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Abstract: Non-contact remote photoplethysmography can be used in a variety of medical and
healthcare fields by measuring vital signs continuously and unobtrusively. Recently, end-to-end deep
learning methods have been proposed to replace the existing handcrafted features. However, since
the existing deep learning methods are known as black box models, the problem of interpretability
has been raised, and the same problem exists in the remote photoplethysmography (rPPG) network.
In this study, we propose a method to visualize temporal and spectral representations for hidden
layers, deeply supervise the spectral representation of intermediate layers through the depth of
networks and optimize it for a lightweight model. The optimized network improves performance
and enables fast training and inference times. The proposed spectral deep supervision helps to
achieve not only high performance but also fast convergence speed through the regularization of the
intermediate layers. The effect of the proposed methods was confirmed through a thorough ablation
study on public datasets. As a result, similar or outperforming results were obtained in comparison
to state-of-the-art models. In particular, our model achieved an RMSE of 1 bpm on the PURE dataset,
demonstrating its high accuracy. Moreover, it excelled on the V4V dataset with an impressive RMSE
of 6.65 bpm, outperforming other methods. We observe that our model began converging from
the very first epoch, a significant improvement over other models in terms of learning efficiency.
Our approach is expected to be generally applicable to models that learn spectral domain information
as well as to the applications of regression that require the representations of periodicity.

Keywords: deep supervision; light-weight; remote photoplethysmography

1. Introduction

Heart pulse is an important physiological signal that reflects physical and emotional
activities. Monitoring heart pulse can be used for various applications such as arrhythmia
detection in human-robot interaction [1], cardiology [2], emotion recognition [3], ther-
mal comfort management [4], mental healthcare [5], and exercise training support [6].
Remote photoplethysmography (rPPG) [7] has been introduced in recent years, to mea-
sure heart pulse without any contact with sensors [8,9] to overcome the limitations of
optoelectronic sensors, which can cause discomfort and limit long-term monitoring.

The on-contact rPPG evaluates back-scattered light from skin remotely using RGB cam-
eras. In earlier studies of rPPG [10,11], the analysis was carried out through face detection,
region of interest (ROI) selection, rPPG signal recovery, and signal post-processing. Studies
have been conducted to replace these feature-based rPPG methods with deep learning-
based methods. As deep learning-based approaches, 2D CNN, 2D CNN with LSTM, and
3D CNN-based methods have been proposed for processing spatiotemporal information.
The 3D CNN contributed to improving the accuracy by allowing the neural network to
learn feature extraction for temporal information by performing convolution in the spa-
tiotemporal domain. However, in comparison to 2D CNN, these 3D CNN methods have
limitations in that the number of parameters increases and the operation speed becomes
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slow. Furthermore, as the CNN layers get deeper, the optimization becomes challenging
due to gradient vanishing and initialization problems.

To alleviate these difficulties, researchers introduced regularization methods based
on residual connections as well as auxiliary tasks for skin segmentation and average
HR (heart rate) regression along with the PPG prediction. Yin et al. [12] employed residual
blocks of spatiotemporal networks that can help learn and optimize neural networks even
with deep layers. To deal with the problem of heavy computation and large complexity
in 3D CNN, the following studies have proposed computationally efficient rPPG models.
Gudi et al. [13] obtained a speed of 30 frames per second by combining the skin pixel
selection [14] and plane-orthogonal to skin (POS) methods [15]. Liu et al. [16] proposed
temporal shift convolutional attention network to achieve efficient temporal modeling
and reduce on-device latency, resulting in a processing speed of 150 frames per second.
To improve the efficiency of 3D CNNs for rPPG, Kuang et al. [17] introduced 3D depth-wise
separable convolution. Recently, Comas et al. [18] reported a lightweight neural model by
using convolutional derivatives and time-shift invariant loss. Botina-Monsalve et al. [19]
suggested an ultra-light 3D CNN rPPG model by decreasing the input size with a frequency-
based loss function. However, the concepts from these earlier studies are difficult to readily
adapt to rapidly evolving new deep neural networks, and these neural networks, being
black box models, are deficient in explaining why and how these proposed methods work
well for rPPG.

To address these limitations, we introduce a deeply supervised efficient neural net-
work (DSE-NN) based on deep supervision, network visualization, and hyperparameter
optimization. Progress in the field of deep neural networks has been accelerated by the
development of better tools for visualizing and interpreting neural nets. However, un-
derstanding of learned features of the spatiotemporal neural network, especially what
computations rPPG deep learning models perform at intermediate layers, has lagged be-
hind. In our study, inspiration for deep supervision and reduction of model complexity
came from the visualization of the intermediate layers of PhysNet [20]. PhysNet has been
widely used as a baseline in many previous studies without concern for a large number
of channels in the intermediate layers. Through the visualization of these intermediate
layers, we observed the periodic pattern that can be correlated with ground truth PPG sig-
nals in the activation maps of intermediate layers. On this basis, DSE-NN adopted deep
supervision and channel reduction strategies to facilitate the convergence of the model and
increase the accuracy (Figure 1). As far as we know, this is the first study that utilizes deep
supervision for rPPG prediction, and our proposed approach can be applied generally to
other deep learning approaches.

