 4.
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Figure 4. Typical C1 utilization pathways. Metabolites: ribulose 5-phosphate, Ru5P; hexulose
6-phosphate, H6P; glyceraldehyde 3-phosphate, GAP; fructose 6-phosphate, F6P; fructose 1,6-
bisphosphate, FBP; xylulose 5-phosphate, Xu5P; dihydroxyacetone, DHA; ribulose-1,5-bisphosphate,
RuBP; tetrahydrofolate, THF; 3-phosphoglycerate, 3PG; 1,3-diphosphoglycerate, 1,3DPG; phospho-
enolpyruvate, PEP; pyruvate, Pyr. Enzymes: carbon monoxide dehydrogenase, CODH; acetyl-
CoA synthase, ACS; membrane-bound methane monooxygenase, pMMO; cytoplasmic methane
monooxygenase, sMMO; alcohol oxidase, Aox; methanol dehydrogenase, Mdh; formaldehyde dehy-
drogenase, FADH; formate dehydrogenase, FDH; serine hydroxymethyltransferase, GlyA; Ribulose-
1,5-bisphosphate carboxylase, RuBisCo. Multi-step reactions are presented with dashed arrows.
Special parts of WLP are shown in faded dashed arrows in the related color. The figure was created
with BioRender.
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Carbon Monoxide

Carbon monoxide (CO) is a relatively rare gas in the atmosphere, but novel electro-
chemical CO2 conversion approaches can effectively produce CO from CO2 [123]. Waste
gases from industrial processes partially oxidizing carbon-containing compounds or gasi-
fying waste streams can also yield CO [5]. The co-electrolysis of CO2 and H2O can also
produce CO. One of the primary concerns of using CO is its high toxicity and difficulty in
detection because it is colorless, odorless, and tasteless [124]. Although CO has the potential
to impair oxygen transport and mitochondrial function in many organisms, it can be an
advantageous carbon and energy source for a phylogenetically diverse array of bacteria
and archaea known as carboxydotrophs [125]. Carboxydotrophs have evolved to assimilate
CO using carbon monoxide dehydrogenase (CODH), which catalyzes CO oxidation to CO2,
providing reducing power to the cell and employing either molybdenum (for aerobes) or
nickel (for anaerobes) as essential metal cofactors to facilitate electron transport [126,127].

In aerobic carboxydotrophs, the generated CO2 is typically assimilated via the Calvin–
Benson–Bassham (CBB) cycle to produce biomass. Aerobic CO oxidation, which is more
exothermic and possesses higher free energy (∆G0 = −514 kJ) than anaerobic CO oxidation
(∆G0 =−174 kJ), is advantageous for synthesizing ATP-intensive complex products, thereby
facilitating higher ATP availability and resulting in increased biomass concentrations [128].
Recent studies have shown the potential of aerobic production of complex molecules, such
as the production of C15 sesquiterpene (E)-α-bisabolene from synthesis gas (syngas), a
composite of CO, H2, CO2, and trace amounts of impurities such as H2S and NH3—in
Hydrogenophaga pseudoflava, although there are challenges due to the potentially explosive
mixture of O2 and CO [129].

Anaerobic carboxydotrophs predominantly employ the WLP pathway, also known
as the reductive acetyl-CoA pathway, for CO and CO2 assimilation [127]. The WLP bi-
furcates into two branches: the carbonyl branch, which reduces CO2 to CO, and the
methyl branch, which transforms CO2 into formate and its subsequent products. This
pathway has garnered significant attention in biotechnological research and genetic and
metabolic engineering, particularly in relation to acetogens, microorganisms that use the
WLP as their signature pathway [130]. Despite some progress, it remains challenging to
demonstrate growth in CO and nonacetogenic hosts. Initial attempts failed to demonstrate
CODH/acetyl-CoA synthase (ACS) activity in E. coli by expressing genes from Morella
thermoacetica [131]. Success was later achieved following the incubation of ACS in NiCl2
solution, although growth using CO as a substrate remained elusive. One major obsta-
cle is the inadequate intracellular conditions and genetic framework of traditional hosts,
such as E. coli or yeast, which limits the production and assembly of essential cofactors
and sensitive metal centers [123]. As a different strategy, hosts and gene sources with
closer phylogenetic relationships have been employed. In recent study, a group of genes
from Clostridium ljungdahlii, responsible for encoding CODH/ACS, in conjunction with
a methylenetetrahydrofolate reductase gene from E. coli, were integrated into C. aceto-
butylicum [132]. This reconstruction enabled functional WLP, thereby underscoring the
crucial role played by metal clusters. Another study demonstrated increased CO oxida-
tion rates (3.1-fold) through overexpression of the endogenous CODH/ACS complex in
Eubacterium limosum [133]. In addition, specific adaptive laboratory evolution attempts in
CODH or ACS have been proven to enhance the activity of the CODH/ACS complex for
CO oxidation, showing higher growth and CO gas uptake rates [134]. Nonetheless, despite
these advancements, the complete transformation of non-acetogenic microorganisms into
carboxydotrophs requires further research.

Methane

Methane (CH4) is a potent greenhouse gas, ubiquitous in natural and shale gas reserves.
Anthropogenic methane sourced from human activities, including landfills, agricultural
practices such as animal livestock emissions, paddy rice cultivation, coal mining, and
wastewater treatment, contributes significantly to global warming [135]. According to
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estimates from the Environmental Defense Fund, at least 25% of present-day global warm-
ing is attributable to anthropogenic CH4 emissions. This is a significant concern because
CH4, over the initial two decades following its release into the atmosphere, exhibits a
warming effect over 80 times greater than CO2 [136]. Consequently, cultivating CH4 for
biotechnological applications has dual implications: it not only enhances its value beyond
traditional uses, such as generating heat or electricity (termed revalorization), but also
plays a pivotal role in curbing greenhouse gas emissions.

CH4 assimilation is initiated by converting methane monooxygenase (MMO) to
methanol. Methanotrophs, organisms capable of metabolizing methane exclusively as
their carbon source in oxygen-rich and oxygen-deprived environments, have two sep-
arate versions of MMO. One is a soluble intracellular variant (sMMO), and the other
is a particulate form attached to the membrane (pMMO) [137]. Once methanol is pro-
duced, it undergoes further oxidation to form formaldehyde. This compound can then be
broken down into CO2, which involves specific enzymes, notably formaldehyde dehydro-
genase and formate dehydrogenase [138]. Some intermediate formate or formaldehyde
is integrated via serine or ribulose monophosphate (RuMP) cycles, serving as a carbon
source in the biomass. Formaldehyde is utilized in the RuMP cycle, transforming it into
hexulose-6-phosphate and later into ribulose-5-phosphate to complete the cycle. Through
the (tetrahydromethanopterin) H4MPT pathway, formaldehyde undergoes a conversion
process to become formate. Meanwhile, the serine cycle incorporates formate through
the (tetrahydrofolate) H4F pathway and finally converts serine into glycine to close the
cycle [139].

sMMO is recognized for its extensive substrate specificity; however, high copper
concentrations may adversely affect its performance. Conversely, pMMO, owing to its
proximity to the membrane, has superior accessibility to methane compared to sMMO. The
linkage of pMMO with the membrane indicates its ability to accelerate catalysis in CH4
oxidation mechanisms [140]. The phenomenon of anaerobic CH4 oxidation first came to
light within microbial consortia. In these communities, the transition of methane to CO2
was paired with the reduction in specific elements, such as sulfate, nitrate, nitrite, iron, or
manganese [141–144]. However, owing to difficulties in obtaining pure cultures, all methan-
otrophs identified to date are aerobic bacteria [145]. Methanotrophs have been metabolically
engineered to yield value-added chemicals from CH4, such as lactate, succinate, and as-
taxanthin [146]. Despite the slower development and growth rates of methanotrophs,
non-native hosts, such as Escherichia coli, offer promising potential for CH4 utilization ow-
ing to a deeper understanding of their physiology and established metabolic engineering
systems [147].

