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Abstract: Clavicle midshaft fractures are mostly treated surgically by open internal reduction with a
superior or anteroinferior plate and screws or by intramedullary nailing. Screw positioning plays a
critical role in determining the stress distribution. There is a lack of data on the screw position and
the appropriate number of cortices required for plate fixation. The aim of this study is to evaluate the
mechanical behavior of an anterior plate implanted in a fractured bone subjected to 120◦ of lateral
elevation compared to a healthy clavicle using numerical simulations. Contact forces and moments
used were obtained from literature data and applied to the healthy and fractured finite element
models. Stresses of about 9 MPa were found on the healthy clavicle, while values of about 15 MPa
were calculated on the plate of the fractured one; these stress peaks were reached at about 30◦ and 70◦

of elevation when the stress shielding on the clavicle sums all the three components of the solicitation:
compression, flexion, and torsion. The stress distribution in a clavicle fracture stabilized with plates
and screws is influenced by several factors, including the plate’s position and design, the type of
screw, and the biomechanical forces applied during movements.

Keywords: clavicle plate; fractured clavicle; finite element analysis; finite element modeling; screw
stress distribution; stress analysis

1. Introduction

In the field of orthopedic surgery, clavicle fractures are a common injury that often
requires surgical intervention for proper healing [1]. The clavicle has three parts: body (or
diaphysis), sternal end (or medial epiphysis), and acromial end (or lateral epiphysis) [2,3].
The biomechanics of a healthy clavicle involve the absorption and distribution of stress
during bending and compressive loads to ensure optimal function and stability [4]. It is
involved in scapulothoracic kinematic with the acromioclavicular (AC) and sternoclavicular
(SC) joints [5]. At the SC joint, scapulothoracic movements have been shown to cause slight
rotation of the clavicle relative to the thorax, which occurs more frequently at the SC joint
than at the AC joint [5]. Shrugging resulted in a very large increase in clavicle elevation of
25 degrees [6]. Clavicle fractures are one of the most common traumatic injuries in adults,
accounting for approximately 5% of all fractures, and half of all of these are shoulder girdle
fractures [7,8]. Most fractures involve the middle third of the clavicle, which, because of its
thin structure and subcutaneous location, is the only area not protected or reinforced by
muscle and ligament attachments (Figure 1) [9].
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Figure 1. Representation of an X-ray image with drawing of a clavicle fracture. L: left side. 

To understand the fracture mechanism, it is important to consider the deformation 
forces acting on this segment [3,10,11], which are usually the result of high-energy blunt 
trauma to the lateral shoulder, with a force greater than the elastic limit of the bone [12]. 
In other cases, the trauma occurs by transfer following a fall on an outstretched arm, which 
disperses the traumatic force rather than concentrating it directly on the clavicle [13]. 
Sports-related activities such as cycling or contact sports have also been identified as 
common causes of clavicle fractures [14]. 

Clinically, clavicle fractures are usually visible on initial examination as a visible 
and/or palpable deformity with ecchymosis and an underlying sensation of emptiness on 
palpation, and patients report specific pain at the fracture site [13,15]. The deforming 
muscle forces produce a characteristic clinical appearance of shoulder drooping, scapular 
internal rotation, and shoulder shortening [15]. 

Although numerous classification systems for clavicle fractures have been described 
(AO, Neer, Craig, Robinson), the simplest and most widely used is the Allman 
classification, which divides clavicle fractures into three groups according to their 
anatomical location in relation to the a achments of the sternocleidomastoid and 
trapezius muscles [16,17]. In the Allman classification, the middle third of the clavicle 
represents group I of clavicle fractures with a frequency of 80% compared to the lateral 
(group II) and medial (group III) parts (15% and 5%, respectively) [16,17]. Each type is 
divided into three subgroups according to the direction of displacement: A, minimal 
displacement; B, displacement with overlapping fragments; and C, displacement with 
complete separation [16]. This classification can help determine the appropriate 
management approach. In fact, Type I fractures will often recover well with a conservative 
approach, whereas Type II and Type III may require more caution, especially if there is 
significant displacement [18]. 