The main contribution of this paper is as follows:

1. We introduce spectral deep supervision to rPPG models, which learns quickly through
spectral loss of intermediate layers that facilitates convergence and increases accuracy.

2. Through investigation of visualization of intermediate layers we provide intuitions
about the need for efficient networks as well as their guided supervision of the
hidden neurons.

3. Using the obtained basis for reducing model complexity, we optimized the spatiotem-
poral network for weight reduction accompanied by ablation studies, resulting in the
number of trainable parameters being reduced by a factor of 11.

We present an overview of our model’s architecture in Figure 1. Our approach is based
on the PhysNet [20] encoder-decoder model. We propose a lightweight deep supervision
network designed for rPPG. The input of the proposed model is a video sequence, and
the output is a predicted rPPG signal. The baseline model is represented by gray boxes,
while the enhancements constituting our proposed network are indicated in blue. The size
of these boxes reflects the lightweight nature of the respective network components, with
smaller boxes denoting a more compact and efficient network structure. Furthermore, we
employ spectral loss for deep supervision, utilizing outputs from intermediate layers,
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which is a key aspect of our proposed enhancements. This approach ensures precise signal
extraction while maintaining a streamlined network architecture.

Figure 1. The architecture of DSE-NN. The DSE-NN is an encoder-decoder model, consisting of a
stem, encoder, and decoder, along with rPPG head layers. Not only does the final rPPG layer manage
loss, but each layer also undergoes spectral deep supervision to accelerate learning and increase
accuracy. Spectral deep supervision is implemented through a loss that maximizes the correlation in
the frequency domain with the ground truth PPG signal. Using PhysNet as a baseline, the model has
been optimized from gray to blue to reduce overfitting, enhance generalization performance, and
increase computational efficiency. Smaller boxes denote the lightweight and efficient components of
the network. Red arrows illustrate the output of intermediate layers, integral to our deep supervision
approach.

2. Related Works
2.1. rPPG Based on Deep Learning

Changes in light absorption for blood volume pulses are not only too small to be
visible to the human eye, they can also be sensitively changed by changes in light and noise
introduced by head movements. To solve this problem, many approaches based on color
space projection and statistical signal decomposition have been proposed, however, these
methods are unable to take into account non-linearity and separate convolved noise signals.
Additionally, the signal processing-based methods cause spatial information loss due to
averaging pixels in ROIs, which are chosen in a fixed or random. Researchers have started
using neural networks to recover PPGI signals and have achieved better experimental
results than conventional methods [9]. Since deep learning is a data-driven method, the
training set contains samples of different scenarios, ensuring robustness and flexibility
in real-world applications. Unlike static images, rPPG reconstructions must consider
both spatial and temporal characteristics. Spatial features include skin texture, edge, and
background information, while temporal features describe changes in spatial features over
time, including features such as respiration, heart rate, and tremor. For these problems,
various methods of 2D CNN [21], 3D CNN and CNN with RNN (Convolutional Recurrent
Neural Network) [22] have been used to estimate rPPG and HR. DeepPhys [21] reported a
convolutional attention network consisting of a motion model and an appearance model.
To use time information, normalized differences in two consecutive frames were used as
input to the motion model. Also, the appearance model is given the original frame as input
and acts as an attention module. The network learns spatial masks simultaneously for the
proper region of interest detection, thereby recovering rPPG and HR signals. Since rPPG is
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estimated from video data, using 2D CNN requires additional processes to consider the
temporal characteristics of the video. PhysNet [20] proposed a 3D CNN model that can
perform rPPG measurements while simultaneously analyzing the spatial and temporal
characteristics of images. Recently, Yin et al. [12] proposed (2 + 1) D convolution for rPPG
to separate time and spatial information for the robustness of the model. Unlike other
3D CNN models, the authors applied convolution separately in time and space, and stacked
them as a block to downstream networks to estimate the final ppg signal. Models using
3D CNN are effective at analyzing spatiotemporal characteristics, but due to their large
number of parameters, they require more computation and longer interference time than
other models.