Utilizing industrially relevant strains, such as E. coli, for methane bioconversion is a
promising strategy because of its superior growth rate, in-depth understanding of its physi-
ology, wide range of system/synthetic tools available, and well-established metabolic engi-
neering system for value-added products. However, achieving the full activity expression
of methane monooxygenases in non-native hosts has proven to be a largely unsuccessful
challenge thus far [148]. Protein engineering endeavors have used P450 monooxygenase as
an alternative to MMO for converting methane to methanol; however, these attempts have
garnered very limited success [149,150]. The only progress made includes the expression
of the β-subunit of pMMO in E. coli, albeit with merely detectable activity [151]. This
underscores that the principal challenge in synthesizing methanotrophs in non-native hosts
depends on the functional expression of the enzyme responsible for methane oxidation.
Despite these obstacles, recent breakthroughs have led to promising outcomes. For ex-
ample, the β-subunit of pMMO and the catalytic domains of pMMO from Methylococcus
capsulatus have been effectively expressed as soluble enzymes in E. coli. By reassembling
these enzymes in a framework built from apoferritin particles, a pMMO-mimetic enzyme
particle was generated. This assembly exhibits in vitro methanol production kinetics that
rival those of native pMMO [152]. Additionally, heterologous expression of sMMO from
M. capsulatus and the GroESL chaperone CH4 was converted to acetone in an E. coli strain
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previously engineered for methanol-based acetone production [153]. These advances in-
dicate the proof-of-concept and feasibility of synthetic microbes for CH4 bioconversion,
suggesting that further strain engineering could significantly enhance the conversion rates
and yields, potentially fulfilling the industrial potential of microbial CH4 bioconversion.

Methanol

As of 2018, the worldwide methanol (CH3OH) production capacity stood at around
100 million metric tons annually, demonstrating a steady increase in the capacity to convert
CH4 into methanol and a concurrent decrease in methanol prices [154]. Today, methanol’s
cost is already comparable to glucose, an outcome largely influenced by its production
predominantly from natural gas, crude oil, and coal via methods such as steam reforming
of natural gas, biomass-derived synthesis gas, or through hydrogenation of CO2; this
makes its price ($150–300/ton) generally lower than that of sugar ($300–400/ton) [9,10,155].
Methanol, significantly more reduced than most sugars, is an attractive substrate or co-
substrate alongside sugars for producing various metabolites, including alcohols, carboxylic
acids, fatty acids, and hydrocarbons, given its high reductivity. It boasts a reduction degree
of six per carbon, compared to glucose’s four, denoting that methanol possesses 50% more
electrons per carbon atom, thus housing a high-energy content. This abundance of electrons
can be harnessed to boost product yields in fermentations, further accentuating methanol’s
appeal as a substrate [156].

Among all identified native methylotrophy groups, aerobic methylotrophy is the
largest, encompassing both prokaryotic and eukaryotic forms, represented by well-studied
bacteria such as Bacillus methanolicus and the Methylobacterium extorquens, as well as cer-
tain yeast species like Pichia pastoris [157]. These aerobic methylotrophs employ two key
methanol-utilization pathways. The initial pathway involves the oxidation of methanol to
formaldehyde, facilitated by three classes of oxidoreductases, each distinguished by their
electron acceptors: PQQ-dependent methanol dehydrogenases (MDHs), NAD+-dependent
MDHs, O2-dependent alcohol oxidases (AODs) [158]. The first two are primarily found
in methylotrophic bacteria, while the latter is characteristic of methylotrophic yeasts [159].
NAD+-dependent MDHs stand out for their ability to use a universal cofactor, NAD+,
to transfer electrons for metabolite production, creating reducing equivalents of NADH.
O2-dependent AODs, identified mainly in yeasts, convert methanol into hydrogen peroxide
and formaldehyde [160]. The second pathway entails the incorporation of formaldehyde
into central carbon metabolism via one of three identified assimilation pathways in aerobic
methylotrophs: the xylulose monophosphate (XuMP) cycle (as known as dihydroxyacetone
(DHA) cycle), the RuMP cycle, and the serine cycle. The XuMP pathway predominantly
occurs in yeasts, while the RuMP and serine pathways are observed in B. methanolicus
and M. extorquens, respectively [161,162]. The serine pathway stands out for its carbon
efficiency, fixing 3 mol CO2 and merging 3 mol formaldehyde to produce 3 mol acetyl-CoA,
although it is also the most ATP-costly. In contrast, the RuMP pathway exhibits the highest
energy efficiency, generating 2 mol of NADH and 1 mol of ATP per mole of acetyl-CoA.
The XuMP pathway, meanwhile, yields 2 mol of NADH but consumes 1 mol of ATP per
mole of acetyl-CoA produced [163].

Anaerobic methylotrophy is mainly limited to methanogenic archaea and acetogenic
bacteria, with the latter gaining interest due to their metabolic capacity for high acetate
or butyrate production [164]. In methylotrophic acetogens, the methyl-THF produced by
the methyltransferase system enters the WLP pathway to generate cell mass and conserve
energy [165]. The WLP consists of two separate branches, the methyl, and the carbonyl, each
handling one CO2 molecule. In the methyl branch, CO2 converts to formate, which merges
with auxiliary tetrahydrofolate and reduces to the methyl group of tetrahydrofolates, a
precursor for the methyl group of acetyl-CoA. Conversely, in the carbonyl branch, CO2
transforms to CO, merging with methyl-THF from methanol to produce acetyl-CoA via the
CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) [166]. This resultant acetyl-CoA
can be used for pyruvate synthesis, biomass production, or acetate generation, enabling
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ATP production [58]. With higher energy efficiency in converting methanol to biomass or
products than aerobic methylotrophs, anaerobic acetogens can also assimilate other C1-
compounds such as CO2 and CO due to the presence of the WLP pathway. This methanol
assimilation also involves CO2 fixation, making acetogens attractive platform microbes for
methanol bioconversion [122].

Native methylotrophs hold the potential for generating high-value chemicals from
methanol, but methanol assimilation rates curb the efficiency [167]. Expanding these rates
to produce target compounds is an insistent need. While the limited availability of genetic
tools poses a challenge, the strides made in synthetic biology now enable the development
of these tools to engineer native methylotrophs [168]. For example, B. methanolicus was
modified to generate L-lysine by implementing the CRISPRi system [169]. Similarly, M.
extorquens was enabled to produce itaconate by heterologously introducing the cis-aconitic
acid decarboxylase gene from Aspergillus terreus [170]. For the aerobic methylotrophs,
intermediate metabolite formaldehyde accumulation may cause cellular toxicity due to the
macromolecule interactions [18]. Anaerobic acetogens are favorable to avoid formaldehyde
toxicity since methanol is directly assimilated through WLP [158]. Similarly, methanol
assimilation is conducted within the peroxisome in methylotrophic yeasts, and this might
have an advantage over other microbes in keeping the formaldehyde away from other
cell components [9]. For example, P. pastoris could produce free fatty acids with superior
efficiency from methanol by boosting the availability of precursors and cofactors and
minimizing the buildup of formaldehyde through optimized methanol metabolism engi-
neering [171]. Another known methylotrophic yeast, Ogataea polymorpha growth, was also
restrained by formaldehyde formation. Engineering pentose phosphate (PP) and gluco-
neogenesis pathways and further ALE efforts overcome those problems and implemented
efficient free fatty acid production with a titer of 15.9 g/L [172]. Nonetheless, more efforts
in genetically engineering the native methylotrophs are required due to constraints like
the insufficient understanding of cellular metabolic pathways and a confined set of genetic
tools for such engineering [165].

