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Abstract: Background: Breast cancer is arguably one of the leading causes of death among women
around the world. The automation of the early detection process and classification of breast masses
has been a prominent focus for researchers in the past decade. The utilization of ultrasound imaging
is prevalent in the diagnostic evaluation of breast cancer, with its predictive accuracy being depen-
dent on the expertise of the specialist. Therefore, there is an urgent need to create fast and reliable
ultrasound image detection algorithms to address this issue. Methods: This paper aims to compare
the efficiency of six state-of-the-art, fine-tuned deep learning models that can classify breast tissue
from ultrasound images into three classes: benign, malignant, and normal, using transfer learning.
Additionally, the architecture of a custom model is introduced and trained from the ground up on
a public dataset containing 780 images, which was further augmented to 3900 and 7800 images,
respectively. What is more, the custom model is further validated on another private dataset con-
taining 163 ultrasound images divided into two classes: benign and malignant. The pre-trained
architectures used in this work are ResNet-50, Inception-V3, Inception-ResNet-V2, MobileNet-V2,
VGG-16, and DenseNet-121. The performance evaluation metrics that are used in this study are
as follows: Precision, Recall, F1-Score and Specificity. Results: The experimental results show that
the models trained on the augmented dataset with 7800 images obtained the best performance on
the test set, having 94.95 ± 0.64%, 97.69 ± 0.52%, 97.69 ± 0.13%, 97.77 ± 0.29%, 95.07 ± 0.41%,
98.11 ± 0.10%, and 96.75 ± 0.26% accuracy for the ResNet-50, MobileNet-V2, InceptionResNet-V2,
VGG-16, Inception-V3, DenseNet-121, and our model, respectively. Conclusion: Our proposed model
obtains competitive results, outperforming some state-of-the-art models in terms of accuracy and
training time.

Keywords: breast cancer; ultrasound images; Convolutional Neural Networks; deep learning; transfer
learning; computer vision

1. Introduction

Breast cancer (BC) is arguably one of the primary causes of mortality among women
worldwide [1]. Over the past three decades, the increases in its occurrence and fatality
rates have been related to the fact that this type of cancer is particularly silent when it
comes to its evolution [2]. The abnormal multiplication of cells in breast tissue leads to the
creation of a lump known as a tumor, which might be benign or malignant. Usually, most
people discover their condition through regular screening. Others may present with an
unintentionally found breast lump, a change in breast form or size, or nipple discharge.

In order to emphasize the impact of BC on women in the United States, three studies
were selected from 2021 to 2023, respectively [3–5]. Figure 1 shows the values of the new
cases as well as the estimated deaths of BC among women.
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diagnosis. Due to the high volume of material, the efficacy of the method is heavily reliant 
on the expertise, knowledge, and physical condition of the radiologist at the moment of 
reading [6]. In order to overcome this issue, computer-aided diagnosis systems in con-
junction with Deep Learning (DL) techniques have been developed. The purpose of these 
systems is to enhance the reliability of the diagnostic process, provide accurate interpre-
tations of the medical data, and minimize the errors that the radiologists may make. Even 
though the DL models have proved their efficiency in computer vision, a set of challenges 
arise when applying them in the area of BC detection and classification [7]. Firstly, when 
working with medical data, especially ultrasound images, there is a lack of available ma-
terials due to GDPR regulations. Therefore, data augmentation techniques must be used 
in order to synthetically create data. Secondly, ultrasound machines might introduce elec-
trical noise, which might negatively impact the quality of predictions. Another significant 
challenge lies in the realm of unsupervised learning for the annotation of BC ultrasound 
images. While supervised learning-based models have demonstrated improved out-
comes, obtaining annotated breast images from expert clinicians is exceedingly challeng-
ing in practical settings. The majority of the breast ultrasound images that are accessible 
lack proper labeling. Lastly, most researchers have utilized clinical datasets, which are 
private datasets. Hence, it is difficult to make meaningful comparisons of the performance 
of these models in various research studies. This paper addresses, in a comparative way, 
the problem of Transfer Learning (TL) applied to Breast Ultrasound (BUS) tumor detection 
and classification using some state-of-the-art DL architectures such as ResNet-50, Mo-
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the-art model is fine-tuned using a custom Deep Neural Network (DNN) architecture, 
which will also be explained in detail. Additionally, a simple model architecture com-
posed of a Convolutional Neural Network (CNN) and DNN is also proposed and com-
pared with the rest of the models to see if it can achieve or outperform them. What is more, 
the issue regarding the lack of data is also addressed by developing an image augmenta-
tion algorithm using geometric transforms. 

The following is the structure of the paper: Section 2 presents the related work that 
was undertaken in the field of BUS image classification using both DL techniques. Section 
3 shows the materials and procedures that were used to detect and classify the type of 
tumor present in the ultrasound image. Section 4 presents the experimental results that 
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Figure 1. Overview of the total number of BC cases and their associated estimated deaths between
2021 and 2023 in the United States.

One can note that both the total number of new cases and the associated estimated
deaths have increased since 2021, with 16,240 and 1000, respectively. Therefore, the early
detection of the symptoms that lead to this type of cancer is crucial to reduce the number
of new cases in the following years.

Ultrasound is a frequently used tool in diagnosing BC. Despite its cost-effectiveness
and non-invasive nature, this method presents challenges in terms of interpretation and di-
agnosis. Due to the high volume of material, the efficacy of the method is heavily reliant on
the expertise, knowledge, and physical condition of the radiologist at the moment of read-
ing [6]. In order to overcome this issue, computer-aided diagnosis systems in conjunction
with Deep Learning (DL) techniques have been developed. The purpose of these systems
is to enhance the reliability of the diagnostic process, provide accurate interpretations of
the medical data, and minimize the errors that the radiologists may make. Even though the
DL models have proved their efficiency in computer vision, a set of challenges arise when
applying them in the area of BC detection and classification [7]. Firstly, when working
with medical data, especially ultrasound images, there is a lack of available materials due
to GDPR regulations. Therefore, data augmentation techniques must be used in order to
synthetically create data. Secondly, ultrasound machines might introduce electrical noise,
which might negatively impact the quality of predictions. Another significant challenge lies
in the realm of unsupervised learning for the annotation of BC ultrasound images. While
supervised learning-based models have demonstrated improved outcomes, obtaining an-
notated breast images from expert clinicians is exceedingly challenging in practical settings.
The majority of the breast ultrasound images that are accessible lack proper labeling. Lastly,
most researchers have utilized clinical datasets, which are private datasets. Hence, it is
difficult to make meaningful comparisons of the performance of these models in various
research studies. This paper addresses, in a comparative way, the problem of Transfer
Learning (TL) applied to Breast Ultrasound (BUS) tumor detection and classification using
some state-of-the-art DL architectures such as ResNet-50, MobileNet-V2, InceptionResNet-
V2, VGG-16, Inception-V3, or DenseNet-121. Each state-of-the-art model is fine-tuned using
a custom Deep Neural Network (DNN) architecture, which will also be explained in detail.
Additionally, a simple model architecture composed of a Convolutional Neural Network
(CNN) and DNN is also proposed and compared with the rest of the models to see if it
can achieve or outperform them. What is more, the issue regarding the lack of data is also
addressed by developing an image augmentation algorithm using geometric transforms.

The following is the structure of the paper: Section 2 presents the related work that
was undertaken in the field of BUS image classification using both DL techniques. Section 3
shows the materials and procedures that were used to detect and classify the type of tumor
present in the ultrasound image. Section 4 presents the experimental results that were
obtained after training the models. Finally, Section 5 shows the discussions regarding
the previously presented experiments and Section 6 presents the conclusions and further
research directions.

2. Related Work

The area of BC detection and classification has been extensively discussed by the
researchers; therefore, various approaches exist in the literature. Therefore, several compre-
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hensive literature reviews were published from 2020 to 2021 [8–10]. Regarding this matter,
this section highlights related work in this area.