2.2. Efficient Neural Networks for rPPG

Recent rPPG models have proposed methods to solve the problems of computation
cost and long training and inference time. For example, Gudi et al. [13] reported a method
to increase the efficiency of the rPPG system by extracting the face region using an inde-
pendently developed deep learning framework and solving the rPPG extraction problem
through a simplified signal processing method. EVM-CNN [23] proposed a model that
reduces the computational burden by predicting the heart rate using a neural network
after performing Eulerian Video Magnification on the region of interest extracted as above.
RTrPPG [19] proposed a method to increase the efficiency of 3D CNN by compressively
reducing the spatial information of the input image from the beginning by optimizing
it through the ablation study of the existing 3D CNN model. Kuang et al. [17] used
3D depth-wise separable convolution and a structure based on mobilenet v3 combined
with a lightweight attention block to reduce the time complexity of the network.

2.3. Deep Supervision

GoogLeNet [24] introduced deep supervision with auxiliary loss in that it includes
two additional auxiliary classifiers to train the 22-layer deep inception architecture. As the
neural network gets deeper, the vanishing gradient problem worsened, making it difficult
to converge, which was solved by the auxiliary layers that strengthen the gradient in
the intermediate layers and encourage discrimination in the lower stages of the network.
During backpropagation, a weight of 0.3 was used for the auxiliary classifiers to prevent
it from hindering the learning of the primary classifier that was used alone for inference.
Deeply supervised nets [25] further solidified the idea of deep supervision that provides
integrated direct supervision to the hidden layers, rather than providing supervision only
at the output layer and propagating this supervision back to earlier layers. These deeply
supervised objective functions were shown not only to provide an additional constraint
as a new regularization within the learning process but also to advocate exploiting the
significant performance gains by improving otherwise problematic convergence behavior.
Aside from the more diverse parallel studies, implicit deep supervision via shortcut connec-
tions began to receive attention from ResNet [26] and DenseNet [27], becoming one of the
dominant approaches. FCN [28], PSPNet [29] and UNet++ [30] brought deep supervision
into the image segmentation task explicitly in addition to the implicit fashion via skip
connections and achieved significant performance gain. Similar approaches further proved
effective in SSD [31], and FPN [32] for object detection. The method we proposed here
applies the previously reported methods to the video processing regression model for the
rPPG task for the first time. Previously, in deep supervision, it was necessary to introduce
additional task-specific layers such as classification and segmentation heads. For that
reason, the task-specific head with corresponding parameters for training was discarded
for actual inference. On contrary, we here demonstrate deeply supervised learning without
learning additional parameters by introducing supervised layers that utilize frequency
domain information as a newly suggest constraint or regularization.
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3. Methods
3.1. Datasets for rPPG

We use Vision-for-Vitals (V4V) dataset that consists of 179 subjects and 1358 videos
in total [33,34]. The V4V dataset contains continuous blood pressure waveform recorded
at 1 KHz, frame-aligned HR, and frame-aligned respiratory rate [33,34]. The video was
recorded with a frame rate of 25 and a resolution of 1392 × 1040. During the video recording
process, 10 activities were conducted with a natural transition from positive emotions to
negative emotions. Since the validation and test data lacks ppg ground truth, We used
the training dataset only, which includes 555 videos from 92 subjects. The dataset was
divided into training, validation, and test of the ratio 60%, 20%, and 20% where subjects
were mutually exclusive respectively.

The UBFC-RPPG [35] database comprises 42 videos of 42 subjects captured in a
realistic setting with a spatial resolution of 640 × 480 pixels and a frame rate of 30 fps.
Each video was for approximately 2 min, during which the subjects played a time-sensitive
mathematical game to induce variations in their heart rates. The data were randomly split
into 21 subjects for training, 8 for validation, and 13 for testing on a total of 42 subjects for
our experiments.

The PURE [7] database includes 60 videos recorded from 10 subjects (8 male and 2 female)
in 6 different setups. Each video is 1 min long and has a resolution of 640 × 480 pixels and
a frame rate of 30 fps. The subjects were instructed to perform 6 different types of head
motions, including steady, talking, slow translation, fast translation, small rotation, and
medium rotation. We conducted a holdout split in which subjects 1–8 were for training
and subjects 9 and 10 were for testing, ensuring that the subjects were mutually exclusive.
For the V4V database [33,34], we conducted experiments under the same conditions as the
previous experiment optimizing PhysNet as a lightweight network.

3.2. Implementation Details

In this research, we conduct the training and inference phases of our DSE-NN using
the PyTorch framework. The experiment runs on an NVIDIA RTX 8000 GPU. For the
implementation of the MCC loss function, we utilize the Fast Fourier Transform (FFT)
module within the PyTorch library (torch.fft). Moreover, for the evaluation of PPGsig-
nals, we employ the Short-Time Fourier Transform(STFT) module from the SciPy library
(scipy.signal.stft).

