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Abstract: Two-dimensional (2D)/three-dimensional (3D) registration is critical in clinical applications.
However, existing methods suffer from long alignment times and high doses. In this paper, a non-rigid
2D/3D registration method based on deep learning with orthogonal angle projections is proposed.
The application can quickly achieve alignment using only two orthogonal angle projections. We tested
the method with lungs (with and without tumors) and phantom data. The results show that the Dice
and normalized cross-correlations are greater than 0.97 and 0.92, respectively, and the registration
time is less than 1.2 seconds. In addition, the proposed model showed the ability to track lung tumors,
highlighting the clinical potential of the proposed method.

Keywords: 2D/3D registration; orthogonal X-ray; deep learning

1. Introduction

Medical imaging has helped a lot with diagnosing and treating diseases as modern
medical technology has grown quickly. Image registration is crucial in medical image
processing because it helps predict, diagnose, and treat diseases. For the images to be
registered, three-dimensional (3D) medical images with rich anatomical and structural
information are an inevitable choice for clinical problems. Unfortunately, 3D images have a
higher radiation dose and a slower imaging speed, which inconveniences real-time clinical
problems, such as image-guided radiotherapy and interventional surgery. On the other
hand, two-dimensional (2D) images lack some spatial structure information, while the
imaging speed is very fast. Therefore, in recent years, 2D/3D image registration with
faster speed and simple imaging equipment has attracted much attention. The types of 2D
images are usually X-ray [1–4], fluoroscopic [5], digital subtraction angiography (DSA) [6,7],
or ultrasound [8], whereas 3D images are chosen from computed tomography (CT) [1–4] or
magnetic resonance imaging(MRI) [8].

2D/3D registration methods can be divided into traditional and deep learning-based
image registration. In traditional image registration, 2D/3D alignment usually translates
into the problem of solving for the maximum similarity between digitally reconstructed
radiographs (DRR) and X-ray images. Similarity metrics are usually based on intensity-
based mutual information [9–11], normalized cross-correlation (NCC) [12] and Pearson
correlation coefficients [13], or gradient-based similarity metrics [14]. To minimize the
dimensionality of the transformation parameters, regression models that rely on a priori
information are usually built using B-spline [15] or principal component analysis (PCA) [16–19].
However, organ motion and deformation can cause errors in regression models, which
rely too much on prior information. By incorporating finite element information into the
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regression model, Zhang et al. [18,19] obtained more realistic and effective deformation
parameters. However, adding finite element information makes the model-driven method
of finding the optimal solution iteratively more inefficient. Therefore, this process is a
constraint for developing real-time 2D/3D registration and tumor tracking algorithms.

With the development of artificial intelligence and deep learning, learning-based meth-
ods replace the tedious iterative optimization process with predicted values in the testing
process, greatly improving computing efficiency. Zhang [20] proposed an unsupervised
2D-3D deformable registration network that addresses 2D/3D registration based on finite
angles. Li et al. [4] proposed an unsupervised multiscale encode decode framework to
achieve non-rigid 2D/3D registration based on a single 2D lateral brain image and 3D CBCT
image. Ketcha et al. [21] used multi-stage rigid registration based on convolutional neural
networks (CNN) to obtain a deformable spine model. Finally, Zhang et al. [22] achieved
a deformable registration of the skull surface. Unfortunately, the above learning-based
approach evaluates the similarity between DRR and X-ray, a 2D/3D registration reduced
dimension to 2D/2D registration. Therefore, it is inevitable that spatial information will
be lost to some extent. In addition, even with Graphic Processing Unit (GPU) support,
forward projection, backward projection, and DRR generation involved in the above meth-
ods are computationally expensive. Then, the researchers completed end-to-end 2D/3D
registration by integrating the forward/inverse projection spatial transformation layer into
a neural network [3,23]. Frysch et al. [2] used Grangeat’s relation instead of expensive
forward/inverse projection to complete the 2D/3D registration method based on a single
projection of arbitrary angle, which greatly accelerated the computational speed. However,
this is a rigid transformation which is difficult to apply to elastic organs. Likewise, deep
learning researchers have attempted to use statistical deformation models to build deep
learning-based regression models. Using a priori information to build patient-specific de-
formation spaces, convolutional neural networks are used to accomplish regression on PCA
coefficients [1,24,25] or B-spline parameter coefficients [26,27] to achieve patient-specific
registration networks. Tian et al. [28] obtained the predicted deformation field based on
the regression coefficients. However, this deformation space, which is completely based
on a priori information, may lead to mistakes in the clinical application stage. In addition,
some researchers [29,30] also accomplished 2D/3D image registration by extracting feature
points. With the maturity of point cloud technology, many researchers have also built point-
to-plane alignment models by extracting global point clouds to complete 2D/3D alignment
models, but the anomaly removal for 2D/3D alignment models presents a challenge [31–33].
Graphical neural networks are also used for 2D/3D registration in low-contrast condi-
tions [34]. Shao et al. [35] tracked liver tumors by adding finite element modeling. Still,
the introduction of finite elements also brought some trouble to the registration time.