The first selected study was undertaken by Hanan Aljuaid et al. [11] and focuses on
BC classification by combining DNNs and TL on the BreakHis [12] dataset. Additionally,
they address both the binary and multi-class classification of benign and malignant breast
tissues, as well as four subtypes of benign/malignant tissues, using the following models:
ResNet-18, ShuffleNet, and Inception-V3. What is more, data augmentation techniques
such as random reflection or translations along the x or y axis were also used to avoid
overfitting and help the model generalize better. The results that were obtained for the
binary classification between malignant and benign masses are as follows: 99.7%, 97.66%,
and 96.94% accuracy for ResNet, Inception-V3, and ShuffleNet, respectively. For the
multi-class classification, the values of accuracy were the following: 97.81%, 96.07%, and
95.79% for ResNet, Inception-V3Net, and ShuffleNet, respectively. Even though the models
differentiate between different types of benign or malignant breast tissues, the authors do
not mention the capability of detecting healthy breast tissue. Additionally, they could also
include other models in the study such as IncetionResNet-V2 or VGG. The second study [13]
compares the Xception, DenseNet-201, InceptionResNet-V2, VGG-19, and ResNet-152
models on the BreakHis dataset. The issue addressed by the authors was a multi-class
classification between eight sub-types of malignant and benign breast tissues, as well
as the binary classification between them. The best performance was obtained by the
Xception model, with accuracy values ranging from 90.22% up to 98.99%. Regarding the
data augmentation techniques, the authors only use rotation and horizontal flip. Additional
techniques such as contrast or brightness alterations could also be used.

In the study conducted by Aastha Joshi et al. [14], the focus is on the utilization of
TL techniques for the early detection of breast tumors in ultrasound images. The dataset
utilized in this research is an online version of the BUS Images dataset, which comprises a
total of 693 ultrasound images specifically collected for the purpose of classifying breast
masses into benign, malignant, and normal classes. This study conducts feature extraction
and fine-tuning on the MobileNet-V2 and Inception-V3 models. This study employs tradi-
tional TL techniques for various architectures and aims to reduce the number of parameters
in the network to gain a deeper understanding of the network’s actual performance. In
this particular scenario, the Inception-V3 model demonstrates the highest level, achieving
an accuracy rate of 83.84%, while the MobileNet-V2 obtained 82.54% accuracy. While the
authors use the accuracy metric to measure the performance of the models, other metrics
such as sensitivity and specificity could be included to examine whether the models make
correct predictions, or whether they predict false positives (FP) or false negatives (FN).
Rakesh Chandra Joshi et al.’s study [15] contains a broad variety of model assessment
approaches, intriguing models, and a multi-level evaluation strategy. Two datasets are
used in this study, namely the BUS Images dataset as well as a dataset obtained upon
request that contains ultrasound images categorized into two classes of BC, benign and
malignant. For the TL process, the work uses VGG-19 and YOLO-V3 models and a model
implemented by the authors entitled BUS-CNN. Data augmentation gives the model 9430
images to train with. The techniques used for data augmentation include rotations and
contrast modifications. The BUS-CNN model is composed of five convolutional layers
and five max pooling layers, the activation function that was used being ReLU. The loss
function was categorical cross-entropy and the optimizer was stochastic gradient descent.
The results that were obtained by the BUS-CNN model in terms of accuracy, sensitivity,
and specificity were 96.31%, 92.63%, and 96.71%, respectively.

Uysal et al. [16] propose a multi-class categorization technique for breast ultrasonog-
raphy samples using, again, the BUS Images dataset. The study targets the comparison
between ResNet50, ResNeXt, and 7Chapter 3’sc to assess their efficacy. This work studies
VGG-16, a CNN architecture, and augments data using standard approaches. Three nodes
were added to VGG-16’s last three levels. The ResNet50 architecture added two nodes,
while the ResNeXt model added three. Therefore, the study’s research evaluated the ac-
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curacy, f1-score, and area under the curve. ResNeXt outperformed the other models with
85.83% accuracy. However, the models could also be tested on other similar datasets to
further validate their robustness.

The work presented in [17] focuses on identifying BC using thermography, DL archi-
tectures, and ML techniques. More specifically, the authors use the U-NET model on a
dataset containing 170 infrared images [18]. What is more, the segmentation results from
the U-NET model were also combined with the Support Vector Machines algorithm in
order to generate the final predictions. The researchers obtained an accuracy value of
94.4%, and precision, recall, and F1-Score values of 96.2%, 86.7%, and 91.2%, respectively.
Another metric could also be utilized; this was specificity, to see how many false negative
predictions were made over the total number of actual FN predictions.

The study conducted by Abeer Saber et al. [19] focuses on applying TL to BC early
detection using state-of-the art models such as Inception V3, ResNet50, VGG-19, VGG-16,
and Inception-V2 ResNet on the MIAS dataset. They achieved an accuracy, sensitivity,
specificity, precision, F1-score, and AUC of 98.96%, 97.83%, 99.13%, 97.35%, 97.66%, and
0.95, respectively. A summarized overview of the previously presented papers is shown in
Table 1. Additionally, the corresponding datasets that were used to conduct the experiments
from the previously presented papers are shown in Table 2.

Table 1. Summarized overview with related results.

Paper Classification
Type Model Accuracy

[%]
Precision

[%]
Recall

[%]
F1-Score

[%]
Sensitivity

[%]
Specificity

[%]

[11]

Binary
ResNet 99.7 99.59 - - 97.53 97.8

Inception-v3 97.66 97.64 - - 97.64 97.59
ShuffleNet 96.94 96.85 - - 96.7 96.85

Multi Class
ResNet 97.81 97.65 - - 97.65 97.31

Inception-v3 96.07 96.05 - - 96.03 96
ShuffleNet 95.79 95.7 - - 95.7 95.5

[13] Multi-Class

Xception 90.22 90.99 89.87 89.97 - -
DenseNet-201 90.22 91.18 97.22 88.95 - -

InceptionResNet-v2 85.87 86.86 81.31 83.6 - -
VGG-19 76.63 73.82 65.42 66.81 - -

ResNet-152 48.37 11.94 19.52 14.71 - -

[14] Multi-Class
MobileNet-v2 82.54 - - - - -
Inception -v3 83.84 - - - - -

[15] Multi-Class
VGG-19 93.76 88.11 - 87.84 87.72 94.97

YOLO-v3 96.31 93.36 - 92.99 92.63 96.71

[16] Multi-Class
VGG-16 81.11 - - 80.05 - -

ResNet-50 85.4 - - 93.51 - -
ResNeXt-50 85.83 - - 80.53 - -

[17] Multi-Class U-NET and SVM 94.4 96.2 86.7 91.2 - -

Table 2. Summarized overview with the datasets used in the previously presented papers.

Paper Datasets

[10] BreakHis

[11] BreakHis

[12] 693 BUS Images

[13] BUS Images dataset and Private Dataset

[14] BUS Images

[15] 170 Infrared images

The studies presented in Table 1 focus on both binary and multi-class classifications
of BC using TL. Regarding the accuracy value, the best result was obtained by Hanan
Aljuaid [11], with over 97.8% using the ResNet model.
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3. Materials and Methods

This section aims to present the materials and procedures that were employed in order
to detect and classify the BC from ultrasound images, that is, the data preprocessing steps,
data augmentation algorithm, and the architecture of the DL models.

3.1. Data Preprocessing

The dataset employed in this study is entitled the BUS Images dataset. It was collected
in 2018 from a group of 600 female patients with ages ranging between 25 and 75 years
old [20,21]. The occurrence of BC is highly impacted by the age group of the patient. For
instance, the risk of developing in situ or invasive BC is low for women between 10 and
25 years old, as well as for women older than 75 years old. Additionally, women between
40 and 55 years old are predisposed to invasive BC, at 37.3% [22] The prevalence of BC
rises markedly with advancing age, reaching its peak after menopause and subsequently
declining gradually or remaining stable [23]. Having a collection of ultrasound images
collected from patients between 25 and 75 years old is beneficial because it covers the most
targeted age range of patients. The dataset comprises a total of 780 BUS images, with the
average size of an image being 500 × 500 pixels. There are a total of 437 PNG images
representing benign breast tissue, 218 images representing malignant breast tissue, and
133 images representing normal or healthy breast tissue. Mathematically, the dataset is a set
of labeled images {(XiYi)}N

i=1, where vector X contains the pixel values of the ultrasound
images, vector Y contains the target variables, which is one of the previously mentioned
categories encoded as strings, and N is the total number of images. The general overview
of the preprocessing steps is presented in Figure 2.
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One of the primary goals of data preprocessing is to improve the accuracy of image
data. This is achieved through various techniques such as filtering, speckle noise removal,
and contrast enhancement [24,25]. The first step in the preprocessing pipeline is to resize
the images in order to make sure that all of them have the same dimensions. Therefore, the
images were downsized to 128 × 128 pixels. In this way, the neural networks will be able to
better generalize the solution. The next two steps are to convert the channel of the images
from BGR to RGB to be compatible with the DL models and normalize the pixel values in
the range of [0, 1] by dividing them by 255.0. In order to obtain an extensive understanding
of the specific region that the algorithm intended to focus on, Figure 3 is provided, which
includes the original image, the ground truth mask, and a colormap representation of
the tumor.