Diagnostic methods are required to investigate the type of fracture for more 
appropriate management, consisting of two radiographs taken in the standing position—
a standard anteroposterior view and a 15° cephalic oblique view to define the superior or 
inferior displacement of the fracture [19]. Computed tomography (CT) is not routinely 

Figure 1. Representation of an X-ray image with drawing of a clavicle fracture. L: left side.

To understand the fracture mechanism, it is important to consider the deformation
forces acting on this segment [3,10,11], which are usually the result of high-energy blunt
trauma to the lateral shoulder, with a force greater than the elastic limit of the bone [12]. In
other cases, the trauma occurs by transfer following a fall on an outstretched arm, which
disperses the traumatic force rather than concentrating it directly on the clavicle [13]. Sports-
related activities such as cycling or contact sports have also been identified as common
causes of clavicle fractures [14].

Clinically, clavicle fractures are usually visible on initial examination as a visible
and/or palpable deformity with ecchymosis and an underlying sensation of emptiness
on palpation, and patients report specific pain at the fracture site [13,15]. The deforming
muscle forces produce a characteristic clinical appearance of shoulder drooping, scapular
internal rotation, and shoulder shortening [15].

Although numerous classification systems for clavicle fractures have been described
(AO, Neer, Craig, Robinson), the simplest and most widely used is the Allman classification,
which divides clavicle fractures into three groups according to their anatomical location in
relation to the attachments of the sternocleidomastoid and trapezius muscles [16,17]. In the
Allman classification, the middle third of the clavicle represents group I of clavicle fractures
with a frequency of 80% compared to the lateral (group II) and medial (group III) parts
(15% and 5%, respectively) [16,17]. Each type is divided into three subgroups according to
the direction of displacement: A, minimal displacement; B, displacement with overlapping
fragments; and C, displacement with complete separation [16]. This classification can help
determine the appropriate management approach. In fact, Type I fractures will often recover
well with a conservative approach, whereas Type II and Type III may require more caution,
especially if there is significant displacement [18].

Diagnostic methods are required to investigate the type of fracture for more appropri-
ate management, consisting of two radiographs taken in the standing position—a standard
anteroposterior view and a 15◦ cephalic oblique view to define the superior or inferior
displacement of the fracture [19]. Computed tomography (CT) is not routinely performed
but may be useful for medial fractures or in the presence of associated scapular or thoracic
fractures [20].

Clavicle fractures can lead to complications if not treated properly, such as malunion
or nonunion of the fracture, resulting in persistent pain and limited range of motion [21].

A better understanding of this type of fracture has led to improved operative man-
agement with excellent results in terms of functional outcome [22]. Most patients with



Bioengineering 2023, 10, 1402 3 of 14

compound or minimally compound fractures of the middle third of the clavicle (less than
1.5 cm shortening) can be managed non-operatively with a sling that supports the weight
of the elbow, with a gradual return to motion approximately four weeks after the traumatic
event [21]. As the indications for surgical treatment have expanded due to the excellent
results, the effectiveness of non-surgical treatment has been questioned, with mixed results
for both types of approach [21,23,24]. Surgery is indicated in cases of severe diastasis of
the fragments, fractures with a third vertical fragment protruding under the skin, pseu-
doarthrosis, irreducible fractures after immobilization, and rapid return to work [25].

Therefore, based on the available evidence, surgical treatment, particularly plate
fixation, is increasingly favored for displaced midshaft clavicle fractures in younger and
active patients [26,27]. There are several reasons for this shift towards surgical treatment.
Firstly, recent studies have shown that non-operative treatment of displaced midshaft
clavicle fractures leads to poorer outcomes than surgical treatment [27,28]. Secondly,
advances in surgical techniques and a better understanding of the fracture type have
contributed to the increasing preference for surgical management [1]. In addition, plate
fixation offers biomechanical advantages, including greater stiffness and flexural strength
compared to intramedullary fixation [28,29].

Plate fixation also allows for smaller incisions, less soft tissue disruption, and avoids
damage to the supraclavicular sensory nerves [30]. In addition, studies have shown that
early surgery is preferred to delayed surgery in the management of this type of fracture. An
early approach is preferred because it allows early rehabilitation and has shown favorable
results in terms of functional recovery [31]. On the other hand, delayed surgery may result
in prolonged pain and delayed return to function and may lead to higher rates of nonunion
and symptomatic malunion [31].