Therefore, we developed a deep learning-based method for non-rigid 2D/3D image
registration of the same subject. Compared with traditional algorithms based on iterative
optimization, this approach significantly improves the registration speed. Compared with
the downscaled optimization of DRR and X-ray similarity, we optimized the similarity of
3D/3D images, which can effectively moderate the loss of spatial information. Additionally,
only two projections based on orthogonal angles were chosen for 2D images to reduce the
irradiation dose further. The proposed method is used to study the process of changes in the
elastic organ as respiratory motion proceeds. More significantly, we also investigated the
change in tumor position with respiratory motion, which can be used to achieve tracking
of tumors based on orthogonal angular projections during radiotherapy.

The contributions of our work are summarized as follows:
1. We propose a 2D/3D elastic alignment framework based on deep learning, which

can be applied to achieve organ shape tracking at lower doses using only two orthogonal
angles of X-rays.

2. Our framework is expected to be used for tumor tracking with tumor localization
accuracy up to 0.97 and registration time within 1.2 s, which may be a potential solution for
image-guided surgery and radiotherapy.



Bioengineering 2023, 10, 144 3 of 13

The organizational structure of this article is as follows. Section 2 describes the
experimental method. Section 3 describes the experiment setups. Section 4 shows the
Result. Section 5 is the discussion and Section 6 concludes the paper and the references.

2. Methods
2.1. Overview of the Proposed Method

The framework of this method is shown in Figure 1. We design a non-rigid 2D/3D
registration framework based on deep learning of orthogonal angle projection. Since it is
a deep learning-based model, a large amount of data is needed to participate in training.
The real paired 2D/3D medical images at the same time are very scarce, so the first
task that needs to be done is data augmentation. We chose 4D CT of the lungs as the
experimental subject. The expiratory end was used as a moving image MCT and hybrid
data augmentation [36,37] was used to obtain a large number of CT FCT representing
each respiratory phase of the lung (this procedure will be described in Section 3.1). Then,
the ray casting method obtains a pair of 2D DRRs of FCT with orthogonal angles. After that,
the orthogonal DRR and the moving image MCT are input into the 2D/3D registration
network. The network outputs a 3D deformation field φp. Then, the moving image MCT is
transformed by the spatial transformation layer [38] to obtain the corresponding predicted
CT image. The maximum similarity between the predicted CT image and the ground truth
FCT is calculated. Through continuous iterative optimization, we can complete the model
training. In the inference phase, only the X-ray projections or DRRs and the moving image
must be input to the trained network to get corresponding 3D images.