The initial form of the dataset only contains 780 images. Therefore, if the model is
trained using only these images, it is most likely to overfit and achieve low performance on
the test data. Therefore, it is imperative to implement a data augmentation algorithm to
generate additional data using geometric transforms. The data augmentation algorithm is
presented in Algorithm 1 below. The algorithm requires two inputs: the initial form of the
dataset and the multiplication factor. The role of the multiplication factor is to determine
how many times the dataset will be augmented. The output of the algorithm is the
augmented dataset, which contains both the images and labels as ordered pairs. Then, for
each index in the interval [1, multiplication_factor], the corresponding image is augmented
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using contrast, brightness, flipping, and Gaussian Blur effects. The Adjust_Contrast method
accepts two parameters: the ith image in the dataset, which has the batch size, height, width,
channels dimsensions, and a contrast factor, which can take both positive and negative
values, with the value of 2 being chosen by trial and error.
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The contrast of each image is computed independently for each channel according to
Equation (1), where Xmean represents the mean of the pixels in the image and x represents
the component of the pixel along the x axis.

channel = x − Xmean · contrast_ f actor + Xmean (1)

The Adjust_Brightness method also accepts the ith image in the dataset and another
factor, delta. This method transforms RGB images to float representation, changes their
brightness, and then returns them to their original data type. Delta represents a floating-
point number that may take values in the (−1, +1) interval, and its value is added to each
pixel in the image.

Images, like any other signal, might contain many sorts of noise owing to the source,
for instance, the ultrasound camera. Therefore, image smoothing techniques such as
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Gaussian filters help reduce the noise from images taken in low light, smooth the edges,
and help the model to generalize the solution efficiently. The kernel used to apply the filter
was chosen to be a 5 × 5 matrix [26]. Figure 4 shows a 4 × 5 grid of random BUS images
from the training set, highlighting the augmented samples as well as the original ones.

Algorithm 1: Data Augmentation
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The reasoning behind the decision to alter the contrast, brightness, Gaussian blur and 
flip was to adapt the model to scenarios in which the tissue masses are not clear enough 
or need manual adjustments. Even though most ultrasound machines are preset to specific 
contrast and brightness values for detecting malignant lesions, sometimes the radiologist 
might need to make these adjustments manually to make sure that the diagnostic is accu-
rate. Moreover, hypoechoic breast lesions are indicative of potential malignancy. On ul-
trasound imaging, these lesions typically appear darker than the surrounding isoechoic 
fat [27]. Therefore, in order to train a robust model, contrast and brightness variations 
should be included. Gaussian Blur was introduced to adapt the model to certain pertur-
bations during screening, such as patient movement. Finally, flip was introduced in order 
to vary the location of the malignant/benign tissue masses.  

Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 24 
 

 
Figure 4. Grid of 4 × 5 random showing the effect of data augmentation on the images from the 
training set. 

The last step of the algorithm is to split the dataset into three parts to make sure that 
the model is not tested on the data that was used during the training. Therefore, the train–
validation–test split that we chose was 70% training data, 20% validation data and 10% 
test data [28]. In this study, we compared the results obtained by the models after training 
them on the dataset augmented with multiplication factors of 5 and 10, respectively. 
Therefore, if the multiplication factor was equal to 5, the model was trained, validated, 
and tested on 2730, 780 and 390 BUS images, respectively. 

If the multiplication factor was equal to 10, the model was trained, validated, and 
tested on 5460, 1560 and 780 BUS images, respectively. 

3.2. Model Fine-Tuning and Training Using TL 
TL methods aim to mitigate the challenge of limited data availability and enhance 

the efficacy of a learner in a specific domain by harnessing knowledge from a correlated 
domain [29]. The CNN models that were selected to classify the type of BC from the ul-
trasound images are represented by the following: ResNet50, MobileNetV2, InceptionRes-
NetV2, InceptionV3, VGG16, and DenseNet-121. 

In 2014, researchers from Oxford’s Visual Geometry Group (VGG) introduced VGG-
Net, a novel network architecture. The most frequent VGG variants are those with 16 
(VGG-16) and 19 (VGG-19) layers. In our study, we conducted experiments using the 
VGG-16 version [30], which includes 138 million parameters distributed among 13 convo-
lutional and 3 Fully Connected (FC) layers. The convolutional layers employ a 3 × 3 kernel 
with a stride of 1 to facilitate the meticulous extraction of features. In addition, the archi-
tectural design incorporates pooling layers that are implemented using a 2 × 2 kernel and 
a stride of 2. The FC layers consist of 4096 units each and are responsible for mapping the 
features to their corresponding class probabilities in the classification layers. The VGG-16 
pre-trained model is frequently utilized in image segmentation, detection, and classifica-
tion applications. In the same year, 2014, a new parameter-efficient architecture known as 
GoogleNet or InceptionV1 was released. Even though there are various Inception designs, 
the most frequent is the InceptionV3 [31] architecture, which was proposed a year later, 
in 2015, and with which we explored in our research. The InceptionV3 design improved 

Figure 4. Grid of 4 × 5 random showing the effect of data augmentation on the images from the
training set.

The reasoning behind the decision to alter the contrast, brightness, Gaussian blur and
flip was to adapt the model to scenarios in which the tissue masses are not clear enough or
need manual adjustments. Even though most ultrasound machines are preset to specific
contrast and brightness values for detecting malignant lesions, sometimes the radiologist
might need to make these adjustments manually to make sure that the diagnostic is accurate.
Moreover, hypoechoic breast lesions are indicative of potential malignancy. On ultrasound
imaging, these lesions typically appear darker than the surrounding isoechoic fat [27].
Therefore, in order to train a robust model, contrast and brightness variations should be
included. Gaussian Blur was introduced to adapt the model to certain perturbations during
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screening, such as patient movement. Finally, flip was introduced in order to vary the
location of the malignant/benign tissue masses.

The last step of the algorithm is to split the dataset into three parts to make sure
that the model is not tested on the data that was used during the training. Therefore, the
train–validation–test split that we chose was 70% training data, 20% validation data and
10% test data [28]. In this study, we compared the results obtained by the models after
training them on the dataset augmented with multiplication factors of 5 and 10, respectively.
Therefore, if the multiplication factor was equal to 5, the model was trained, validated, and
tested on 2730, 780 and 390 BUS images, respectively.

If the multiplication factor was equal to 10, the model was trained, validated, and
tested on 5460, 1560 and 780 BUS images, respectively.

3.2. Model Fine-Tuning and Training Using TL

TL methods aim to mitigate the challenge of limited data availability and enhance
the efficacy of a learner in a specific domain by harnessing knowledge from a correlated
domain [29]. The CNN models that were selected to classify the type of BC from the
ultrasound images are represented by the following: ResNet50, MobileNetV2, Inception-
ResNetV2, InceptionV3, VGG16, and DenseNet-121.

In 2014, researchers from Oxford’s Visual Geometry Group (VGG) introduced VGGNet,
a novel network architecture. The most frequent VGG variants are those with 16 (VGG-
16) and 19 (VGG-19) layers. In our study, we conducted experiments using the VGG-16
version [30], which includes 138 million parameters distributed among 13 convolutional
and 3 Fully Connected (FC) layers. The convolutional layers employ a 3 × 3 kernel with a
stride of 1 to facilitate the meticulous extraction of features. In addition, the architectural
design incorporates pooling layers that are implemented using a 2 × 2 kernel and a stride
of 2. The FC layers consist of 4096 units each and are responsible for mapping the features
to their corresponding class probabilities in the classification layers. The VGG-16 pre-
trained model is frequently utilized in image segmentation, detection, and classification
applications. In the same year, 2014, a new parameter-efficient architecture known as
GoogleNet or InceptionV1 was released. Even though there are various Inception designs,
the most frequent is the InceptionV3 [31] architecture, which was proposed a year later,
in 2015, and with which we explored in our research. The InceptionV3 design improved
accuracy and decreased the computational complexity of the previous version by leveraging
factorization, for instance, by replacing one 5 × 5 convolution with two 3 × 3 convolutions.