Fractures of the middle portion of the clavicle are most treated surgically by open
internal reduction with a superior or anteroinferior plate and screws or by intramedullary
nailing (Figure 2) [32–35].
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Additionally, the positioning and placement of screws play a crucial role in determin-
ing the stress distribution in clavicle fracture fixation [36].

Rehabilitation protocols for operative and non-operative treatment of midshaft clavicle
fractures differ significantly. The protocol for operative treatment typically includes early
mobilization and range of motion exercises to prevent stiffness and promote healing; move-
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ment is allowed very quickly because the stability provided by plate fixation allows early
function [37].

Non-operative treatment, on the other hand, usually involves immobilization with
a cast to allow the fracture to heal naturally [38]. In fact, rehabilitation is often delayed,
allowing the fracture to heal completely and avoid stressing the clavicle in the initial phase.
This type of treatment often results in an increased rate of re-injury, a delayed recovery to
daily activities, and sub-optimal function of the shoulder due to malunion and shortening
of the clavicle, with consequent thoraco-scapular dyskinesia [38].

There is a lack of data on the screw position and the appropriate number of cortices
required for plate fixation and on the long-term outcomes and potential complications
associated with surgical treatment of displaced midshaft clavicle fractures.

The aim of this study is to estimate the stress distribution in a clavicle fracture stabilized
with an anteroinferior plate and screws, compared to a healthy one, during shoulder
elevation using numerical finite element (FE) analysis. The model has been developed to
assess the forces involved in the biomechanics of the clavicle during shoulder elevation
and the role of the stabilization plate and screws to guide the choice of the best possible
treatment. Considering the multiple components involved in human movement, analyzing
the forces involved in fixation devices seems to be a good way to improve their application,
design, and rehabilitation approach. Furthermore, the FE model can help to analyze the
stability of the fracture fixation, the degree of bone and implant stress, and the bone
adaptation to the plate and screws in depth and could lead to a better implant technique to
ensure biomechanical stability.

2. Materials and Methods

In order to assess the forces applied to the shoulder joint, a three-dimensional joint
model was created and loaded using data derived from a clinically validated shoulder
implant (BIOMODULAR, Biomet Germany, Berlin, Germany, with six strain gauges and nine-
channel telemetry). Peak resultant forces (Fp) were determined using MATLAB software
(ver. R2023b), as shown in Figure 3, which shows the angle of elevation (◦) vs. force (N)
curves. In Figure 4, the schematic loading conditions to perform numerical analysis are
represented.
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Figure 4. Schematic loading conditions.

Simulations were performed by imposing an elevation of the humerus from 0◦ to 120◦

along the Z-axes. An anteroinferior plate was implanted in the middle third shaft fracture
(75% of clavicle fractures) [14]. Two different 3D FE numerical models of the healthy and
unhealthy clavicles were created from ten-node tetrahedral elements using CT scan data,
and the various parts were modeled (Table 1). The characteristics of all the bony elements
(rib cage, scapula, humerus, and clavicle) were defined by choosing an elastic modulus
of 17,500 MPa and a Poisson ratio of 0.35, whereas the ligaments were modeled with an
elastic modulus of 128 MPa. The mechanical properties of the material have been chosen
considering the maximum value of the elastic modulus, E = 210 GPa, which can be achieved
by specific surface treatments of the steel and by adding elements such as Co or Mg to
the alloy, as reported in the literature [39–41]. Future developments of this work aim to
investigate different material behaviors in depth, including titanium and its alloys and
screw configurations.

Table 1. Finite element model parts.

Body Components Elements Nodes

Rib cage 12.361 13.526
Humerus 18.452 21.458
Scapula 17.232 19.557

Acromion 10.784 15.420
Coracoacromial ligament 5.469 5.914
Glenohumeral ligament 4.752 5.112

Acromioclavicular ligament 2.845 2.946
Coracohumeral ligament 3.025 3.412

Transverse humeral ligament 5.231 5.417
Joint capsule 4.569 4.822

The model was solved using ANSYS 2022 R2 (22.2) software. The nodes of the ribcage
were fixed along the axes of symmetry, and the force curves shown in Figure 4 were applied.
The accuracy of the results was checked using some comparisons, and a convergence study
based on the stresses in the areas of interest was required.