3.3. Spatiotemporal Encoder-Decoder Network

Using the above dataset, we optimized the spatiotemporal network by reducing the
number of channels of the PhysNet encoder-decoder model, which reported the best per-
formance among the models proposed by Yu et al. [20]. When we train the PhysNet model
several times from scratch, it was observed that the HR prediction performance of the test
data varied significantly under the same training conditions. Many previous publications
reported small differences in HR prediction error (e.g., less than 0.5%) for comparison in
ablation studies but we found that these differences are too little to draw a meaningful
conclusion with a statistical significance. Therefore, we examined the statistical significance
of the performance improvement in the optimization process by observing not only the
average value but also the standard deviation of 10 independent experiments. The PhysNet
encoder-decoder model starts with a stem layer with 32 channels, followed by the encoder
channel width of 64 (Figure 2).
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Figure 2. Baseline PhysNet encoder-decoder architecture.

3.4. Deeply Supervised rPPG Network

The visualization of the intermediate layer suggests that the hidden layers are already
capable of learning periodic representations of heart pulses. For this reason, we introduce
a method for deep supervision of rPPG regression networks. For small training data
and relatively shallower networks, deep supervision has been demonstrated to serve as
a strong regularization and provide significant performance gains with fast convergence
behavior. One concern with the direct pursuit of deeply supervised features at all hidden
layers is that this might interfere with the overall network performance; our experimental
results indicate that this is not the case. The overall structure of the deeply supervised
rPPG network is shown in Figure 1. For each layer of the encoder and decoder, only the
temporal information was extracted through spatial average pooling. For the ground truth
of deep supervision, PPG label was down-sampled in regard to the temporal dimension
of each layer. To mitigate the phase misalignment between prediction and ground truth
in deep supervision, We employed the maximum cross-correlation (MCC) [36] in the
frequency domain as an objective function:

MCC = cpr × max

(
F−1{BPass(F{y} · F{ŷ})}

σy × σŷ

)
(1)

In the MCC (Equation (1)), y and ŷ represent the signals after mean subtraction, fo-
cusing on signal fluctuations. The Fast Fourier Transform (FFT), denoted as F, is applied
to these signals, converting them from time to frequency domain. The conjugate of F,
represented as barF, is used during the cross-correlation computation. The signals are
zero-padded before FFT to prevent circular correlation. A bandpass filter, indicated by
BPass, is applied to isolate the heart rate frequencies within the range of 40 to 180 bpm.
The standard deviations of the original signals y and ŷ, denoted as σy and sigmaŷ respec-
tively, are used for normalization. Finally, cpr is a constant scaling factor representing
the power ratio within the heart rate frequency range, ensuring that the MCC focuses on
relevant frequencies. In our proposed model, the use of MCC loss is crucial for its precision
in frequency domain analysis and enhanced signal correlation. By employing the FFT, MCC
loss accurately analyzes the spectral components crucial for heart rate detection. More-
over, the conjugate multiplication aspect of MCC loss effectively measures the correlation
between the physiological signals and the rPPG signal, ensuring a high degree of accuracy
in synchronizing the extracted heart rate with the actual physiological heart rate.
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A weight of 0.1 was applied to the auxiliary loss of each intermediate layer compared
to the primary loss. This proposed method calculates the spectral loss directly without
additional parameters or regression heads, whereas in previous studies, an additional task-
specific network needs to be added to train the auxiliary loss. Therefore, the network has the
advantage of using the same structure in training and testing except for batch normalization.

3.5. Optimization of Network Architecture Through Cost Function

In our study, we address the optimization of neural network architecture, particularly
in terms of channel numbers. We formulated an objective to minimize a cost function that
balances the model’s predictive error and its complexity. Due to significant scale differences
between these two components, we apply normalization to align their scales effectively.
The cost function is defined as:

min
α

(ϵ(α) + λP(α)) (2)

Here, ϵ(α) represents the predictive error of the model, and P(α) denotes the number
of parameters, reflecting the model’s complexity with respect to the number of channels
of intermediate layers α = {1, 2, 4, . . . , 64}. The coefficient λ is a regularization term that
control the trade-off between minimizing the error and the model’s complexity, defined
by σϵ/σP where σϵ and σP are the standard deviation of the error and the number of
parameters, respectively. Our optimization approach focuses on minimizing this cost
function. The optimal channel numbers are those that yield the lowest cost, indicating a
balanced architecture in terms of performance and complexity. This methodology enables
us to systematically fine-tune the network’s architecture, achieving an effective balance
between performance accuracy and model size.