InceptionResNetV2 [32] is a DNN architecture that integrates the ResNet and Inception
architectures. The utilization of the Inception module and residual networks is integrated
into the framework. Additionally, auxiliary classifiers are incorporated to offer supplemen-
tary supervision. The multi-scale feature extractor is a computational algorithm designed
to extract features from data at multiple scales.

Residual Network (ResNet) is a novel architecture introduced in 2015. ResNet-
50 [33,34] is a popular version of ResNet, which includes 50 layers and more than 25 million
parameters. This architecture aims to solve the vanishing gradient problem by introducing
skip connections that have the capacity to bypass several layers and make a comparison
between the input and the desired output. The layers are distributed as follows: 49 convo-
lutional layers, along with 1 global average pooling layer and 1 FC layer. The first layer
consists of 64 kernels, with each kernel having dimensions of 7 by 7. The last convolutional
layer comprises 512 filters, each with dimensions of 1 by 1.

Google launched MobileNetV1 in 2017, a new mobile-friendly architecture that in-
cludes the “Depthwise Separable Convolution” block to minimize complexity and the
model size. It is made up of a 33 depthwise convolutional layer that filters the input,
followed by an 11-point convolutional layer that combines these filtered values to produce
new features by retaining the same number of channels or doubling them. After a year,
in 2018, an updated version of the MobileNet architecture was introduced; this is called
MobileNetV2 [35], and adds an extra 1 × 1 pointwise CONV layer, which is also called the
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“Projection layer”, and makes the number of channels smaller, thus making this version
of the architecture much smaller in size and faster than the previous one. MobileNetV2
employs an inverted residual structure module (rather than narrow/bottleneck layers
in between wide layers of a convolutional block, MobileNetV2 employs wide layers in
between narrow/bottleneck layers in a convolutional block, resulting in fewer parameters),
an expansion factor “t” (e.g., if the input has 32 channels and the expansion factor t is 6, the
internal output will be 32t = 326 = 192 channels), and two types of blocks (one with a stride
of 1 and another one with a stride of 2 for downsizing).

DenseNet-121 [36] is a DNN architecture that has, as its core concept, the principle
of skip connections, resulting in a robust model. Additionally, it addresses the issue of
the vanishing gradient problem and facilitates the propagation of features throughout
the model. The architecture comprises compact blocks, intermediary layers for smooth
transitions, and bottleneck layers.

To optimize the advantages of the current feature extraction capabilities of the architec-
tures and enhance the precision of the classification task, the weights of the state-of-the-art
models are frozen while solely training the new layers during the entire procedure. Fur-
thermore, the input layer of the architecture is initialized with the dimensions of the image
tensor, which, in this case, are (128, 128, 3). The last layer of each state-of-the-art model is
disposed. The learning rate that was used while training the CNN and DNN was 10−3.
The remaining layers perform feature selection by reducing the dimensionality of the
gathered features, as well as feature classification by determining the means to differentiate
among the desired output classes. The transformation of the pre-trained model’s 3D output
into a 1D feature vector is achieved by employing a DNN composed of a series of Batch
Normalization, Dropout and FC layers. The structure of the DNN is presented in Figure 5.
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The first layer in the DNN is a Batch Normalization [37] layer. The role of this layer is
to provide resistance to the vanishing gradient problem and reduce the training time. Next,
three pairs of convolution–dropout layers are added to the structure of the DNN. The first
FC layer contains 256 neurons, the second FC layer contains 128 neurons, and the last FC
layer has 64 neurons. The role of the Dropout layer [38] is to randomly set to zero a certain
number of neurons from its corresponding FC layer each epoch to increase the reliability
of the DNN and prevent overfitting. The ReLU activation function was used in all the FC
layers of the DNN. The classification of the three classes is determined in the final FC layer
through the utilization of the Softmax activation function.

3.3. The Structure of Our Proposed Model

This subsection presents the architecture of our proposed model (Figure 6). The model
is composed of two parts: the CNN, which is used for feature extraction, and the DNN,
which is used to classify the features into one of the three classes: benign, malignant, or
normal. CNN presents 4 convolutional layers and 4 max-pooling layers. The size of the
kernels from the convolutional layers was chosen to be a 3 × 3 matrix, while the size of
the kernels from the max-pooing layers is a 2 × 2 matrix. Additionally, the dimension of
the input image was kept to 128 × 128 × 3 pixels. The first convolutional layer provides
32 feature maps; the second one has 64; the third one has 128; and the last one provides
256 feature maps. The activation function that was used by the model is Leaky ReLU. The
model has 2,789,315 trainable parameters.
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The number of trainable parameters for each convolutional layer and FC layer are
computed using Equations (2) and (3), respectively.

Conv Params = (Wkernel · Hkernel + Kernelsl + 1)· Kernelsl+1 (2)

FC Layer Params = (imput neurons + 1)· output neurons (3)

Wkernel and Hkernel represent the width and height of the feature map matrix, while
Kernelsl and Kernelsl+1 represent the number of feature maps from the current layer and
from the next layer, respectively. To obtain a better understanding of the data passed
through the model, Table 3 shows the shape of the tensors from each layer of the CNN and
DNN, as well as the number of trainable parameters in each layer.

Table 3. The shape of the feature maps from each layer of the proposed model.

Layer Input Shape Output Shape Trainable Parameters

Input Layer (128, 128, 3) (128, 128, 32) 0

1st Convolution (128, 128, 32) (126, 126, 32) 896

1st Max-Pooling (126, 126, 32) (63, 63, 32) 0

2nd Convolution (63, 63, 32) (61, 61, 64) 18,496

2nd Max-Pooling (61, 61, 64) (30, 30, 64) 0

3rd Convolution (30, 30, 64) (28, 28, 128) 73,856

3rd Max-Pooling (28, 28, 128) (14, 14, 128) 0

4th Convolution (14, 14, 128) (12, 12, 256) 295,168

4th Max-Pooling (12, 12, 256) (6, 6, 256) 0

Flatten (6, 6, 256) (9216) 0

1st FC Layer (9216) (256) 2,359,552

1st Dropout (256) (256) 0

2nd FC Layer (256) (128) 32,896

2nd Dropout (128) (128) 0

3rd FC Layer (128) (64) 8256

3rd Dropout (64) (64) 0

4th FC Layer (64) (3) 195

One can note that the number of trainable parameters (e.g., weights) increases as the
number of convolutional layers increases, and starts decreasing starting from the second FC
layer. Therefore, for the CNN, we chose to increase the number of feature maps to make sure
that the network manages to learn and differentiate all the relevant information from the
ultrasound image. For instance, the shape of the edge of the tumor is crucial in determining
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its nature, whether benign or malignant. Therefore, the CNN must have enough feature
maps to be able to learn the information. On the other hand, the number of neurons in
each hidden layer decreases from 256 to 3. This design decision was made to obtain an
optimal number of trainable parameters and avoid introducing unnecessary computational
costs without a significant increase in accuracy. For instance, if we had kept the number of
neurons in each hidden layer to 256, the number of trainable parameters in the model would
be 2,880,323, while the increase in performance would be negligible. Additionally, at every
level, the network acquires new features by building upon the knowledge gained from
the preceding layers. Therefore, by reducing the number of neurons, we aim to eliminate
unnecessary information while preserving only the essential information of the image.

The DNN is similar in structure to the one presented in Figure 5. The main differences
between these two are that the batch normalization layer was removed, and the dropout
rate was decreased by 10%. In this way, the value of the neurons that were set to 0 was
decreased, and the data were better generalized.

Additionally, the proposed architecture was also validated on another similar dataset,
having a structure similar to the dataset presented in Figure 3. The dataset is entitled
Dataset B [39], and it was collected in the UDIAT Diagnostic Centre of the Parc Tauli
Corporation, Sabadell, Spain. It contains 163 ultrasound images divided into two classes:
benign (109 images) and malignant (54 images) breast tumors. The preprocessing steps
are the same as the ones presented in Figure 2. Since the model was trained in three
classes, that is, on benign, malignant, and normal classes, the number of output neurons
was reduced from three to two. Additionally, the loss function was also changed from
categorical cross-entropy to binary cross-entropy.