Initiatives have been directed toward creating synthetic methylotrophs to navigate the
abovementioned challenges. For instance, by integrating the heterologous methanol assim-
ilation pathway from B. methanolicus MGA3 into Bacillus subtilis, a methanol-dependent
engineered strain that can process 4.09 g/L methanol was produced [173]. In addition to
integrating natural methanol-utilization pathways into non-native hosts, unique enzymatic
conversions have been employed in synthetic pathway development, boosting the potential
for methanol conversion into valuable compounds [174]. Nevertheless, the performance of
synthetic methylotrophs falls short of those observed in native methylotrophs. For example,
when comparing growth and acetate production from methanol between the most efficient
synthetic methylotrophic Escherichia coli and Eubacterium limosum, it was evident that both
growth and product yield were markedly lower in E. coli than in E. limosum [175]. As a
different strategy, Nguyen et al. employed a comprehensive, genome-scale approach that
incorporated mutagenesis, 13C tracer analysis, flux balance examination, and comparative
transcriptomic and metabolomic studies to present the metabolism of Methylotuvimicrobium
alcaliphilum and the mechanism behind efficient methanol consumption and formaldehyde
resilience [176].

Significant advances have been made recently in synthetic methylotrophy in model
organisms like E. coli, with the groundwork laid by pinpointing the most likely genes
for methanol metabolism from methylotrophs: mdh, hps, and phi. Isotopic incorporation
tests with 13C-methanol resulted in a 40% label integration into central carbon metabolites,
notably hexose 6-phosphate (H6P), in E. coli expressing these three genes, confirming
the functionality of the RuMP pathway established by Hps and Phi [177]. By physically
co-localizing crucial enzymes like Mdh, Hps, and Phi into a unified complex, methanol
oxidation and formaldehyde assimilation were enhanced, resulting in a 50-fold rise in
methanol to F6P conversion [178]. Once these methanol assimilation pathways were set up,
research efforts shifted to tackle the complexities of utilizing methanol as the sole carbon
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source for E. coli growth and energy. One significant issue is the cofactor imbalance, as
methanol oxidation through Mdh is impeded when the cellular NADH to NAD+ ratio
rises [179]. A 3.6-fold enhancement in methanol to formaldehyde conversion was achieved
by linking this step to an NADH consumption cycle [178]. Alternatively, the concentration
of cellular NADH was decreased by removing maldh that encodes NAD+-dependent
malate dehydrogenase, which mimicked the strategy used by natural methylotrophs to
reduce TCA cycle activity [180]. Another common strain, S. cerevisiae, was explored by
performing ALE on laboratory strain CEN.PK, which has an uncharacterized transcriptional
regulator Ygr067cp. It was found that deletion of alcohol oxidation (ADH2) and acetyl-
CoA synthetase (ACS1) had severely hindered the growth on methanol [181]. On the
other hand, the exact methanol assimilation mechanism in S. cerevisiae is still unknown.
Besides a conventional host strain, a nonconventional yeast Yarrowia lipolytica has also been
engineered for methanol utilization by introducing RuMP and XuMP pathway genes and
ALE efforts [182]

Formate

Formate (CHOO−) is a valuable biotechnology substrate because of its high solubility
in water and polar solvents, a higher degree of reduction than CO2 and CO, and non-
flammability [183]. Despite being less abundant than methanol, rapid advancements in
synthesis technology, particularly in electrochemical, photochemical, and catalytic meth-
ods, promise to increase its availability. Economic efficiency is also improving, with cost
predictions suggesting that formate can compete with glucose as feedstock [184].

Microbial formate assimilation employs two primary strategies naturally. The first
oxidizes formate to CO2, extracting and reducing the power that supports carbon fixation
and provides the cell with energy [185]. This process is ideally supported by formate
due to its low reduction potential [186]. The known carbon-fixation pathways facilitating
formatotrophic growth through complete formate oxidation include the ATP-costly CBB
cycle (i.e., reductive pentose phosphate pathway) [187] and the highly ATP-efficient, albeit
oxygen-sensitive, WLP (i.e., reductive acetyl-CoA pathway) [188]. Despite the latter path
being energetically most efficient in utilizing formate, its application may be limited due to
the product variability and anaerobic growth conditions [162,189].

The second strategy adopted by microbes to utilize formate as the only carbon source
entails the fusion of formate with another intermediary metabolic product, though a portion
may still undergo oxidation to furnish the cell with reduction potential and energy [190].
Formate is combined with tetrahydrofolate (THF) to promote such growth, using en-
ergy from ATP hydrolysis, resulting in formyl-THF. This compound is then transformed
into methylene-THF. Methylene-THF contributes its formaldehyde component to glycine,
generating serine, which changes into glycerate. Subsequently, conversions result in the
regeneration of acetyl-CoA, which can be either a biomass or valuable product precursor.
While the serine pathway has the capability to directly incorporate formate and oxygen
insensitivity, it still consumes three ATP to produce one acetyl-CoA from one formate
molecule, which causes a kinetic inefficiency [17,185].

In formate bioconversion, it has been suggested that exchanging these inefficient for-
mate assimilation pathways with ATP-efficient alternatives could improve yield and energy
efficiency. The rGly pathway was suggested as the most convenient alternative to the other
ATP-infeasible and low-biomass-yielded carbon-fixation pathways [191]. One such experi-
ment was conducted to replace the CBB cycle Cupriavidus necator with the reductive glycine
pathway (rGly), which, despite requiring further improvements, could convert formate into
valuable chemicals, thus offering a streamlined process that bypasses the costly formate
separation and prevents harmful formate accumulation [192]. Recently, Sánchez-Andrea
et al. [193] showed the sulfate-reducing bacterium Desulfovibrio desulfuricans (strain G11),
which can utilize sulfate and hydrogen as energy sources, harness an autotrophic (and for-
matotrophic) carbon-fixation mechanism through the reductive glycine (rGly) pathway, and
use formate. Its pathway coincides with the WLP route, starting from CO2/CO and produc-
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ing 5,10-methylene-THF. Then, under the action of the glycine cleavage/synthase system
(GCS), a process that includes CO2, NH3, and 5,10-methylene-THF, glycine is synthesized
and undergoes further assimilation into pyruvate and biomass [9]. GCS was also intro-
duced to Clostridium pasteurianum to create a non-model industrial host by heterologous
expression, and anaerobic formate utilization was successfully demonstrated [194].

As a common industrial strain, E. coli was employed considerably to achieve the most
optimal formate utilizer strain. The rGly pathway, one of the most promising pathway, was
introduced into E. coli together with the serine-threonine cycle to develop a double-direction
strategy, and formate was used both as an intermediate (endogenous) and as a carbon source
(exogenous) [195]. Then, the same group further developed their strategy and applied all
homologous and heterologous expressions possible to produce the whole glycine and serine
the cell needs from formate and CO2 [196]. Another approach was proposed to improve
obstacles in the previous work [195], by introducing the THF cycle and the reverse glycine
cleavage (gcv) pathway together and to obtain a final strain that could utilize both formic
acid (FA) and CO2 [197]. As a next step, they engineered E. coli by solving the NADPH
generation problem by optimizing cytochrome bo3 and bd-I ubiquinol oxidase levels to
acquire full growth on sole FA and CO2 and as high OD600 as 7.38 in 450 h [198].