Figure 1. Overview of the proposed method. (a) Flowchart of the training phase of the method. First,
a large number of CT FCT and segmentation Fseg representing each phase are obtained by performing
hybrid data augmentation of the moving image MCT and the corresponding segmentation image
Mseg. Then, the FCT images are projected to obtain the 2D DRR90 and DRR00. After that, they are fed
into the registration network with the moving image MCT to obtain the predicted deformation field
φp. Finally, the moving image MCT and the moving segmentation map Mseg are transformed to obtain
the corresponding predicted images, PCT and Pseg. (b) The process of hybrid data augmentation.
The deformation field φinter is first obtained by inter-phase registration using traditional image
registration. The small deformation φintra is simulated by TPS interpolation. The hybrid deformation
field φhybrid is obtained by summing with random weights for data augmentation. (c) Inference stage.
The 2D projection and moving images are directly input to the trained network to get the prediction
φp, and then the registration can be completed by transformation.
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2.2. 2D/3D Registration Network

Figure 2 shows the registration network. For 2D/3D image registration, the first thing
to consider is the consistency of spatial dimension. As a result, we use the extracted feature
up-dimensional approach to transform the 2D/3D registration problem into the 3D/3D
registration problem. We used the residual network to get the 2D features. The most
important step is identity mapping, stopping the gradient from going away, and helping
train the network. Thus, when two DRRs with orthogonal angles are input to the network,
they are first concatenated in the channel layer as the input of the residual network and
then passed through the convolution layer, the max pooling layer, and two output channels
with 64 and 128 residual blocks in turn. The channel layer is the third dimension to form
a 3D feature map, which is input to the feature extraction network together with the
moving image.

We selected the 3D Attention-U-net [37,39] (3D Attu) as the feature extraction network
in this study. It can be called the 3D/3D matching network. The network 3D Attu adds an
attention gate mechanism to the original U-net, which can automatically distinguish the
target shape and scale, and learn more useful information. It also employs encoding and
decoding mechanisms and skips connection mechanisms. It effectively blends high- and
low-level semantic information while widening the perceptual domain. It has been used in
many medical image processing tasks with excellent results. As a result, in this model, we
feed the moving image MCT and the 3D feature map into the 3D Attu. The output is the
predicted deformation field.

Figure 2. 2D/3D registration network. First, 2D DRRs at orthogonal angles are processed by residual
blocks to obtain 3D feature maps. Then, the feature maps and moving images are fed into a 3D Attu-
based encode–decode network. The final output of this network is the predicted 3D deformation field.

2.3. Loss Function

The mutual information (MI) between the ground truth FCT and the predicted 3D CT PCT
obtained by the registration network constitute the loss function LMI(FCT , PCT). The other
part of the loss function is LDice(Fseg, Pseg), obtained by computing the Dice between the
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corresponding segmented images, which allows the model to focus more on the lung region.
Lastly is the regularized smoothing constraint LReg(φp) for the deformation field.

LDice(Fseg,Pseg) =
n

∑
i=0

1
n

2
∣∣∣Fi

seg ∩ Pi
seg

∣∣∣∣∣∣Fi
seg + Pi

seg

∣∣∣ (1)

L = λ1LDice(Fseg,Pseg) + λ2LMI(FCT , PCT) + λ3LReg(φp) (2)

where n denotes the number of categories in the image, i denotes the i-th category of the
image. ϕ denotes all elements in the entire deformation field. λ1, λ2, λ3 denote the weights
of LDice, LMI , LReg respectively, which were chosen as 0.5, 0.5, and 0.1 in this experiment.

3. Experiment Setups
3.1. Data and Augmentation

We conducted experiments on three different types of lung data, TCIA [40–43] patient
with a tumor, Dirlab [44] lung CT without tumor, and CIRS phantom. ITK-SNAP is used
for automatic segmentation to obtain labels. In the TCIA patient data, we selected one
of the patients for the experiment. In Dirlab, we selected the first five sets of data for the
experiment. In the CIRS phantom, we simulated the lung tumor with a water sphere. In the
experiment, we resampled the 3D CT image to 128 ∗ 128 ∗ 128 with a voxel spacing of
1 mm ∗ 1 mm ∗ 1 mm. Since our experiment is a 2D/3D registration, paired 2D projections
and 3D medical images of the same moment are rare. It is unethical to expose the human
body to additional radiation doses, so the first task is data augmentation. However,
for 2D/3D registration of the treatment phase (e.g., radiotherapy, surgical navigation), it is
obvious that the focus is more on the specific person. Therefore, we chose a hybrid data
augmentation approach to train a deep learning-based 2D/3D registration model for a
specific human body.