3.4. DL Frameworks

DL frameworks are very efficient as they provide a high-level programming interface
for the training and validation of DL models. They are helpful when it comes to creating
algorithms that contain complex operations, such as convolution or tensor operations,
because they hide the complexity and provide intuitive functions. For the training and
validation of the models, two popular Python-based frameworks were used: TensorFlow
and Keras. Additionally, for data preprocessing, augmentation, and visualization, NumPy,
OpenCV, and Matplotlib were used.

The Google Colab cloud-based platform was selected to conduct the experiments
due to its solid hardware resources and served as a setting for developing and testing the
proposed models. The Tesla T4 GPU utilized in this study is equipped with a total of 82 GB
of GDDR6 memory. The current implementation involves the use of TensorFlow version
2.12.0 and Python 3.10.12.

4. Results

This section presents the experimental results obtained after training and validating
both the state-of-the-art models using TL and our proposed architecture. Recall the data
augmentation algorithm presented in Section 3. The experiments were conducted with
two values for the multiplication factor, that is, 5 and 10, to observe and compare the impact
of data augmentation on the training and validation processes. Therefore, the number
of samples increased from 780 to 3900 for a multiplication factor of 5 and to 7800 for a
multiplication factor of 10, respectively. During the training process, a monitoring technique
called early stopping was introduced with a patience value of 4, that is, the number of
epochs after which the training process is stopped if no accuracy or loss improvement
is recorded. This approach mitigates overfitting by monitoring the validation loss and
terminating the model if there is no improvement in the loss metric or if the model begins
to overfit. Additionally, the batch size that was used to train the models was 32, with a
learning rate of 10−3. What is more, each model was trained and evaluated on the test set
five times, and the average value was taken into consideration ± the uncertainty value.
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Table 4 shows the results of the training process on the training, validation, and test sets for
the multiplication factor of 5.

Table 4. Training, validation, and test accuracy values obtained after training the models using TL
and data augmentation with a multiplication factor of 5 on the BUS Images dataset.

Model Training Accuracy [%] Validation Accuracy [%] Test Accuracy [%]

ResNet-50 89.5 ± 3.62 85.08 ± 3.16 84.01 ± 0.94

MobileNet-V2 98.27 ± 0.42 89.03 ± 0.15 91.36 ± 0.25

InceptionResNet-V2 98.05 ± 0.25 92.61 ± 0.75 92.22 ± 0.60

VGG-16 99.12 ± 0.17 93.97 ± 1.20 94.26 ± 0.25

Inception-V3 98.72 ± 0.5 89.90 ± 0.45 90.85 ± 0.26

DenseNet-121 99.09 ± 0.32 95.48 ± 0.87 95.63 ± 0.08

Our Architecture 98.55 ± 0.79 92.46 ± 0.37 93.84 ± 0.35

The best accuracy value on the test set was obtained by the DenseNet-121 model, with
95.63%, while the model that obtained the lowest accuracy value was ResNet-50. Addition-
ally, the proposed architecture obtained competitive results compared to the other models,
outperforming the ResNet-50, MobileNet-V2, Inception-V2, and Inception-V3 models.

To conduct this analysis, the following metrics were utilized: accuracy, precision,
recall, F1-score, and specificity. Recall and specificity are essential parameters in medical
image analysis as they have a direct impact on patient treatment decisions and healthcare
expenditures. Ensuring sensitivity is of the utmost importance when it comes to early
disease diagnosis and avoiding the occurrence of FNs. For instance, in the context of cancer
screening, failing to detect a false positive result could lead to a delay in the patient’s
treatment, perhaps exacerbating their condition. Ensuring a high level of specificity is
crucial to prevent the need for unneeded testing, expenses, and invasive treatments. The
mathematical expressions for the previously mentioned evaluation metrics are presented
in Table 4. The compass tool serves as a means of comprehending the extent to which a
model is inclined towards generating FPs or FNs.

The results after validating the models using the metrics are presented in Table 5 and
the data augmentation algorithm with a multiplication factor of 5 is presented in Table 6.
As per the type of cancer, the highest precision values for the benign, malignant, and
normal classes were obtained by the VGG-16, DenseNet-121, and our proposed architec-
ture, respectively. Additionally, the highest recall values were obtained for the benign,
malignant, and normal classes by the DenseNet-121, InceptionResNet-V2, and VGG-16
models, respectively. The highest F1-Score was obtained by the DenseNet-121 and VGG-16
models for the normal and malignant classes. Finally, the highest specificity value was
obtained by the VGG-16 model.

Table 5. Definition and mathematical formulas of the performance indicators.

Metric Formula

Accuracy TP + TN
TP + TN + FP + FN

Precision TP
TP + FP

Recall TP
TP + FN

F1-Score 2·TP
2·TP + FP + FN

Specificity TN
TN + FP
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Table 6. Precision, Recall, F1-Score and Specificity values after training the models using data
augmentation with a multiplication factor of 5 on the BUS Images dataset.

Model Tissue Type Precision [%] Recall [%] F1-Score [%] Specificity [%]

ResNet-50
Benign 88.5 ± 4.50 87 ± 2 88 ± 1

89.54 ± 1.17Malignant 81 ± 0.91 80 ± 3 80.5 ± 1.5
Normal 73.5 ± 7.25 76.5 ± 0.95 74.5 ± 0.5

MobileNet-V2
Benign 94 ± 0.4 92.5 ± 0.5 93.5 ± 0.5

94.61 ± 1.72Malignant 89 ± 3 87 ± 0.2 87.5 ± 1.5
Normal 83.5 ± 1.5 92 ± 1.1 87 ± 0.3

InceptionResNet-V2
Benign 96.5 ± 1.5 91 ± 1.1 93 ± 0.4

95.82 ± 0.96Malignant 89 ± 0.7 92 ± 1.2 90.5 ± 0.5
Normal 79 ± 4 93 ± 1.05 85. ± 1.5

VGG-16
Benign 97.5 ± 0.5 94 ± 0.3 95.5 ± 0.5

97.59 ± 0.83Malignant 91.5 ± 2.5 95 ± 0.6 95 ± 0.3
Normal 89.5 ± 2.5 95.5 ± 3.5 92. 8 ± 1.2

Inception-V3
Benign 93.3 ± 1.1 94.5 ± 1.5 93.5 ± 0.5

94.35 ± 1.47Malignant 91 ± 2.7 86.5 ± 0.5 88.5 ± 0.6
Normal 88 ± 3.2 88.5 ± 2.5 87.5 ± 0.5

DenseNet-121
Benign 96 ± 0.2 97 ± 0.8 97 ± 0.3

97.28 ± 1.51Malignant 95 ± 1.2 95 ± 0.2 94.5 ± 0.5
Normal 94 ± 1.1 92 ± 4.4 93 ± 2.1

Our Architecture
Benign 95.42 ± 0.58 95.75 ± 0.78 95.38 ± 2.16

92.15 ± 1.05Malignant 91.12 ± 0.53 94.91 ± 1.76 92.49 ± 3.42
Normal 95.64 ± 0.48 87.12 ± 0.64 91.72 ± 0.31

Figure 7 presents the learning curves that resulted after training the ResNet-50,
MobileNet-V2, InceptionResNet-V2, VGG-16, Inception-V3, and DenseNet-121 models.
The models were trained for 26 epochs. However, the early stop optimization technique
was applied to the ResNet-50, MobileNet-V2, VGG-16, and DenseNet-121 models. In
Figure 8, the confusion matrices that were generated after training the data with the data
augmentation algorithm with a multiplication factor of 5 are shown.

Regarding the number of TP predictions per class, the DenseNet-121 model achieved
the highest value, that is, 340 for the benign class and 144 for the malignant class, while for
the normal class, the MobileNet-V2 achieved the highest value, that is, 79.