We represent the values of our defined optimization objective function in Figure 3.
In Figure 3a, α represents the number of channels in the encoder layers, demonstrating
how the cost varies with changes in the number of channels of the encoder layers. Sim-
ilarly, Figure 3b illustrates the impact of varying the number of channels in the decoder
layers on the cost, with α denoting the number of channels in the decoder layer. These visu-
alization aid in understanding the relationship between the number of channels in different
layers and the overall model optimization, providing clear insights into how different
configurations of α affect the balance of predictive error and model complexity.

3.6. Evaluation Metrics

The recovered rPPGs and corresponding ground truth PPGs undergo the same process
of filtering, normalization, and spectral transformation using short-time Fourier transforma-
tion to derive the HR. Our evaluation of performance relied on the root mean square error
(RMSE), mean absolute error (MAE), and Pearson correlation coefficient (PCC). We com-
pared the performance of these metrics across 10 experiments for each dataset and different
experimental conditions to identify the best performance.

3.7. Experimental Setup

For the short-time Fourier transformation, the RMSE value tends to appear smaller as
the time window gets longer because the average is ultimately taken over a longer period
of time. However, it is not feasible to use an excessively long time window in applications
that require frequent updates of BPM or detailed analysis of time-dependent factors such
as HRV, as shorter windows provide better temporal resolution. To ensure a fair evaluation,
we used the shortest window of 5 s that has been used in other studies for our evaluation.
The sliding step in the within-database case is taken as 0.1 s. A smaller sliding step can
help to increase the number of training samples for the within-database case. All reference
PPG signals are resampled to be aligned with the video frame rate. We train the proposed
DSE-NN for 100 epochs using the Adam optimizer with a weight decay coefficient of 0.1.
The initial learning rate is set to 0.0001 and the batch size is set to 6.
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Figure 3. Accuracy according to numbers of channels of encoder (a) and decoder layers (b). BS stands
for Baseline model, PhysNet. Red dots represent the number of parameters corresponding to the
number of channels in each layer, and gray dots indicate the optimization objective values for each
configuration.

4. Results

We optimized and evaluated the proposed DSE-NN on public datasets to illustrate its
effectiveness. The performance of our proposed method was assessed with and without
deep supervision. Additionally, we compared it with existing works evaluated on the
V4V dataset, UBFC-rPPG, and PURE.

4.1. Optimization of Spatiotemporal Network

We optimized the spatiotemporal network by modulating the channel width of the
encoders and the decoders sequentially, evaluating the HR RMSE.

As shown in Figure 3a, the performance of the rPPG network was slightly improved,
despite the decreasing channel width of the encoder. However, the performance started
to deteriorate when the channel width became 1. These results suggest that the baseline
model may be an overfitting model compared to the required complexity when tested in
the popular benchmark datasets. The model with a channel width of 16 showed the best
performance among all evaluated conditions, which was statistically significant and higher
than that of the baseline. Additionally, the decrease in the number of model parameters
started to slow down to some extent, and therefore, we conclude that the encoder channel
width of 16 was optimal. As a result, the HR RMSE was reduced from 7.703 to 6.833, and the
number of parameters of the entire model decreased by 91% from 867 k to 78 k. Figure 3b
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shows the performance change of the model according to the change in decoder channel
width. There was little change in performance despite the extreme reduction of the channel
width of decoders, where no statistically significant difference was found with the p values,
which were larger than 0.05.

4.2. Visualization of Features and Learned Filters

For a better understanding of learned features by the spatiotemporal model, we
visualized the activations produced on each layer of a trained convolutional network and
the learned features computed by individual neurons at every layer. In convolutional
networks, filters are applied in a way that reflects the underlying geometry of the input
and produces activations in spatially arranged layers for each channel. The activations of
neurons in each layer of convnets were visualized in response to the video.

Figure 4 shows a snapshot of the activations of each channel (the output of stem-conv1,
encoder1-conv2, encoder2-conv4, encoder3-conv2, decoder-conv1, and decoder-conv2
layers). We used an encoder-decoder architecture as a baseline [20] that includes encoder
layers (channel widths of 32, 64, 64, and 64) and decoder layers (channel widths of 16 and 8).
For example, the second conv layer output of encoder1 (Figure 4b at a given temporal point
has a size of 64 × 56 × 56 (C × W × H), which we depicted as 64 separate 56 × 56 grayscale
images. Each of the 32 small image patches contains activations in the same spatial x-y
spatial layout as the input data, and the 32 images are simply and arbitrarily tiled into a
6 × 6 grid in row-major order. The activation of the convnets focused on the skin region
except for the eyes and lips with the forehead or cheeks accentuated. The deeper the layer,
the more information is kept in an abstract geometrical form.

Figure 4. Visualization of activation of (a) stem-conv1; (b) encoder1-conv2; (c) encoder2-conv4;
(d) encoder3-conv2; (e) decoder-conv1; (f) decoder-conv2 in gray scale, and learned filters of (g) stem-
conv1 in RGB. We normalize the signals, thus the y-axes are arbitrary unit.