Developing autotrophic organisms in formate utilization is also an important goal.
For instance, Tashiro et al. used an electrochemical-biological system to reduce CO2 into
formate in the first place and synthesized L-serine from formate using GCS-introduced E.
coli [199]. Gleizer et al. obtained an E. coli strain that has CBB established to utilize formate
to cover metabolic activities and uses CO2 as sole carbon source [73]. They employed ALE
to convert a modified strain from heterotroph to full autotroph in chemostat. In another
study, E. coli was successfully engineered to grow on formate via the rGly pathway. Further
ALE boosted the biomass yield of the engineered E. coli strain to 2.3 g CDW/mol formate
and halved the doubling time [200]. The rGly pathway was also employed in S. cerevisiae
to increase tolerance (up to 500 mM) against formate by overexpression of only native
enzymes [201].

It is claimed that the formate assimilation pathways of natural formatotrophs remain
suboptimal for biotechnological applications and present limitations compared to indus-
trially optimized strains, such as S. cerevisiae and E. coli, due to the costlier cultivation
requirements, slower growth rates, higher sensitivity to environmental conditions, chal-
lenges in genetic manipulation due to less understood metabolic networks, and lacking
optimization techniques. [14]. Despite these limitations, certain species, like Acetobac-
terium woodii, show the potential to bridge this gap. Recently, studies highlighted that
A. woodii, when cultivated solely with formate as the carbon and energy source, demon-
strated greater efficiency and speed in transforming formate to acetate than when using
gaseous substrates [202,203]. This research also undertook a comparative analysis of the
energy efficiencies of various acetogens and other microbes, such as formatotrophs or
engineered strains capable of utilizing formate or methanol, during the growth and product
formation on C1 or sugar substrates. The results revealed that acetogens displayed supe-
rior energy efficiency across all substrates tested, specifically C1 substrates, with formate
demonstrating even more significant energy potential than gaseous substrates [70]. Among
the acetogens, Eubacterium limosum emerged as promising biocatalysts for transforming
formate into acetate, primarily producing acetate, during formate-fueled growth [204].

While industrially utilized microbes demonstrate enhanced yield potential and ge-
netic manipulability than the abovementioned nonconventional organisms, cytotoxicity
associated with elevated formate concentrations poses a formidable challenge [205]. The
tolerance threshold for formate varies widely among organisms and is mainly dictated by
formate dehydrogenase activity [118]. For instance, Escherichia coli encounters significant
growth disruption at formate concentrations exceeding 100 mM, indicating minimal for-
mate dehydrogenase activity [206]. Conversely, organisms such as Saccharomyces cerevisiae,
which exhibit heightened formate dehydrogenase activity, endure and capitalize on ele-
vated formate concentrations, underscoring the differential formate tolerance across diverse
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organisms [207]. Moreover, formate consumption can lead to a slight increase in medium
pH, and the resulting alcohols can be toxic to certain microbes at high concentrations, po-
tentially damaging the cell membrane and inhibiting glycolytic enzymes [208]. Therefore,
strategies such as metabolic, evolutionary, and rational engineering, proven effective for
other inhibitory feedstock compounds or fermentation products, could enhance microbial
resilience to formate toxicity [200,209,210].

2.2.2. Using CO2-Derived C2 Chemicals for Biomanufacturing

C2 chemicals, mainly ethanol and acetate, have garnered interest as alternative sub-
strates for biomanufacturing, especially in the production of biofuels, pharmaceuticals,
and biopolymers [211]. One of the key challenges in utilizing C2 chemicals as substrates in
biomanufacturing is the need to expand and engineer the native metabolic pathways of
microorganisms to efficiently convert these substrates into value-added products. This is
achieved through various metabolic engineering strategies, such as overexpressing native
or heterologous enzymes, redirecting carbon flux, and eliminating competing pathways [5].
The common C2 chemical assimilation pathways are shown in Figure 5.
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Figure 5. Common C2 chemical assimilation pathways. Metabolites: Glyceraldehyde 3-phosphate,
GAP; phosphoenolpyruvate, PEP. Enzymes: acetyl-CoA carboxylase, ACC; alcohol dehydrogenase,
ADH; aldehyde dehydrogenase, ALD; acetaldehyde dehydrogenase, ALDH; acetyl-CoA synthetase,
ACS; cytochrome P4502E1, CYP2E1; ATP-citrate lyase, ACL; glycerol-3-phosphate dehydrogenase,
GPD; malic enzyme, ME; pyruvate dehydrogenase complex, PDC; phosphoenolpyruvate carboxyki-
nase, PCK; pyruvate carboxylase, PYC; pyruvate kinase, PYK. Multi-step reactions are presented by
dashed arrows in related color. Black dashed arrows represent metabolite transfer. The figure was
created with BioRender.
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Acetate

Acetate (CH3COO−) typically denotes the disassociated form of acetic acid (CH3COOH),
holds significant economic value for biomanufacturing, and the production volume world-
wide is expected to be approximately 24.5 million metric tons annually by the year 2025 [11].
Its cost ranges between $350 and 450 per ton, making it slightly more economical than tradi-
tional sugars like glucose, which cost about $500 per ton [212]. The acetate production, with
around 75% of it accomplished through chemical catalysis, encompasses methods such as
methanol carbonylation, ethylene oxidation, and alkane oxidation [213]. Additional methods
for acetate synthesis include the hydrolysis of lignocellulosic biomass, anaerobic digestion,
syngas fermentation, and microbial electrosynthesis. One of the green sides of these routes
is using waste streams. For instance, lignocellulosic biomass and anaerobic digestion could
leverage waste biomass and industrial or agricultural wastes as substrates. Furthermore,
processes like syngas fermentation, microbial electrosynthesis, and chemical catalysis utilize
CO2 as their primary raw material in C1 gas conversion [214]. This highlights the consider-
able potential of using acetate as potential feedstock regarding environmental friendliness
and sustainability, particularly pertinent to achieving carbon neutrality.

The process of utilizing and metabolizing acetate for biochemical production starts
with the transportation of acetate from the external environment into the cell, continues
with the assimilation of acetate to acetyl-CoA, and, at the end, the chemicals formatted
from acetyl-CoA. The acidity level within the moderately basic cellular fluid, typically with
a pH value between 7.5 and 7.6, significantly exceeds the pKa value of HAc. Thus, acetic
acid increases intracellular acidity to some extent by dividing into an acetate anion (Ac−)
and a hydrogen ion (H+) [11]. Acetic acid can be toxic to cells, even at concentrations less
than 5 g/L [213]. Other than the toxicity and proton imbalance, there are more theories
explaining the inhibitory effect of acetate on cell growth. These include (i) alterations in
membrane permeability and integrity; (ii) changes in amino acid metabolism, where weak
acids hinder the use of specific amino acids and the production of methionine, leading
to the buildup of toxic cysteine; and (iii) induced programmed cell death, where high-
concentration acetate causes accumulation of reactive oxygen species and impairs energy
metabolism in mitochondria, leading to chromatin and nuclear DNA denaturation and
subsequent programmed cell death [215].