3. Results

Stresses of about 40 MPa were found on the humerus and 30 MPa on the scapula
during the elevation phase, acting at 34◦ and 70◦, as shown in Figure 5. In Figure 5a,b, it is
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possible to see the different stress levels visible on the clavicle in the healthy and fractured
cases, respectively. Table 2 shows the equivalent von Mises stress calculated for each part.
The glenohumeral, acromioclavicular, and coracohumeral ligaments showed stresses lower
than 13 MPa.
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Table 2. Equivalent von Mises maximum stresses and percentage difference localized in model parts.

Body Components Equivalent V. Mises Stress [MPa]

Humerus 40
Scapula 30
Clavicle 9

Fractured clavicle 15
Coracoacromial ligament 8
Glenohumeral ligament 11

Acromioclavicular ligament 10
Coracohumeral ligament 13

Transverse humeral ligament 8
Joint capsule 8

Figures 6–8 show the comparison between the healthy and implanted clavicles in
terms of equivalent von Mises stress, displacements, and equivalent elastic strain. As can be
seen from the analysis of Figure 6, the stress on the healthy clavicle is approximately 9 MPa,
while the other one reaches approximately 15 MPa. This level of loading is completely
absorbed by the screws and plate. The predominant type of solicitation is compression–
flexion aging in the axial direction of the bone. Figure 7 shows the displacements recorded
in the two cases. Significant differences can be argued on the healthy clavicle of about
0.4 mm and 0.93 mm on the other. This is because of the specific function of the plate, which
can only be attached to the bone on one side. It is also due to the specific nature of the
injury, which tends to open the two bony fragments on the opposite side.

Figure 8 shows the equivalent elastic strain contour maps in both cases. The results con-
firm a coherent behavior with the other previous results obtained for stresses and displace-
ments; values of 0.0004 µm/mm were observed in the healthy clavicle and 0.003 mm/mm
in the other. Finally, Figure 9 presents the curves of the equivalent von Mises stress versus
the angle of elevation measured on the screws. As shown in the figure, the screws have
been numbered from 1 to 6, and the respective curves have been plotted on the graph. As
can be seen, the screw with the highest stress, approximately 14 MPa, is number 6, probably
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due to its proximity to the glenohumeral joint and its functional role in maintaining the two
attached bony ends. The second screw to play an important role is number 2, where the
stress reached a level of about 13 MPa. These results must be considered considering the
peculiar kind of solicitation imposed. During its elevation, from 0◦ to 120◦, the humerus,
which is connected through the kinematic bony and tissue chain, transmits different lev-
els of stress to the clavicle at different elevation angles. At 30◦ and 70◦, the main stress
components evaluated in screw 6 are caused by shear/compression stress-induced aging
of the first clavicle stump. The stress then progressively spreads inside the stump through
screws 5 and 4. Successively, the plate sustains the stress connecting the second stump and
transmitting the higher part of it to screw 2. By observing the different stress components
acting in equivalent von Mises stress values, evaluated during the FE analysis, the most
important contribution is played by the shear solicitation derived by the connection with
the plate. The load on screws 3 and 1 is gradually transferred.
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4. Discussion