In the hybrid data augmentation shown in Figure 1b, we first selected the end-
expiratory phase of 4D CT as the moving image MCT and the remaining phases as the
fixed image CT1,...,i,j,9. Then, we used the conventional intensity-based image registration
method to obtain nine deformation fields in the order of φ1,...,i,j,9. The deformation fields
used for data augmentation were arbitrarily selected from two of the nine deformation
fields and superimposed with random weights to obtain many inter-phase deformations.
The lung may also change during respiratory motion. Therefore, we use thin plate spline
(TPS) interpolation to simulate small changes in specific phases. The number of control
points N was randomly chosen between 20 and 60. The movement distance of control
points was chosen between 0 mm and 20 mm to obtain many phase-specific random defor-
mations. To obtain more morphologically diverse images, we combined inter-phase and
intra-phase specific deformation with random weights to obtain many hybrid deformation
fields. Spatial warping of the moving and segmented images was performed to obtain CT
and segmented images representing each respiratory phase of the lung.

3.2. DRR Image Generation

The orthogonal angle X-ray projection system in this experiment is shown in Figure 3.
Two-point light sources at orthogonal angles emit rays through the object and project them
on two detectors perpendicular to the central axis. We assume that the initial intensity of
I0 at the light source, µ is the internal attenuation coefficient of the object to the rays, I is
the thickness of the ray through the object, and In is the intensity of the ray after passing
through the object. The formula In = I0e−

∫
µ(l)dl arises. After the projection of one ray is

finished, the attenuation coefficient obtained by accumulating the whole path and then
converting it to CT value is the X-ray image. In this experiment, like most researchers,
DRR images with the same imaging principle are used instead of X-ray. Virtual X-rays
were used to pass through the CT images, and after attenuation, they were projected onto
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the imaging plane to reconstruct the DRR images. The 3D CT images representing each
respiratory phase after data augmentation are projected using this method to obtain the
DRR images at the corresponding moment. This technique has been widely used for 2D/3D
registration methods.

Figure 3. Schematic diagram of DRR image generation.

3.3. Experiment Detail

We used hybrid data augmentation to obtain 6000 samples from the three types of
experimental data. Of these, 5400 were used as the training set, 300 as the validation
set, and 300 as the test set. Our experiment was implemented using the deep learning
framework Pytorch 1.10 on a NVIDIA A6000 GPU with 48 G of memory, and an AMD
Ryzen 7 3700X 8-core processor with 128 GB of internal memory. The learning rate is set to
10−4. For all datasets, the batch size was set to 8 and the optimization algorithm is Adam.

3.4. Experiment Evaluation

In order to verify that our model can achieve 2D/3D registration by two orthogonal
angular projections, we selected the end of expiration as the moving image and aligned
it toward the remaining phases. We evaluated the three-lung data using NCC, MI, 95%
Hausdorff surface distance, and Dice. In addition, to explore the tracking of lung tumors
that can be achieved by our model, we compared between predicted and ground truth
values for the dataset with tumors and quantitatively evaluated using Dice and the tumor
center of mass.

4. Result
4.1. Registration from the Expiratory End to Each Phase

Here, we demonstrate the registration results of each phase from the end of expiration
to the end of inspiration for the TCIA, Dirlab, and phantom. For the qualitative assessment,
Figure 4a shows the results of our selected experiments on patients with tumors on TCIA,
Figure 4b shows a randomly selected set of experiments from Dirlab, and Figure 4c shows
the effect of registration of the phantom data. The odd rows are the unaligned ones, and the
even rows are the aligned results. Based on the results, both TCIA patients with tumors and
without tumors in Dirlab, as well as the phantom model with water balloons that simulate
tumors, can achieve registration from the end of expiration to the rest of the stages.