When microorganisms utilize acetate as the sole carbon source, it is first converted
to acetyl-CoA, primarily achieved through two enzymatic routes. The first route involves
the formation of an intermediate, acetyl-adenosine monophosphate (acetyl-AMP), which
subsequently converts to acetyl-CoA [213]. This pathway requires two moles of ATP
due to forming AMP and ADP, marking it as a more energetically expensive route. On
the other hand, the acetate kinase-phosphotransacetylase (AckA-Pta) catalyzes acetate to
acetyl-phosphate first and then converts it to acetyl-CoA. It represents a reversible mech-
anism allowing bidirectional conversion between acetate and acetyl-CoA. This pathway
consumes only one mole of ATP, making it less energy-demanding than the ACS pathway.
Nevertheless, the ACS pathway possesses a high affinity for acetate, around 35 times higher
than the AckA-Pta pathway, thus playing a critical role in efficient acetate assimilation,
particularly in low-acetate conditions. Moreover, despite its role in acetate production
and consumption, the AckA-Pta pathway exhibits a lower affinity for acetate, primarily
contributing to acetate production overconsumption [11].

An alternative route exists in certain bacteria, such as Pseudomonas sp. and acetic
acid bacteria, involving the enzyme succinyl-CoA: acetate CoA-transferase (SCACT). This
mechanism eliminates ATP consumption, using succinyl-CoA to convert acetate into acetyl-
CoA. Therefore, the SCACT pathway is a significant supplement or alternative to the ACS
and AckA-Pta pathways, especially under conditions where these two are non-functional or
absent. These acetate assimilation pathways, including aerobic and anaerobic mechanisms,
are widespread across several microbial species and constitute the first step of acetate
metabolism [213]. Understanding these metabolic routes and their energetic requirements
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enriches our knowledge of microbial physiology and aids in industrial biotechnology
applications by optimizing acetate metabolism in host organisms like E. coli [216].

Acetyl-CoA, derived from acetate, plays a pivotal role as a precursor for extending car-
bon length, and it is primarily incorporated into two metabolic pathways: the tricarboxylic
acid (TCA) cycle or the glyoxylate shunt, leading to an increase from C2 to C4 carbon
compounds. Notably, the glyoxylate shunt significantly impacts cell growth when acetate is
utilized as the primary carbon source. This pathway divides isocitrate into glyoxylate and
succinate via isocitrate lyase (ICL). Following this, glyoxylate is transformed into malate
using another acetyl-CoA molecule [217]. Both succinate and malate are crucial to the TCA
cycle, being further oxidized to form fumarate and oxaloacetate (OAA), which aid energy
generation and higher carbon compound synthesis. Within the TCA cycle, the transition
from isocitrate to α-ketoglutarate, facilitated by isocitrate dehydrogenase (IDH), represents
an essential step that vies with ICL, thereby affecting carbon flux distribution. Both the
glyoxylate shunt and the TCA cycle play a crucial role in acetate absorption due to their
role in energy generation and carbon movement [218].

Nevertheless, acetate is less preferable to glucose as a carbon source when generating
ATP and NADPH for most acetate-utilizing bacteria. It is worth noting that acetate yields a
significantly lower energy content, with 10 ATPs per mol, compared to 38 ATPs per mol
for glucose [219]. Consequently, acetate’s low-energy content might be a limiting factor for
its absorption and cell growth. Given that ATP or NADPH is required for most chemical
synthesis from acetate, ensuring efficient energy supplementation through metabolic engi-
neering or other techniques is vital for acetate assimilation and biochemical production.
To manufacture biochemicals effectively from acetate, certain traits are indispensable in
these strains: a high level of acetate tolerance, improved activation of acetate to acetyl-CoA,
enhanced acetate assimilation, and efficient chemical production [220].

In recent years, various microbes have been metabolically engineered to create bio-
chemicals, with acetate serving as the carbon source, producing various substances, in-
cluding acids, alcohols, esters, and other chemicals. In the context of C2-biomanufacturing,
the use of acetate as a feedstock has been extensively researched, including native aceto-
gens and genetically modified organisms that can utilize acetate. These include strains
such as E. coli [221], Corynebacterium glutamicum [222], Pseudomonas putida [223], S. cere-
visiae [224], Cryptococcus curvatus [225], Rhodotorula glutinis [226], Yarrowia lipolytica [227],
and Aspergillus oryzae [228], among others. Moreover, over 20 value-added chemicals have
been produced, with acetate as the main carbon source. Notable examples include poly(3-
hydroxybutyrate) (PHB) [229], aromatic amino acids [230], lipids [231], acetate esters [232],
and natural products such as isoprenoids that are derived from acetyl-CoA [233]. However,
a significant challenge in using acetate is its low concentration (typically 20–30 g/L) when
produced from numerous upstream waste utilization processes. Such dilute feedstock
solutions further dilute when added into the microbial culture, potentially leading to a
low product titer, particularly in batch operations. In response to this challenge, Xu et al.
proposed an innovative approach using a continuous bioreactor with a cell recycling unit
to produce triacylglycerides (TAGs), which are intracellular products that accumulate in
the bioreactor with host cells such as Yarrowia lipolytica [6]. Another known strategy is
ALE to increase the acetate tolerance in microorganisms. This agrees with the fact that
microorganisms produce acetic acid during glucose fermentation and consume this acetic
acid when carbon is limited. This consumption may be increased by adding suitable acetic
acid salts to balance pH, which makes candidate organisms tolerate and consume acetate
more [218].

Ethanol

Ethanol (C2H5OH), a simple alcoholic compound, has a broad range of applications
spanning various industries, including chemical, food, medical, and health. It represents an
economically viable raw material. Nonetheless, its primary sources, such as corn, are starch-
based, raising concerns due to their competition with food production and considerable
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CO2 emissions during processing. The compound can be generated from renewable sources
such as biomass fermentation, using sugars, starch, or cellulose as raw materials [234]. It has
been established in product manufacturing of beverages, flavors, fuels, dyes, disinfectants,
antifreeze, and paint [235]. Despite its versatile utilization, the exploration of ethanol as a
metabolic engineering feedstock is not yet thoroughly investigated [236].

The conversion of ethanol into productive biochemical pathways typically ensues
through two main mechanisms. The initial route involves the enzymatic action of alcohol
dehydrogenase and acetaldehyde dehydrogenase, transforming ethanol into acetaldehyde
and subsequently into acetyl-CoA. Alternatively, a route more prevalent in eukaryotes,
such as S. cerevisiae, initiates the transformation of ethanol to acetate using acetaldehyde as
an intermediary, which is then integrated into acetyl-CoA. Microbial species like Clostridium
acetobutylicum and E. coli predominantly utilize the former pathway, whereas in S. cerevisiae,
the oxidation of ethanol to acetaldehyde is facilitated by alcohol dehydrogenase enzymes,
specifically Adh2 or Adh4. This acetaldehyde is then converted to acetate via aldehyde
dehydrogenase enzymes, namely Ald4 and Ald5. These processes generate NADH, which
is crucial for ATP regeneration, thus providing a higher theoretical yield from ethanol than
acetate for reducing product production. However, a significant caveat is that ethanol as-
similation can be heat-intensive and oxygen-dependent, potentially amplifying the overall
production expenditure [9,237].