Surprisingly, decoder activation does not learn various spatial patterns across channels,
and the learned spatial activations converge to one or two patterns. In this context, we
visualized how the waveform changes over time by averaging the activation values for
each channel in space. Figure 5 shows the temporal activation pattern of the decoder
channel of the trained model while reducing the number of channels from 64, 32, 16, 8, 4,
to 2. Regardless of the number of channels, the temporal activation converged into two
representations. Based on these results, we conducted an experiment with a model with
two decoder channels as the final model selected later.
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Figure 5. Temporal representation of activations of the decoder-conv2 with the channel number
of 64 (a); 32 (b); 16 (c); 8 (d); 4 (e); and 2 (f). Colors in the figure are used for visual differentiation
of channels.

Figure 6 shows the spectral activations of intermediate layers which were visualized by
assessing how the temporal representation changes over time by averaging the activation
maps of each layer in space for each channel and transforming the temporal signal into the
frequency domain. The periodic pattern in time did not appear dominantly in the initial
layer. Although it is not a dominant signal in the initial layer, it still showed a periodicity
that matched the heart pulse, and the temporal periodic pattern was strengthened as the
layer was deepened. Moreover, transformation into the frequency domain made this phe-
nomenon more conspicuous. These results imply that we can help model learning by direct
supervision of the intermediate layers rather than propagating it through backpropagation
of the output to learn the heartbeat periodicity.

The learned filters were also visualized for the first convolution layers with a filter size
of (1, 5, 5) (Figure 4g). We found that the learned filters tend to capture low-frequency infor-
mation in space, which is presumably important to aggregate the skin pixel information for
tracking the heart pulse in time instead of space. Previous works have demonstrated a skin
segmentation loss as an auxiliary objective function; however, our result provides intuitions
that we need a more sophisticated method to employ spatial semantics and incorporate
these methods into the network architecture, which can be investigated in future work.
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Figure 6. Spatially average pooled output of intermediate layers and frequency domain of each
channel (a–e). Blue line and orange line (f) represent ground truth and predicted PPG, respectively.
Colors in the figure are used for visual differentiation of channels.

4.3. Ablation Study

To analyze the influence of each module on the experimental performance, we report
the results of the ablation study of the proposed method on a set of three recent PPG
datasets (V4V, UBFC-RPPG, and PURE) in Table 1. We conducted a comparison between
encoder-decoder models of PhysNet that were trained using either MSE loss or NegPCC
(Negative Pearson Correlation Coefficient) loss, which was used as a baseline for our study.
The two loss functions showed similar performance in PURE, UBFC-RPPG, and V4V, but
as anticipated, the MSE loss resulted in improved MSE metrics while performing poorly
in PCC metrics. On the other hand, the NegPCC loss resulted in improved PCC metrics
while performing poorly in MSE metrics. The same trend was observed in the optimized
lightweight PhysNet model. For example, in the PURE dataset, the MSE loss reduced the
RMSE by 50% from 4.379 to 2.227 bpm, but it can be observed that the PCC decreased
from 0.779 to 0.537. The lightweight PhysNet model showed similar performance on all
datasets compared to the original PhysNet model, despite having 11 times fewer parameters.
Since we used MCC loss for deep supervision, we also tested it after training the lightweight
PhysNet model with MCC loss instead of MSE loss or NegPCC loss to understand the
performance of MCC loss. In this case, MCC loss performed poorly on all metrics on
PURE, and it showed intermediate performance between MSE loss and NegPCC loss in
UBFC-RPPG and V4V. Based on these results, we used MSE loss for PPG regression and
MCC loss for deep supervision.
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Table 1. Ablation study of the proposed methods.

PURE UBFC-RPPG V4V

RMSE MAE PCC RMSE MAE PCC RMSE MAE PCCMethod (bpm) (bpm) (a.u.) (bpm) (bpm) (a.u.) (bpm) (bpm) (a.u.)

Encoder-decoder, MSE 4.833 1.566 0.762 6.693 2.188 0.726 7.441 3.333 0.802
Encoder-decoder, NegPCC 3.750 1.131 0.810 5.558 2.078 0.887 6.671 2.830 0.855
Light-weight, MSE 2.227 1.155 0.537 6.324 1.988 0.811 6.765 2.946 0.848
Light-weight, MCC 5.042 1.634 0.141 7.039 2.469 0.817 7.035 2.968 0.858
Light-weight, NegMCC 4.379 1.401 0.779 7.566 2.453 0.841 7.935 3.745 0.844
Light, DS (MCC), MSE 1.062 0.652 0.979 4.339 1.618 0.764 6.650 2.821 0.873

The use of deep supervision can lead to faster convergence rates due to larger gradient
values and variances. Additionally, it can increase robustness in hyperparameter selection,
as the direct regression loss used in the early layers can result in quicker convergence and
less dependence on extensive hyperparameter tuning. To examine convergence behavior,
we compared 10 average training curves between baseline, lightweight models with deep
supervision (Figure 7). As expected, the convergence rate was accelerated, and the number
of epochs converged to HR RSME lower than 10 bpm and decreased from 19 epochs to
8 epochs.