Tables 7 and 8 present the accuracy report as well as the Precision, Recall, F1-Score
and Specificity values after training the models using the data augmentation algorithm
with a multiplication factor of 10. It can be clearly observed that, in this case, the highest
accuracy on the test set was obtained by the DenseNet-121 model while the lowest accuracy
was obtained by the ResNet-50 model. Additionally, the highest Precision values for the
benign, normal, and malignant classes were obtained by the VGG-16 and our proposed
architecture, respectively. Regarding the recall, the highest values were obtained by VGG-16
and MobileNet-V2 for the benign, malignant, and normal classes. The highest F1-Score
was obtained by the following: InceptionResNet-V2 and VGG-16 for the benign class,
DenseNet-121 and our proposed architecture for the malignant class and MobileNet-V2 for
the normal class. Figures 9 and 10 present the learning curves and confusion matrices after
training the models using data augmentation with a multiplication factor of 10.

Regarding the number of TP predictions per class, in this case, the MobileNet-V2 model
achieved the highest value for the benign class, that is, 658 correct predictions. For the
malignant and normal classes, the DenseNet-121 model achieved the highest results, that is,
307 and 190 correct predictions, respectively. Figure 11 shows a comparative overview of the
learning curves and confusion matrices obtained after training our proposed architecture
using data augmentation with a multiplication factor of 5 and 10, respectively, on the BUS
Images dataset.
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Figure 7. Accuracy and loss learning curves for (a) ResNet-50, (b) MobileNet-V2, (c) InceptionResNet-
V2, (d) VGG-16, (e) Inception-V3, and (f) DenseNet-121 models after training with data augmentation
with a multiplication factor of 5 on the BUS Images dataset.

After training the model using the data augmentation algorithm with a multiplication
factor of 5, the number of TP values was 337, 144, and 80 for the benign, malignant,
and normal classes, respectively. After training the model using the data augmentation
algorithm with a multiplication factor of 10, the number of TP values that were obtained
was 659, 291 and 190 for the benign, malignant, and normal classes, respectively.

Figure 12 and Table 9 show the confusion matrix and performance results obtained
after evaluating our model that was trained using the multiplication factor of 10 on Dataset
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B. The performance of the model on this dataset is a bit lower than on the BUS Images
dataset. The accuracy obtained by the model is only 86.3% on Dataset B, compared to
96.75% on the BUS Images dataset. This could be because the augmentation factor that was
used is quite high. Therefore, the model seems to overfit a bit on the BUS Images Dataset.
However, the value of the accuracy is still higher than the one obtained by the ResNet-50
model after training it using the multiplication factor of 5, which is 84.01 ± 0.94.
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16, (e) Inception-V3, and (f) DenseNet-121 models after training with data augmentation with a
multiplication factor of 5 on the BUS Images dataset.
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Table 7. Training, validation, and test accuracy values obtained after training the models using TL
and data augmentation with a multiplication factor of 10 on the BUS Images dataset.

Model Training Accuracy [%] Validation Accuracy [%] Test Accuracy [%]

ResNet-50 98.24 ± 0.41 96.07 ± 0.13 94.95 ± 0.64

MobileNet-V2 99.22 ± 0.11 97.88 ± 0.38 97.69 ± 0.52

InceptionResNet-V2 98.97 ± 0.39 97.13 ± 0.79 97.69 ± 0.13

VGG-16 99.01 ± 0.08 98.49 ± 0.19 97.77 ± 0.29

Inception-V3 98.15 ± 0.28 94.87 ± 0.62 95.07 ± 0.41

DenseNet-121 99.53 ± 0.05 97.88 ± 0.25 98.11 ± 0.10

Our Architecture 98.70 ± 0.18 97.13 ± 0.16 96.75 ± 0.26

Table 8. Precision, Recall, F1-Score and Specificity values after training the models using TL and data
augmentation with a multiplication factor of 10 on the BUS Images dataset.

Model Tissue Type Precision [%] Recall [%] F1-Score [%] Specificity [%]

ResNet-50
Benign 94.6 ± 0.4 95.4 ± 0.4 95.8 ± 2.8

96.88 ± 1.29Malignant 94.4 ± 0.4 93.6 ± 0.6 93.4 ± 0.4
Normal 94.8 ± 0.8 95.6 ± 2.6 94.2 ± 0.6

MobileNet-V2
Benign 97.8 ± 0.2 98.6 ± 0.6 97.8 ± 0.2

98.32 ± 0.15Malignant 98.3 ± 0.5 95.7 ± 1.2 96.6 ± 0.6
Normal 97.8 ± 0.2 98.4 ± 0.6 98.8 ± 0.2

InceptionResNet-V2
Benign 97.6 ± 0.4 97.2 ± 0.6 98.6 ± 0.6

98.55 ± 0.21Malignant 97.6 ± 0.6 95.8 ± 0.4 96.4 ± 0.2
Normal 95.8 ± 0.8 98.2 ± 0.6 97.5 ± 0.4

VGG-16
Benign 98.6 ± 0.4 98.6 ± 0.2 98.6 ± 0.4

98.62 ± 0.13Malignant 97.2 ± 0.6 96.6 ± 1.2 96.6 ± 0.6
Normal 98.4 ± 0.4 98.2 ± 0.2 98.2 ± 0.2

Inception-V3
Benign 94.8 ± 0.8 98.2 ± 0.2 96.4 ± 0.6

96.70 ± 1.57Malignant 97.2 ± 0.4 90.6 ± 1.2 94.5 ± 0.4
Normal 95.6 ± 0.8 94.8 ± 0.6 94.2 ± 0.4

DenseNet-121
Benign 98.4 ± 0.4 98.2 ± 0.6 98.4 ± 0.2

98.09 ± 0.51Malignant 98.2 ± 0.6 97.8 ± 0.2 97.4 ± 0.6
Normal 94.8 ± 1.2 98.4 ± 0.2 98.6 ± 0.4

Our Architecture
Benign 96.4 ± 0.4 97.4 ± 0.2 97.2 ± 0.6

97.85 ± 0.85Malignant 98.6 ± 0.6 95.6 ± 1.4 97.4 ± 0.8
Normal 96.2 ± 0.4 94.3 ± 0.7 95.3 ± 1.2

In the light of the results, data augmentation proved to be a useful way of generating
ultrasound images. One of the greatest advantages of this technique is that it leads to
improved generalization. By exposing the model to a broader spectrum of input data
variations throughout the training process, it acquires the ability to be more resilient and
less responsive to minor fluctuations in the test data. In fact, the mean test accuracy
obtained by all the models was 91.73% when using a data multiplication factor of 5, while
the obtained test accuracy when using a data multiplication factor of 10 was 96.73%.
Therefore, by increasing the amount of data, one can improve the overall performance of
the models by 5% on the BUS Dataset.
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with a multiplication factor of 10 on the BUS Images dataset.
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Table 9. Accuracy, Precision, Recall, F1-Score and Specificity values after validating our proposed
architecture on the Dataset B.

Tissue Type Accuracy [%] Precision [%] Recall [%] F1-Score [%] Specificity [%]

Benign 86.3 92 88 90
82.22

Malignant 86.3 76 82 79

5. Discussions

This section presents some observations and discussions based on the previously
presented experimental results. The amount of data that is used to train the models
drastically affects their performance. Therefore, the models that were trained using a factor
of 10 in the data augmentation algorithm obtained better results compared to those using a
factor of 5. In fact, the average accuracy that was obtained on the test dataset increased
by 10.85%, 6.33%, 5.47%, 3.45%, 4.22%, 2.77%, and 2.91% for ResNet-50, MobileNet-V2,
InceptionResNet-V2, VGG-16, Inception-V3, DenseNet-121, and our proposed architecture,
respectively. Additionally, the learning curves presented in Figure 8 generalize the solution
better due to the increase in the number of images from 3900 to 7800 samples. Even though
the data augmentation increased the performance of the models, continuing to increase
the multiplication factor could lead to overfitting. That is because excessive augmentation
might introduce unrealistic variations that do not reflect the true distribution of the data,
potentially harming generalization. Therefore, if the dataset is sufficiently diverse, the
benefit of data augmentation in reducing overfitting might be limited.