In some synthetic hosts like E. coli, metabolic engineering has been deployed to
optimize ethanol assimilation. This includes the manipulation of the acetaldehyde dehy-
drogenase and alcohol dehydrogenase enzymes for efficient ethanol growth [238]. These
engineered strains can be further refined to produce valuable products like polyhydroxy
butyrate (PHB) or prenol from ethanol [229]. Ethanol can also be utilized as the sole or
co-substrate with glucose to produce valuable compounds like the artemisinin precursor in
S. cerevisiae [239]. Further strategies have explored the genetic modification of E. coli strains
for ethanol utilization. These modifications often introduce ethanol catabolism pathways
into E. coli, such as those found in Aspergillus nidulans [240]. By expressing different alcohol
dehydrogenases and aldehyde dehydrogenases in E. coli, there is a potential for efficient
ethanol utilization and production of value-added products from ethanol [238]. One ex-
ample is introducing a two-step ethanol utilization pathway (EUP) into E. coli, which has
shown promising results in generating polyhydroxy butyrate (PHB), an acetyl-CoA-derived
product [236]. The engineered E. coli strain demonstrated robust growth on ethanol as
the sole carbon source. It produced 1.1 g/L of PHB from 10 g/L of ethanol in 96 h with
supplementation of a small number of amino acids. To expand the range of potential acetyl-
CoA-derived compounds from ethanol, this EUP was coupled with a prenol biosynthetic
pathway. The resulting strain produced 24 mg/L of prenol from a medium containing ten
g/L of ethanol in 48 h. As an exciting new approach, C2-biomanufacturing using ethanol
as the sole carbon source has opened the possibility of producing acetyl-CoA-derived
chemicals. Significantly, this strategy has led to a higher theoretical yield for producing
acetyl-CoA-derived chemicals from ethanol than other sources. For example, the PHB
yield from ethanol was 2-fold higher than that from acetate [229]. Further technological
developments and metabolic engineering strategies will likely enhance these processes,
making CO2-derived ethanol an abundant, renewable, and affordable substrate to fuel
ethanol-based fermentation processes [241].

Taken together, both C1 and C2 chemicals derived from the electrochemical fixation of
CO2 can serve as carbon and energy sources for further biomanufacturing with various
microorganisms. The major biochemical reactions to generate ATP from the most common
C1/C2 substrates are summarized in Table 2, which may potentially provide guidance for
further pathway design and bioconversion yield predictions in future.
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Table 2. ATP balance for the most common C1 and C2 chemicals, calculated regarding Figures 4 and 5.

Substrate Key
Enzyme

Major Biochemical Reactions Eq. ATP/
SubstrateReaction 1 Reaction 2 Reaction 3

CO2 N/A CO2 + RuBP + 2NADPH + 2ADP + 2Pi→ 2GAP
+ 2NADP + 2ATP N/A N/A 3.3

CO N/A CO + 5-Methyl-THF→ AcCoA N/A N/A 6.0

Methane (CH4) N/A CH4 + O2 + NADH→ HCHO + NAD HCHO + Xu5P + ATP→ 2GAP + ADP + Pi N/A 8.7

Methanol (CH3OH
or MeOH)

RuMp

MeOH + NADH→ HCHO + NAD

HCHO + Ru5P + ATP→ 2GAP + ADP + Pi 2GAP + 8ADP + Pi + 8NAD→ 2AcCoA +
8ATP + 8NADH + 2CO2

8.7

XuMp HCHO + Xu5P + ATP→ 2GAP + ADP + Pi N/A 9.2

Serine
HCHO + FAD + 3ATP + 2NADPH + 2NADH +
Glycine + CO2 → AcCoA + FADH2 + 3ADP +
2NADP + 2NAD + Glyoxylate

N/A −6.0

Formate (HCOOH)

CBB HCOOH + NAD→ CO2 + NADH RuBP + CO2 + 2NADPH + 2ADP + Pi→ 2GAP
+ 2NADP + 2ATP

2GAP + 8ADP + Pi + 8NAD→ 2AcCoA +
8ATP + 8NADH + 2CO2

9.2

HCOOH + ATP→ 10-Formyl-THF + ADP + Pi 10-Formyl-THF + NADPH + NADH + CO2 +
FADH2 → AcCoA + NADP + NAD + FAD N/A 5.0

Acetate (CH3COOH
or OAc)

Pta/ackA OAc + ATP→ ADP + AcP AcP + CoA→ AcCoA + pi N/A 11

ACS OAc + ATP + CoA→ AcCoA + AMP + PPi N/A N/A 11

Ethanol
(CH3CH2OH or
EtOH)

CYP2E1
EtOH + NADPH + H + O2 →MeCHO +
NADP + H2O

MeCHO + NADH→ NAD + OAc

OAc + ATP→ ADP + AcP;
AcP + CoA→ AcCoA + pi 5

OAc + ATP + CoA→ AcCoA + AMP + PPi 5

ADH EtOH + NAD→MeCHO + NADH
OAc + ATP→ ADP + AcP;
AcP + CoA→ AcCoA + pi 11

OAc + ATP + CoA→ AcCoA + AMP + Ppi 11

Catalase EtOH + H2O2 →MeCHO + H2O
OAc + ATP→ ADP + AcP;
AcP + CoA→ AcCoA + pi 8

OAc + ATP + CoA→ AcCoA + AMP + PPi 8
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2.2.3. Biomanufacturing with Syngas via Gas Fermentation

In addition to the CO2-derived liquid C1/C2 chemicals that can be used as the alter-
native feedstock for biomanufacturing of fuels and chemicals, synthesis gas, or syngas,
which consists of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrogen
(N2), and some higher hydrocarbons, can also be used as an economical feedstock option.
The percentage of CO in syngas can range between 5 and 60%, and the gas can be steam
reformed to enrich the H2 content [242]. CO can be obtained from CO2 via electrochemical
conversion and H2 can be produced as a product of electrolysis process with water. Syngas
can also be produced from biomass gasification, an endothermic process that occurs at tem-
peratures of 750–800 ◦C and utilizes materials like lignocellulosic biomass and municipal
solid waste as feedstocks [243,244]. Despite its promise, the process has some drawbacks.
It requires a considerable input of heat energy, and the feedstock must maintain a degree
of homogeneity for efficient operation [245]. Heterogeneous feedstocks can lead to wide
variations in product composition, necessitating pre-treatment and post-treatment steps
that can escalate operational costs [246]. Conversely, the thermochemical process involves
gasifying carbonaceous materials into syngas and converting it into biofuels [247]. Syngas
can be converted to diesel, methanol, or ethanol using the Fischer–Tropsch (FT) process,
which uses chemical catalysts. Still, this method requires high temperatures and pressures,
making it less feasible [246]. Another option is using microbial catalysts to convert syngas
into a variety of products, like alcohols and carboxylic acids, at milder conditions [248,249].

However, each of these platforms presents unique advantages and disadvantages.
Biochemical conversion, for example, struggles with high production costs and energy
demands. On the other hand, the thermochemical conversion process, while capable of
utilizing all biomass components (including lignin), faces challenges like gas–liquid mass
transfer limitation, low productivity, and elevated production costs [250]. Combining
the two conversion processes, such as electrochemical conversion CO2 into CO, biomass
gasification, and syngas fermentation, could be a solution to these problems. Syngas
fermentation, compared to Fischer–Tropsch Synthesis (FTS), is seen as a superior option due
to its operational flexibility, end-product variety, and cost-effectiveness. This technology
could serve as a sustainable way of supplying feedstock for fermentation. Integrating
gasification with syngas fermentation could bring together the benefits of thermochemical
(full conversion of lignocellulosic biomass) and biochemical (flexibility in CO/H2 ratio of
the substrate and end products) technologies, mitigating the complexity of pre-treatment
steps and the high enzyme and operational costs of biomass valorization [251]. This
approach has the potential to be directly implemented in industries that release high levels
of exhaust gases, like steel manufacturing, oil refining, and petrochemistry.