Figure 7. Comparison of convergence rates of each model.

The DSE-NN showed the best performance in RMSE, MAE, and PCC in all datasets
except PCC of UBFC-RPPG. Overall, it can be observed that the PURE dataset shows better
performance metrics for rPPG prediction than UBFC-RPPG and V4V. This can be speculated
due to the fact that V4V and UBFC-RPPG datasets contain various stimuli that induce
facial expression changes or sudden facial movements, such as arithmetic calculations or
emotional arousal.

The effect of deep supervision can be directly confirmed by comparing a lightweight
network with MSE loss to a DSE-NN that includes only deep supervision added to the
former. By deep supervision, the lightweight network improved RMSE from 2.227 to
1.062 bpm and PCC from 0.537 to 0.979. Remarkably, a deeply supervised network using
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MSE loss instead of PCC loss even showed better PCC values than the lightweight network
using PCC loss (0.779) and PhysNet using PCC loss (0.810). This trend was observed not
only in the PURE dataset but also in the UBFC-RPPG and V4V datasets. These results
indicate that deep supervision contributes to overall performance improvements.

Our proposed approach is not limited to our suggested lightweight encoder-decoder
network and can be applied to any neural rPPG regression model that contains periodicity
representation. Furthermore, this method is not confined to supervised learning; it can also
be used with self-supervised methods to deeply supervise intermediate layers [36].

5. Discussion
5.1. Impacts of Deep Supervision

The use of deep supervision can lead to faster convergence rates due to larger gradient
values and variances. Additionally, it can increase robustness in hyperparameter selection,
as the direct regression loss used in the early layers can result in quicker convergence and
less dependence on extensive hyperparameter tuning.

To examine convergence behavior, we compared 10 average training curves between
baseline, lightweight models with deep supervision (Figure 7). As expected, the conver-
gence rate was accelerated, and the number of epochs converged to HR RSME lower than
10 bpm and decreased from 19 epochs to 8 epochs.

Our proposed model, DSE-NN showed the best performance in RMSE, MAE, and PCC
in all datasets except PCC of UBFC-RPPG. Overall, it can be observed that the PURE dataset
shows better performance metrics for rPPG prediction than UBFC-RPPG and V4V. This can
be speculated due to the fact that V4V and UBFC-RPPG datasets contain various stimuli
that induce facial expression changes or sudden facial movements, such as arithmetic
calculations or emotional arousal.

5.2. Performance on PURE, UBFC-rPPG, V4V

To verify the effectiveness of the DSE-NN, we compared our proposed method with
previous works, including traditional methods [15,37–39] and methods based on deep
learning [10,20–22,33,36,40–43] (Table 2). Compared to the signal processing-based methods
(CHROM [18,39], POS [15,18]), deep learning methods (Wang et al. [40], Gideon et al. [36],
HR-CNN [22]) showed better performance by large margin in PURE. DSE-NN showed the
best performance in PURE except for PCC which the work of Gideon et al. [36] showed a
PCC of 0.99 compared with our method with a PPC of 0.98. On the UBFC-RPPG dataset, our
proposed method outperformed other deep learning methods except for PulseGAN [41].
However, our method can also be applied to deep learning methods including PulseGAN,
and it can be expected to be used as an additional module to improve the performance of
existing deep learning models. On the V4V dataset, our method exceeds the performance of
both signal processing-based methods (GREEN [38], ICA [37], POS [15]) and deep learning
methods (DeepPhys [21], Revanur et al. [33]). Furthermore, as deep supervision methods,
our model optimization and visualization methods are generally applicable and can be
used as general tools that can be applied to those deep learning methods beyond the
network architecture.
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Table 2. Results of HR measurement on the PURE (a), UBFC-rPPG (b), and V4V (c) datasets.

(a) PURE

Method RMSE (bpm) MAE (bpm) PCC (a.u.)

Comas et al. [18], CHROM [39] 2.50 2.07 0.99
Comas et al. [18], POS [15] 10.57 3.14 0.95
Wang et al. [40] 11.81 9.81 0.42
Gideon et al. [36] 2.9 2.3 0.99
HR-CNN [22] 2.37 1.84 0.98

Proposed method 1.06 0.65 0.98

(b) UBFC-RPPG

Method RMSE (bpm) MAE (bpm) PCC (a.u.)