Even though the state-of-the-art models obtained good results in terms of their overall
accuracy, precision, recall, F1-score, and specificity, our proposed architecture outperformed
some of them. According to Table 4, our proposed architecture outperformed the ResNet-14,
MobileNet-V2, InceptionResNet-V2, and Inception-V3 models after testing them on the
BUS Images dataset. Additionally, according to Table 7, our architecture outperformed
the ResNet-50 and Inception-V3 models. Regarding the number of TP predictions that
were obtained after training the models using the data augmentation algorithm with a
multiplication factor of 5, our proposed architecture outperformed all the other models
except DenseNet-121 on the benign and malignant classes, while on the normal class, it
outperformed all the state-of-the-art models. Additionally, after using the data augmenta-
tion algorithm with a multiplication factor of 10, our proposed architecture outperformed
all the other models on the benign class and outperformed the ResNet-50 and Inception-V3
models on the malignant class. In the benign class, it obtained the same number of TP
values as DenseNet-121, which outperformed the other models. Even though our proposed
architecture outperformed most of the state-of-the-art models after testing it on the BUS
Images dataset, its performance dropped after validating it on Dataset B due to overfitting.
However, it still outperforms the ResNet-50 model in terms of overall accuracy.

The architecture of our model was inspired by the VGG-16 model. However, instead
of connecting two or three convolutional layers with one pooling layer, we used four pairs
of convolutional and max pool layers for the Convolutional Neural Network. For the Deep
Neural Network, we used three pairs of fully connected and dropout layers, unlike using
only fully connected layers. Additionally, instead of using the ReLU activation function like
VGG-16, we used Leaky ReLU [40], which has the advantage of addressing the dying ReLU
problem by introducing a small negative slope for negative inputs, preventing neurons
from becoming totally inactive.

The reason behind calculating the specificity value over all the samples rather than
calculating it per class is due to imbalances in the data. In scenarios characterized by
substantial class imbalance, the calculation of specificity for each class may be more influ-
enced by the prevailing class, which, in this case, is the benign class with 437 samples. By
aggregating specificity across all classes, we can ensure that the performance is equally
evaluated for all classes, resulting in a more balanced assessment.
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Apart from the classical performance metrics that can indicate the quality of the predic-
tions a DL model is able to make, the training time also indicates the model’s capability to
efficiently utilize the resources offered by the GPU. Therefore, Table 10 shows the average
training time when using the data augmentation algorithm with a multiplication factor of
5 and 10, respectively.

Table 10. Average training time after training the models on 3900 and 7800 samples, respectively.

Model Average Training Time for
3900 Samples [min]

Average Training Time for
7800 Samples [min]

ResNet-50 34.45 65.8

MobileNet-V2 5.18 14.05

InceptionResNet-V2 47.34 81.72

VGG-16 71.91 134.8

Inception-V3 14.27 27.63

DenseNet-121 23.96 41.35

Out Architecture 14.28 28.83

Since the architecture of our proposed model is only composed of four convolution
layers and four max pooling layers, the training time is drastically decreased compared
to the other models, which are deeper in terms of the convolution and max pool layers.
Therefore, in both cases, our model outperformed all the other models except MobileNet-V2
and Inception-V3.

Even though the experimental results demonstrated that the models could classify
the type of breast tissue with relatively high accuracy, some limitations stand out. The
limitations are similar to those mentioned by Yang L. et al. [41]. Firstly, the patients from
whom the medical data were collected were from two geographical regions, that is, Baheya
Hospital for Early Detection and Treatment of Women’s Cancer, Cairo, Egypt, and UDIAT
Diagnostic Centre of the Parc Tauli Corporation, Sabadell, Spain. Therefore, whether BC
evolves differently in other geographical regions and ethnic groups needs to be further
investigated. Secondly, the models were only tested on two datasets; therefore, their
performance on other medical data needs to be further investigated. Additionally, the
models presented in this study can differentiate only between malign, benign, and healthy
breast tissue. They do not differentiate between different subtypes of malignant and benign
breast tissues. Lastly, the dataset does not mention whether the participants were exposed
to risk factors such as faster menstruation, infertility, or late menopause, which directly
impact the shape and evolution of BC [42].

6. Conclusions

This paper addresses the problem of the multi-instance classification of breast masses
from ultrasound images. A set of six pre-trained architectures were employed as feature
extractors, with their classification layers fine-tuned to align with the dataset and desired
output. A data augmentation algorithm that multiplies the initial number of samples
in the dataset by a factor of 5 and 10, respectively, is also introduced. Additionally, the
architecture of a custom model is also presented and trained from the ground up and
validated on two datasets, the BUS Images dataset and Dataset B. The result of this study is
a comparison of the efficiency of the pre-trained models and our model in conjunction with
the data augmentation algorithm applied to BC classification. The experimental results
show that while the pre-trained models obtained good performance when detecting BC
in the ultrasound images, our model outperformed some architectures such as ResNet-
50, MobileNet-V2, Inception-V2, and Inception-V3 on the BUS Images dataset, obtaining
96.75% accuracy. However, on Dataset B, our model obtained a lower accuracy, that is,
86.3%. Additionally, the amount of time needed for the models to train was also considered
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and compared. Due to its lightweight structure, our model was able to train faster than
some of the other pre-trained models, such as ResNet-50, VGG-16, InceptionResNet-V2, or
DenseNet-121.

Further research directions are represented by first creating an end-to-end solution for
BUS image detection and classification that can be integrated into the ultrasound scanner
and adopted by other hospitals. Secondly, training the models using BUS images from
other geographical regions can also be taken into consideration to increase their perfor-
mance. Finally, federated learning could also be taken into consideration as a decentralized
approach to secure the medical data obtained from the patients.

Author Contributions: Conceptualization, A.C., M.A.B., D.I.G. and L.C.M.; methodology, A.C.,
M.A.B., D.I.G. and L.C.M.; software, M.A.B. and A.C.; validation, D.I.G. and L.C.M.; formal analysis,
A.C., M.A.B., D.I.G. and L.C.M.; investigation, A.C., M.A.B., D.I.G. and L.C.M.; resources, A.C.,
M.A.B. and D.I.G.; data curation, A.C. and M.A.B.; writing—original draft preparation, A.C. and
M.A.B.; writing—review and editing, M.A.B., D.I.G. and L.C.M.; visualization, A.C., M.A.B. and
D.I.G.; supervision, D.I.G. and L.C.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The BUS Images dataset presented in this study is openly available
on Kaggle [18] and published in [17]. Dataset B was obtained upon request from the authors of
paper [39].

Acknowledgments: This research was partially supported by the project 38 PFE in the frame of the
programme PDI-PFE-CDI 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BC Breast Cancer
BUS Breast Ultrasound
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
FC Layer Fully Connected Layer
FN False Negative
FP False Positive
TL Transfer Learning
TN True Negative
TP True Positive

References
1. Alkabban, F.M.; Ferguson, T. Epidemiology. In Breast Cancer; StatPearls: Treasure Island, FL, USA, 2022.
2. Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors,

Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [CrossRef]
[PubMed]

3. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA A Cancer J. Clin. 2021, 71, 7–33. [CrossRef] [PubMed]
4. Rebecca, L.; Siegel, M.P.H.; Kimberly, D.; Miller, M.P.H.; Hannah, E.; Fuchs, B.S.; Jemal, A. Cancer Statistics. CA A Cancer J. Clin.

2022, 72, 7–33.
5. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics. CA A Cancer J. Clin. 2023, 73, 17–48. [CrossRef] [PubMed]
6. Bourouis, S.; Band, S.S.; Mosavi, A.; Agrawal, S.; Hamdi, M. Meta-heuristic algorithm-tuned neural network for breast cancer

diagnosis using ultrasound images. Front. Oncol. 2022, 12, 834028.

https://doi.org/10.3390/cancers13174287
https://www.ncbi.nlm.nih.gov/pubmed/34503097
https://doi.org/10.3322/caac.21654
https://www.ncbi.nlm.nih.gov/pubmed/33433946
https://doi.org/10.3322/caac.21763
https://www.ncbi.nlm.nih.gov/pubmed/36633525


Bioengineering 2023, 10, 1419 23 of 24

7. Nusrat, M.; Rayees, A.D.; Muzafar, R.; Assif, A. Breast cancer detection using deep learning: Datasets, methods, and challenges
ahead. Comput. Biol. Med. 2022, 149, 106073.