However, syngas fermentation processes still have challenges to overcome, such as bac-
terial biomass washout, low gas solubility, and limited mass transfer rates at the gas–liquid
interface. These challenges demand further research and innovation to boost microbial ac-
tivity or limit the exposure of microorganisms to excessive shear stress, ultimately reducing
operational costs [252]. Microbial conversion of CO, H2, and CO2 to acids and alcohols via
acetogenic bacteria operates via the reductive acetyl-CoA or WLP, as mentioned in earlier
sections. These biological methods offer several advantages such as high tolerance to trace
contaminants, high product specificity, and being sustainable, environmentally friendly,
and cost-effective [253]. Despite these obstacles, gas fermentation offers a promising route
for sustainable fuel production and waste recycling. It provides feedstock flexibility, non-
food biomass utilization, and total carbon utilization, including lignin from woody biomass,
offering significant advantages over sugar fermentation. Moreover, if the process limita-
tions can be overcome, gas fermentation could provide a more selective, robust, flexible,
and cost-effective option than the thermocatalytic Fischer–Tropsch synthesis, suggesting it
is a promising technology for mitigating global warming and fulfilling increased liquid
fuel demand, especially in transportation [254].
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2.2.4. Current Attempts to Industrialize Microbial CO2 Fixation

The dream of establishing a CO2-based biorefinery is a long-standing challenge. The
rise in CO2, primarily due to anthropogenic activities, has significant ecological impacts.
There is a pressing demand to develop technologies for sustainable capture and utilization
of CO2. In this regard, renewable energy generation and usage have garnered significant
interest in achieving a carbon-neutral environment. Microbial fermentation is one of
the best ways to reach this aim, and the use of CO2-based feedstocks as substrates has
been extensively explored to produce various valuable products. These include food
ingredients like alternative proteins, lipids, starch, nutraceuticals, specialty chemicals
such as flavors and fragrances, pharmaceuticals, agrochemicals like plant hormones, and
bioenergy sources, including fuels and hydrogen [255]. Various methods like biological
CO2 conversion using microbes, chemo-catalytic CO2 conversion via organic or inorganic
catalysts, light-induced or electrocatalytic CO2 conversion, and catalytic hydrogenation
of CO2 have demonstrated the capability to convert CO2 into bio-based products [256].
However, from a large-scale perspective, none of these methods can merely resolve CO2
capture and usage problems.

LanzaTech has successfully deployed gas fermentation technology to produce carbon-
intelligent products ranging from monomeric and polymeric materials to fragrances, sol-
vents, chemicals, and fuels [257]. They produce substrates like acetone, ethanol, and lactate
from waste syngas and flue gas using acetogens and autotrophic bacteria, where CO2,
CO, and H2 serve as carbon and reducing energy sources [254]. LanzaTech’s partnerships
include major industrial players like Shougang Group’s Jingtang Steel Mill, Arcelor Mittal
Steel Company, Indian Oil Corporation, Tata Steel Europe, and more, demonstrating its
global reach and impact [258]. Additionally, LanzaTech’s work extends to converting CO2
to acetone and isopropanol at an industrial pilot scale [71] and producing starch in the
form of amylose and amylopectin in a cell-free system [53]. Similarly, the Siemens Energy
and Evonik partnership established the world’s first fully automated CO2 electrolyzer in
2020, producing syngas to make butanol and hexanol with Clostridium strain in a 2000 L
bioreactor. This project aims to produce 10,000 tons of butanol annually using 25,000 tons
of CO2 [259].

High-profile CO2 capture projects have been developed in Italy, Germany, New
Zealand, the Netherlands, the United Kingdom, Canada, China, and the USA. These
initiatives underscore the global effort to harness CO2 for sustainable industrial applica-
tions [23]. Numerous start-up companies including Air Protein Inc. [260], Deep Branch
Biotechnology Ltd. [261], Kiverdi [262], Solar Foods [263], and NovoNutrients [264], are
notable in biotechnological CO2 utilization for producing protein and food ingredients. The
success of these ventures hinges on various factors, including the cost of hydrogen, feed-
stock availability, market size, and growth rates. Continuous technological development,
economies of scale, supportive policies, and market incentives, are crucial for advancing
biotechnological utilization and valorization of CO2.

3. Challenges and Future Perspectives
3.1. Challenges for Biomanufacturing with Direct Fixation of CO2

The conversion of inorganic carbon (CO2) into organic compounds offers a promising
strategy to mitigate the greenhouse effect and furnish sustainable resources. This method
has potential implications for addressing climate change and utilizing CO2 as an economical
substrate for producing fuels, chemicals, food ingredients, pharmaceuticals, and industrial
materials. The rapid advances in chemical, electrochemical, and biotechnological research
methods and tools indicate the imminent identification of novel carbon-fixing enzymes and
pathways, which makes it feasible for directly fixing and converting CO2 into desired fuels
or chemical products. However, despite these discoveries, the current natural or engineered
carbon-fixation systems are plagued by inefficiencies and a lack of adaptability for genetic
modifications, making them inadequate for industrial applications. There are several major
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challenges to be addressed before the one-step or direct fixation of CO2 strategy can be applied
in large-scale applications for high-yield production of fuels and chemicals from CO2:

(1) Only low-energy utilization efficiency can be achieved when light is used as the
energy source to fix CO2. Green plants, algae, and certain bacteria are capable of using
sunlight via the photosynthesis process to capture and fix CO2 into carbohydrates,
but at low-energy efficiency, with less than 1% of the sunlight energy stored in the
biosynthesized chemicals [5,265].

(2) Energy-intensive chemicals such as H2 gas can be used to fix CO2 and provide the
reducing power to convert CO2 into the desired carbohydrate products, but there are
concerns of extra material cost, technical challenges of using gas for fermentation,
increased process complexity, and operating safety due to the use of H2 gas or similar
energy-intensive materials.

(3) A very limited number of microbial hosts, genetic manipulation methods and tools,
and pathway engineering strategies are available for more generalized applications
of direct CO2 fixation and conversion. Many synthetic pathways for direct CO2
fixation face major challenges, such as enzymes with toxicity to host cells or with
non-compatible optimum temperatures. Innovations such as the allyl-CoA carboxy-
lase/reductase, which boasts an activity rate 37 times that of the CBB cycle, show
promise in addressing this [26]. Introducing mechanisms to concentrate carbon also
seems to be a viable strategy to enhance the carbon flux in these pathways. With syn-
thetic biology’s progress, exploring and designing novel pathways might be the key.
Predictions even suggest that certain pathways, like those using phosphoenolpyru-
vate carboxylase, could potentially offer two to three times the carbon-fixation rate of
the Calvin cycle [56].

(4) Microbial electrosynthesis (MES) can be used to produce certain fuels or valuable
organic acids [92–94] by utilizing a biofilm on an electrode as a catalyst to directly
reduce CO2 to the products [23], but the species of the microorganisms and the
categories of the fuels and chemicals that can be produced are very limited. Acetate is
the current major product and its production titer and yield are still too low, which
significantly increases the downstream recovery cost [266]. In addition, there is strict
requirement for the materials that can be used for cathode. More challenges for further
process design and scale-up are expected for large-scale applications in future [266].

3.2. Challenges for Biomanufacturing with CO2-Derived C1/C2 Chemicals

Due to the overall low-energy efficiency and/or product yield from the biomanufac-
turing process with one-step/direct CO2 fixation, the two-step CO2 fixation and conversion
strategy is considered more promising for future biomanufacturing of various fuels and
chemicals, which uses C1/C2 substrates derived from CO2 via electrochemical catalysis.
However, there are also several major challenges need to be addressed:

(1) Mass transfer challenges limits the microbial fermentation productivity when the
CO2-derived C1 gases, such as CO or CH4, are used as the substrate. Metabolic
engineering strategies for using appropriate microorganisms to metabolize the C1
gases are also to be established and further optimized. In addition, safety concerns
are also another challenge that may limit the use of CO for biomanufacturing.