The aim of the present research was to estimate stress distribution occurring in a
clavicle fracture surgically treated with a plate, compared to a healthy one, during eleva-
tion of the shoulder. Numerous previous studies have used FE analysis to gain a better
understanding of the disease consequences in terms of timing, outcomes, and healthcare
costs [35,42–44]. Several authors have demonstrated improved early functional outcomes
with lower rates of nonunion and symptomatic aesthetic deformity with surgical treatment
of clavicle fractures compared to non-surgical treatment [45,46]. The decision between
surgical and non-surgical treatment should be based on several factors, such as the severity
of the injury, the occurrence of complications, the patient’s age, and the activity level [14].
Indeed, no solid evidence exists that the long-term functional outcome of surgery is signifi-
cantly superior to non-surgical treatment [21]. After a bone fracture, if surgery is required,
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the choice of device depends on the fracture characteristics and on the surgeon’s prefer-
ence [18,47], but functional needs are one of the most important points in the choice of
treatment [48,49]. Clinical implications for the choice of fixation type include consideration
of the potential stress distribution and fixation failure associated with different plate de-
signs in clavicle fracture fixation [50]. This stress concentration is due to factors such as
plate fracture or deformation, excessive stress concentration, and the position of the plate
and screws used to fix the fracture [51,52]. When intramedullary fixation is compared with
plate and screw fixation, the latter offers a greater biomechanical advantage in terms of
stiffness and bending strength [18,50]. The advantages of intramedullary fixation of clavicle
fractures include a smaller incision, less soft tissue disruption, less bone prominence, and
avoidance of supraclavicular sensory nerves [53].

Several designs of anatomically preformed plates are available for the fixation of clavicle
fractures. Ideally, these 3.5 mm anatomically precontoured plates, which are designed to
conform to the superior clavicle surface, should be universally conformable and have
minimal hardware-related complications compared to standard uncontoured plates [54].

The morphological variability of the clavicle in patients makes it difficult to provide a
standard precontoured implant that fits the wide range of clavicle shapes. When precon-
toured implants are used to fix clavicle fractures, it is often found that the plates do not
conform to the clavicle anatomy [54]. The choice of an anterior plate partially reduces the
risk of complications related to the superior plate and reduces anatomical variability [55].

The anterior clavicle plate helps to hold the bone fragments together as they heal,
ensuring proper alignment and function of the clavicle [56].

These plates are typically thin and contoured to match the natural shape of the clavicle
and are specifically designed to fit the anterior part of the clavicle, providing a secure
attachment that minimizes the risk of implant migration or loosening [56].

Common materials used for clavicle plates are titanium and stainless steel. Titanium is
a light, solid, and highly biocompatible material widely used in surgical implants, known
for its resistance to corrosion and its compatibility with MRI scans [57]. Stainless steel is
strong and durable but may not be as MRI-friendly as titanium [57].

The plate typically has multiple holes or slots to accommodate screws, which are
strategically placed to allow for secure fixation along the bone, ensuring that the fragments
are held together properly [56]. Some plates have locking mechanisms that allow the screws
to lock in the metal plate, providing additional stability [58]. Locking screws help prevent
plate loosening and maintain compression [58]. The design of the plate aims to be as low
profile as possible to minimize soft tissue irritation and discomfort for the patient [56]. In
addition, screws are an integral part of clavicle fracture fixation and are typically made
from the same biocompatible materials as the plate [58]. This is usually used to treat
high-functioning athletes or people with severe deformities [3].

In fact, in a recent systematic literature review, the authors found that in adult patients
with displaced mid-third clavicle fractures, surgical treatment was associated with a greater
likelihood of union at one year [59]. Overall, surgical treatment did not increase functional
scores by amounts those patients were likely to consider clinically important. Considering
these findings, they believe that patients can be informed that surgery for this injury can
incrementally increase the likelihood of union (about 10 patients would need to undergo
surgery to avoid one nonunion), but they should not expect better function than they
would achieve without surgery; most patients can avoid surgery altogether with a low
absolute risk of nonunion [59]. The aim is to achieve early functional recovery and reduce
the amount of time spent resting or out of sport.

The current literature shows that there is currently no difference in hardware removal
rates or functional outcomes when using a superior versus anterior plating technique [18].

Shoulder elevation is a common activity in everyday life that increases the tensile and
compressive forces on the clavicle and can affect the stress distribution within the fixation
devices in a stabilized fracture [60–63].
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Our analysis showed that the stresses acting on the fractured clavicle, expressed in
equivalent von Mises stress, are approximately 15 MPa, but this is supported by the fixation
system in the most common type of solicitation. There is also a displacement of 0.93 mm
between the ends of the bone. These results indicate that the use of an anteroinferior plate
fixed with screws in clavicle fracture fixation may result in an altered stress distribution
compared to a healthy clavicle. These results could provide a valuable biomechanical
reference for orthopedic surgeons, highlighting the important role of screws in absorbing
and distributing loading forces in clavicle fractures during shoulder elevation and suggesting
that the correct number of screws plays a key role in the repair and stability of the bone ends.