PhysNet [20] 5.10 4.12 0.83
Meta-rPPG [42] 7.42 5.97 0.53
PulseGAN [41] 2.10 1.19 0.98
Gideon et al. [36] 4.6 3.6 0.95
AND-rPPG [43] 4.75 3.15 0.92

Proposed method 4.34 1.62 0.76

(c) V4V

Method RMSE (bpm) MAE (bpm) PCC (a.u.)

GREEN [38] 21.9 15.5 -
ICA [37] 20.6 15.1 -
Comas et al. [18], POS [15] 21.8 15.3 -
DeepPhys [33] 19.7 14.7 -
Revanur et al. [33] 18.8 13.0 -

Proposed method 6.65 2.81 0.87

5.3. Comparison of Computational Complexity

In the comparison of computational complexity across various rPPG models (Table 3),
our proposed DSE-NN model shows notable efficiency. DSE-NN model stands out due to
its significantly lower number of parameters, 57k, which is an order of magnitude smaller
than most competitors, such as DeepPhys [21] and HR-CNN [22], which possess parameters
in the millions. This reduction in parameters implies a lightweight model, facilitating faster
training times and reduced memory footprint.

Furthermore, DSE-NN model’s FLOPs are calculated to be 44.26 × 109 which is
substantially lower than that of HR-CNN [22]’s 988.97 × 109, suggesting a much less
computationally intensive process. This efficiency is pivotal for deployment in real-time
applications where computational resources are constrained. Even when compared to mod-
els with fewer layers, like Liu et al. [16], DSE-NN maintains a competitive edge in FLOPs
without compromising on performance capabilities. In essence, DSE-NN encapsulates the
essence of computational frugality while maintaining high accuracy, making it an ideal
candidate for real-world rPPG applications that require both efficiency and efficacy.
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Table 3. Comparative analysis of the proposed model with other models, showing differences in
input size, number of layers, number of parameters and computational operations.

Name Input Size # of Layers # of Parameters FLOPs (×109)

DeepPhys [21,44] 3 × 150 × 36 × 36 (3 × 256 × 128 × 128) 9 1.46 M 9.62 (207.56)
HR-CNN [22,44] 3 × 300 × 192 × 168 (3 × 256 × 128 × 128) 13 1.87 M 988.97 (428.66)
Liu et al. [16,44] 3 × 150 × 36 × 36 (3 × 256 × 128 × 128) 9 1.45 M 9.61 (207.34)
RhythmNet [44,45] 3 × 10 × 300 × 25 (3 × 256 × 128 × 128) 21 11.42 M 1.70 (95.07)
PhysNet Encoder-Decoder [20] 3 × 256 × 128 × 128 12 866.69 k 438.62

Proposed method 3 × 256 × 128 × 128 12 57.09 k 44.26

6. Conclusions

This paper presents a deeply supervised efficient network for rPPG measurement from
raw facial videos, named DSE-NN. Here, we propose a method to visualize the spatial,
temporal, and spectral representation of the spatiotemporal network. DSE-NN optimizes
the spatiotemporal network and improves prediction performance. Deep supervision
improved the convergence behavior and HR prediction accuracy without additional task-
specific trainable parameters with additional performance improvements.

While our proposed model demonstrates promising results in rPPG measurement from
raw facial videos, there are areas where further research is needed. A key limitation is the
need to validate and enhance the performance of DSE-NN in real-time implementations,
particularly on embedded systems. Future work could explore the potential of model
lightweighting techniques, such as 8-bit quantization, to enhance real-time applicability
without significant loss in performance. Jacob et al. [46] provide insights into efficient
quantization methods that could be adapted for DSE-NN. Additionally, applying our
deep supervision approach to a variety of other models would be valuable to assess its
impact on learning speed and overall performance improvement. The versatility of this
approach holds potential not only for advancements in remote photoplethysmography but
also for broader applications across various fields in deep learning and signal processing.
This cross-disciplinary applicability could lead to significant contributions in diverse areas
of research.
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Abbreviations
The following abbreviations are used in this manuscript:

rPPG Remote Photoplethysmography
PPG Photoplethysmography
ROI Region of Interest
CNN Convolutional Neural Network
LSTM Long Short Time Memory
DSE-NN Deep Supervised Efficient Neural Network
HR Heart Rate
V4V Vision-for Vitals
MCC Maximum Cross Correlation
RMSE Root Mean Squared Error
MSE Mean Squared Error
MAE Mean Absolute Error
PCC Pearson Correlation Coefficient
bpm Beats per Minute
NegPCC Negative Pearson Correlation Coefficient
a.u. arbitrary unit
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