(2) Though formic acid and acetic acid can be used as the substrate for biomanufacturing,
most current electrochemical catalysis processes can only fix CO2 into the form of
formate or acetate salts in aqueous solution, which need to be further treated with acid
and base and go through a complicated purification process to obtain the acid products
so that they can be fed into the bioreactor for microbial fermentation. Progress has
been achieved in electrochemically fixing CO2 into nearly pure formic acid [267], but
the productivity needs to be further improved for large-scale application. Comparing
to the electrochemical reduction in CO2 into formic acid, converting CO2 into acetic
acid at high yield is still a challenge [268].
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(3) Direct feeding too much formic acid or acetic acid into a bioreactor may cause sud-
den acidic pH spikes in fermentation and kill the microbial cells. Therefore, new
formic/acetic acid feeding strategies should be developed to avoid/minimize pH
spikes in a bioreactor while providing enough substrate(s) for cell growth and product
formation [269,270].

(4) Methanol and ethanol can be used as fermentation substrates with high-energy den-
sities, but high concentrations of the alcohol substrates may cause toxicity to the
microbial cells. In addition, further metabolic engineering strategies for efficient
assimilation of methanol and/or ethanol should be explored for significantly higher
product yield.

3.3. Future Perspectives for Biomanufacturing with CO2

The overuse of fossil oil-based or -derived fuels, chemicals, and materials has led
to increased carbon emissions, which are one of the major contributors to global climate
change. Biomanufacturing with renewable or waste feedstocks is considered as a promising
and sustainable route to replace the current petrochemical methods for producing all fuels,
chemicals, and materials that are needed in our daily life. Feedstock or raw materials,
typically obtained from land-based biomass in the format of starch, sugars, and fats,
contribute to a significant portion of the biomanufacturing product cost. Using CO2 or
CO2-derived chemicals as biomanufacturing feedstock not only reduces the material cost,
but also contributes to the global effort in reducing carbon emissions and achieving the
carbon-neutral or -negative goal. While significant progresses have been achieved to
demonstrate the feasibility of using one-step or two-step strategies for biomanufacturing
with CO2, major challenges and technical barriers still exist, as described earlier. Figure 7
shows a brief summary of using various methods that have been developed or will be
developed for using CO2 as feedstock for biomanufacturing. The following research efforts
and perspectives will be expected in future:

(1) Using advanced synthetic biology to create new microbial cell factories to utilize CO2
and CO2-derived chemicals for high-yield biomanufacturing: Researchers are now at
the forefront of devising more efficient synthetic systems. This involves engineering
pivotal enzymes and transferring whole or partial carbon-fixation pathways into
heterotrophic cells, enabling them to perform carbon fixation. A testament to these
efforts includes the creation of pathways like the MCG pathway and the CETCH
cycle using different carboxylases [26]. Although the enhancement in carbon-fixation
rate remains modest, these innovations may lead to designing more adept systems.
Host selection also is a challenge for keeping CO2 fixation sustainable. For example,
most CO2-fixing microbes cannot tolerate high CO2 concentrations, necessitating
research into strains that can endure and efficiently process higher levels of CO2
or CO2-derived substrates. Adaptive laboratory evolution (ALE) methods may be
applied to help develop more robust production strains that are suitable for large-scale
applications.

(2) Using artificial intelligence (AI) to guide the discoveries of new strains, metabolic
pathways, enzymes, and fermentation process controls that may lead to complete
bioconversion of CO2 or CO2-derived substrates [271–273]: This may also help dis-
cover new valuable products that may be produced from the pathways using CO2
or having CO2 as the major intermediates. More advanced process, such as con-
tinuous biomanufacturing with extremely high yield and productivity, can also be
developed [8].

(3) Exploring a cofeeding strategy that uses a mixed C1 and C2 substrates for bioman-
ufacturing: Current electrochemical reduction in CO2 focuses on maximizing the
production of a single C1/C2 product at high yield and selectivity. However, the
microbial cells may be capable of using a mixed C1 and C2 feed for producing a
desired fermentation product. This may help relieve the burden in the electrochemical
catalysis system and significantly reduce its cost. More strain engineering and fer-
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mentation process development work should be conducted to use a medium or feed
with mixed C1/C2 substrates, including methanol, formic acid, ethanol, and acetic
acid, for various biomanufacturing purposes. A joint research effort between the
electrochemists, biologists, and chemical engineers are expected to achieve the goal.

(4) Developing an advanced process control strategy based on online monitoring/
measurements of dissolved CO2 in an aqueous medium, exhausted CO2 in off-gas
flow, and the cellular redox levels: Technologies for measuring dissolved CO2 in liquid
and gas-phase CO2 have been well established and become commercially available.
Monitoring redox cofactor (NAD/NADH, NADP/NADPH, FAD/FADH2) balance
has also been investigated and demonstrated a capability for advanced fermentation
control to further improve the biomanufacturing yield [274–276]. In particular, a
nutrient-induced metabolic shift for high productivity and low-waste generation has
been demonstrated in cultures of various cell lines and products. However, as the cells
rapidly respond to culture conditions, it is crucial to closely monitor their metabolism
for a controlled balance between the target metabolic pathway and unfavorable
consequences. In particular, during biosynthesis of bioproducts from CO2-derived
C1/C2 substrates, additional reduction power (NADH, NADPH, FADH2) has to be
supplied to produce compounds whose degree of reduction is higher than that of
the substrate [277,278]. Therefore, adjusting the metabolic status and pathways for
improved NADH/NADPH in microbial cells is an effective method to enhance the
biosynthesis of many bioproducts [277,279,280]. Moreover, other parameters like
temperature (to consider O2 and CO2 solubility), pH (regarding the host optimal pH),
dissolved oxygen, and total inorganic carbon should be optimized for reaching higher
yields [281,282].

(5) Developing a novel biomanufacturing platform that can produce fuels and chemicals
from sugars at zero or near-zero life cycle carbon emissions via in situ CO2 recy-
cling: Most microbial fermentation processes that use C5/C6 sugars as substrates
have nearly 50% or more carbon loss due to the need for metabolizing a portion of
the sugar substrate into CO2 to generate energy (ATP) and cofactors for cell growth
and biosynthesis. To date, there has been very rare research aiming for biomanu-
facturing with direct recycling of the exhausted CO2. The capturing and fixation
of CO2 into C1/C2 chemicals can be achieved via similar electrochemical catalysis
processes [116,283]. There are several trials to combine electrochemical reduction in
CO2 and the fermentation of its reduced products. However, there is still a long way
to go for the optimization of this combined system to work effectively [284]. The
developed new biomanufacturing platform should employ newly engineered strains
that can co-utilize C5/C6 sugars and CO2-derived C1/C2 chemicals for producing the
desired fermentation products as shown in Figure 6. Recycling the exhausted CO2
back to fermentation not only avoids/minimizes the CO2 release from the bioman-
ufacturing processes, but also maximizes the use of the renewable feedstocks for
significantly higher product yield.
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Figure 7. A brief summary of various methods for using CO2 as feedstock for biomanufacturing,
which shows the major promising approaches to efficiently fix CO2 and convert it into desired
products through a carbon-neutral or -negative biomanufacturing process [162,271]. The figure was
created with BioRender.

4. Conclusions

This review summarized the most recent advancements and strategies in CO2 fixation
and conversion into industrially valuable chemicals. The path to efficient CO2 fixation
is fraught with challenges, ranging from biological to technical. Nonetheless, the rapid
advancements in synthetic biology and multi-disciplinary collaborations offer a promising
future for the field. Addressing these challenges will provide avenues for sustainable
resource generation and significantly contribute to climate change mitigation. Continued
research and innovation are vital to bringing these promising laboratory-level techniques
to commercial reality and industrially available candidates in addressing GHG emissions.
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