Some authors had previously studied clavicle fixation with FE analysis and found
that when screw holes were positioned close to the fracture site, there was a significant
increase in stress on the plate and clavicle [64,65]. This indicates that screw positioning
close to the fracture can have a significant effect on the stress pattern in the plate fixation
system [66]. These changes in stress patterns can potentially affect the healing process,
long-term fracture stability, rehabilitation program, and clinical outcomes [67].

The number and position of screws used in plate fixation can influence the rehabilitation
plan. For example, using a greater number of screws may provide greater stability and allow
earlier full-range mobility exercises during rehabilitation [64]. On the other hand, if only
a few screws are used or if they are placed in specific positions, caution may be required
during rehabilitation to avoid stressing the implant or compromising its stability [68].

In addition, one study suggested that the maximum stress in clavicle fracture plate
fixation without lag screws occurs at the edge of the hole above the fracture site [69]. In
fact, stress concentration occurs around the empty screw holes above the fracture site when
a clavicle fracture is stabilized with plates and screws [51]. The maximum stress point is
typically found at the edge of the holes, indicating that these areas are more susceptible to
failure. The greater the load on the bone and the greater the risk of fracture near the plate,
the fewer screws are implanted in the plate.

In addition to plate position, other important factors to consider include the recon-
struction plate and bridging plate technique, which may raise the risk of plate fracture [69].
It is, therefore, important to consider the design and placement of the plate to minimize
stress and potential complications due to clavicle anatomical position that can cause serious
damage to valuable structures [70,71]. In addition, deep learning algorithms for radiologi-
cal images could be used to improve the customization of the shape and size of plates and
reduce the risk after surgery [72,73].

Careful neurological assessment is required as the clavicle is close to the apical pleura,
brachial plexus, and subclavian artery and vein to exclude neurological deficits, pneumoth-
orax, and distal perfusion problems [74]. In addition, these structures are at risk of injury
from a fracture fragment or during fracture fixation [5,74].

It is important to emphasize that healthcare providers must assess each patient indi-
vidually and consider various factors, such as age, activity level, and fracture type, when
determining the most appropriate treatment and rehabilitation plan for midshaft clavicle
fractures. The highest possible level of autonomy and quality of life for the patient is always
the goal.

Several FE models have been developed in recent years to investigate bone stress
shielding after fracture fixation, demonstrating that the FE model is a useful instrument for
the analysis of biomechanics [10,75,76]. As shown in other studies [44,77,78], the limits of
the studies with finite elements are that they are computational models and may not fully
capture the complex biomechanical behavior of the clavicle and surrounding structures.
Despite these limitations, FE studies have demonstrated that load distribution in a clavicle
fracture treated with plates and screws differs from that of a healthy clavicle.

To provide better data on which to base treatment decisions, more randomized and
prospective trials are needed. Ultimately, the treatment option must be chosen by the
individual patient, carefully considering the relative benefits and risks of each intervention
and the patient’s preferences.
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5. Conclusions

FE simulation may be useful in predicting the biomechanical behavior of different
implant configurations in plate fixation of midshaft clavicle fractures and may provide
valuable insight into the optimal number, size, and position of screws to achieve maximum
stability and functional outcomes. The stress distribution in a plate and screw fixation is a
critical factor to consider when treating a clavicle fracture. This is influenced by several
factors, including the position and design of the plate, the screw type and numbers used,
and the biomechanical forces applied during shoulder elevation. The number and position
of screws used in plate fixation can influence the rehabilitation plan, with a greater number
of screws providing greater stability and potentially allowing an earlier range of motion
exercises. The results showed that the stresses on the fixed clavicle are supported by the
plate and screws in the most common type of solicitation, highlighting the importance of the
screws in absorbing and distributing loading forces and in the healing process. Overall, the
decision between operative and non-operative management of midshaft clavicle fractures
should be made on a case-by-case basis, considering the specific needs and characteristics
of the patient, as well as the degree of displacement and potential complications associated
with each treatment option.
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