8. Jiménez-Gaona, Y.; Rodríguez-Álvarez, M.J.; Lakshminarayanan, V. Deep-Learning-Based Computer-Aided Systems for Breast
Cancer Imaging: A Critical Review. Appl. Sci. 2020, 10, 8298. [CrossRef]

9. Rezaei, Z. A review on image-based approaches for breast cancer detection, segmentation, and classification. Expert Syst. Appl.
2021, 182, 115204. [CrossRef]

10. Rautela, K.; Kumar, D.; Kumar, V. A systematic review on breast cancer detection using deep learning techniques. Arch. Comput.
Methods Eng. 2022, 29, 4599–4629. [CrossRef]

11. Aljuaid, H.; Alturki, N.; Alsubaie, N.; Cavallaro, L.; Liotta, A. Computer-aided diagnosis for breast cancer classification using
deep neural networks and transfer learning. Comput. Methods Programs Biomed. 2022, 223, 106951. [CrossRef]

12. Spanhol, F.; Oliveira, L.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans.
Biomed. Eng. 2016, 63, 1455–1462. [CrossRef] [PubMed]

13. Zaalouk, A.M.; Ebrahim, G.A.; Mohamed, H.K.; Hassan, H.M.; Zaalouk, M.M.A. A Deep Learning Computer-Aided Diagnosis
Approach for Breast Cancer. Bioengineering 2022, 9, 391. [CrossRef] [PubMed]

14. Aastha, J.; Nirmal, G. Breast Cancer Detection using MobileNetV2 and Inceptionv3 Deep Learning Techniques. Int. J. Eng. Res.
Technol. 2022, 11, 309–316.

15. Rakesh, C.J.; Divyanshu, S.; Vaibhav, T.; Malay, K.D. An efficient deep neural network based abnormality detection and multi-class
breast tumor classification. Multimed. Tools Appl. 2022, 81, 13691–13711.

16. Uysal, F.; Köse, M.M. Classification of Breast Cancer Ultrasound Images with Deep Learning-Based Models. Eng. Proc. 2023, 31, 8.
17. Chebbah, N.K.; Ouslim, M.; Benabid, S. New computer aided diagnostic system using deep neural network and SVM to detect

breast cancer in thermography. Quant. InfraRed Thermogr. J. 2023, 20, 62–77. [CrossRef]
18. Silva, L.F.; Saade, D.C.M.; Sequeiros, G.O.; Silva, A.C.; Paiva, A.C.; Bravo, R.S.; Conci, A. A new database for breast research with

infrared image. J. Med. Imaging Health Inf. 2014, 4, 92–100. [CrossRef]
19. Abeer, S.; Mohamed, S.; Osama, M.A.S.; Arabi, K.; Huiling, C.A. Novel Deep-Learning Model for Automatic Detection and

Classification of Breast Cancer Using the Transfer-Learning Technique. IEEE Access 2021, 9, 71194–71209.
20. Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [CrossRef]
21. Breast Ultrasound Images Dataset. Available online: https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-

dataset?datasetId=1209633&searchQuery=eda (accessed on 24 October 2023).
22. Johnson, R.H.; Anders, C.K.; Litton, J.K.; Ruddy, K.J.; Bleyer, A. Breast cancer in adolescents and young adults. Pediatr. Blood

Cancer 2018, 65, e27397. [CrossRef]
23. Momenimovahed, Z.; Hamid, S. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer

Targets Ther. 2019, 11, 151–164. [CrossRef] [PubMed]
24. Li, X.; Wang, Y.; Zhao, Y.; Wei, Y. Fast Speckle Noise Suppression Algorithm in Breast Ultrasound Image Using Three-Dimensional

Deep Learning. Front. Physiol. 2022, 13, 966. [CrossRef] [PubMed]
25. de Raad, K.; van Garderen, K.; Smits, M.; van der Voort, S.; Incekara, F.; Oei, E.; Hirvasniemi, J.; Klein, S.; Starmans, M. The Effect

of Preprocessing on Convolutional Neural Networks for Medical Image Segmentation. In Proceedings of the 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 655–658.

26. Kumar, A.; Sodhi, S.S. Comparative analysis of gaussian filter, median filter and denoise autoenocoder. In Proceedings of the
International Conference on Computing for Sustainable Global Development, New Delhi, India, 12–14 March 2020; pp. 45–51.

27. Kim, Y.R.; Kim, H.S.; Kim, H.W. Are Irregular Hypoechoic Breast Masses on Ultrasound Always Malignancies? A Pictorial Essay.
Korean J. Radiol. 2015, 16, 1266–1275. [CrossRef] [PubMed]

28. Nguyen, Q.H.; Ly, H.B.; Ho, L.S.; Al-Ansari, N.; Le, H.V.; Tran, V.Q.; Prakash, I.; Pham, B.T. Influence of data splitting on
performance of machine learning models in prediction of shear strength of soil. Math. Probl. Eng. 2021, 2021, 4832864. [CrossRef]

29. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. arXiv 2020,
arXiv:1911.02685. [CrossRef]

30. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
31. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

32. Szegedy, C.; Sergey, I.; Vincent, V.; Alexander, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on artificial intelligence, San Francisco, CA, USA, 4–9 February 2017.

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

34. Yu, X.; Kang, C.; Guttery, D.S.; Kadry, S.; Chen, Y.; Zhang, Y.D. ResNet-SCDA-50 for Breast Abnormality Classification. IEEE
Trans. Comput. Biol. Bioinform. 2021, 18, 94–102. [CrossRef] [PubMed]

35. Sandler, M.; Howard, A.; Menglong, Z.; Zhmoginov, A.; Liang-Chieh, C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City,
UT, USA, 18–22 June 2018; pp. 4510–4520.

https://doi.org/10.3390/app10228298
https://doi.org/10.1016/j.eswa.2021.115204
https://doi.org/10.1007/s11831-022-09744-5
https://doi.org/10.1016/j.cmpb.2022.106951
https://doi.org/10.1109/TBME.2015.2496264
https://www.ncbi.nlm.nih.gov/pubmed/26540668
https://doi.org/10.3390/bioengineering9080391
https://www.ncbi.nlm.nih.gov/pubmed/36004916
https://doi.org/10.1080/17686733.2021.2025018
https://doi.org/10.1166/jmihi.2014.1226
https://doi.org/10.1016/j.dib.2019.104863
https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset?datasetId=1209633&searchQuery=eda
https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset?datasetId=1209633&searchQuery=eda
https://doi.org/10.1002/pbc.27397
https://doi.org/10.2147/BCTT.S176070
https://www.ncbi.nlm.nih.gov/pubmed/31040712
https://doi.org/10.3389/fphys.2022.880966
https://www.ncbi.nlm.nih.gov/pubmed/35492597
https://doi.org/10.3348/kjr.2015.16.6.1266
https://www.ncbi.nlm.nih.gov/pubmed/26576116
https://doi.org/10.1155/2021/4832864
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/TCBB.2020.2986544
https://www.ncbi.nlm.nih.gov/pubmed/32287004


Bioengineering 2023, 10, 1419 24 of 24

36. Huang, G.; Liu, Z.; Van-Der-Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

37. Nitish, S.; Geoffrey, H.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

38. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,
arXiv:1502.03167.

39. Yap, M.H.; Pons, G.; Marti, J.; Ganau, S.; Sentis, M.; Zwiggelaar, R.; Davison, A.K.; Marti, R. Automated Breast Ultrasound Lesions
Detection using Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2018, 22, 1218–1226. [CrossRef]

40. Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex made more practical: Leaky ReLU. In Proceedings of the IEEE Symposium on
Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7.

41. Yang, L.; Zhang, B.; Ren, F.; Gu, J.; Gao, J.; Wu, J.; Li, D.; Jia, H.; Li, G.; Zong, J.; et al. Rapid Segmentation and Diagnosis of Breast
Tumor Ultrasound Images at the Sonographer Level Using Deep Learning. Bioengineering 2023, 10, 1220. [CrossRef]

42. Kim, G.; Bahl, M. Assessing risk of breast cancer: A review of risk prediction models. J. Breast Imaging 2021, 3, 144–155. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JBHI.2017.2731873
https://doi.org/10.3390/bioengineering10101220
https://doi.org/10.1093/jbi/wbab001

	Introduction 
	Related Work 
	Materials and Methods 
	Data Preprocessing 
	Model Fine-Tuning and Training Using TL 
	The Structure of Our Proposed Model 
	DL Frameworks 

	Results 
	Discussions 
	Conclusions 
	References