For the quantitative analysis, we used Dice of the segmentation map, 95% Hausdorff
surface distance, NCC, and MI of grayscale images to evaluate our scheme separately.
The results are shown in Table 1. It can be seen that good registration results are obtained
for all three types of data, not only on the grayscale images, but also on the lung of interest.
The Dice values of all three data types are above 0.97, the Hausdorff surface distances
are below 2 mm, NCC are above 0.92 and MI are above 0.90. Compared with the real
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human lung, the NCC and MI of the phantom data are relatively small because the lung
of the phantom itself does not change. Only the internal water sphere changes, which is
more rigidly transformed relative to the real patient, so the NCC and MI are relatively
small at higher Dice. However, the total accuracies are still above 0.92 and 0.90. Therefore,
quantitative and qualitative results show that the proposed method can achieve non-rigid
2D/3D registration for a specific subject by two orthogonal angular projections.

Figure 4. Registration from the exhalation end to the other stages. (a) shows the results of our
registration on TCIA, (b) a randomly selected set of experiments from Dirlab, and (c) the registration
results of the phantom data. The odd-numbered rows are the unregistered contrast images, and the
even-numbered rows are the registered contrast images.

Table 1. The accuracy of subjects’ registration from the expiratory end to each phase.

Dice Hauf (95%) NCC MI

TCIA

[0%,10%] 0.9814 1.1210 0.9846 0.9796
[0%,20%] 0.9791 1.3811 0.9846 0.9760
[0%,30%] 0.9795 1.3811 0.9847 0.9540
[0%,40%] 0.9785 1.3811 0.9846 0.9578
[0%,50%] 0.9806 1.4196 0.9848 0.9650

Dirlab

[0%,10%] 0.9857 1.8839 0.9762 0.9590
[0%,20%] 0.9857 1.8620 0.9723 0.9535
[0%,30%] 0.9853 1.8280 0.9691 0.9511
[0%,40%] 0.9853 1.8290 0.9680 0.9424
[0%,50%] 0.9854 1.8290 0.9753 0.9608

CIRS

[0%,10%] 0.9862 0.9043 0.9338 0.9135
[0%,20%] 0.9907 1.6713 0.9291 0.9023
[0%,30%] 0.9888 2.0000 0.9360 0.9064
[0%,40%] 0.9885 1.9087 0.9348 0.9065
[0%,50%] 0.9894 1.9087 0.9349 0.9178
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4.2. Tumor Location

Both TCIA patient and the phantom contained tumors. The accuracy of tumor local-
ization was evaluated qualitatively and quantitatively.

Figure 5 shows the qualitative evaluation of the 3D tumor with two types of data,
where (a) is a 3D visualization image of the patient’s overall lung and tumor and (b) is
of the phantom data. Table 2 presents the quantitative results, where we evaluated the
tumor center mass and Dice. The tumor center of mass deviation is within 0.15 mm for the
real patient. The phantom tumor center of mass is less than 0.05 mm. The Dice of both
are above 0.88. It can be seen that the proposed method can achieve registration both for
the whole lung and for the tumor. In addition, the fact that local tumors are well aligned
suggests that our model could be useful for clinical applications such as tracking tumors.

Figure 5. Tumor registration results from the exhalation end to other stages. Where (a) is the 3D
presentation of the results before and after a real patient’s lung and tumor registration, and (b) is of
the phantom data of the 3D results of the tumor display. The odd rows are the unregistered images,
and the even rows are the post-registered images. The red image indicates the ground truth. Blue is
the moving image, and green is the predicted result obtained by the model.

Table 2. The accuracy of tumor location from the expiratory end to each phase.

Center Mass (mm) Dice
X(LR) Y(AP) Z(LR) Center Tomor

TCIA

[0%,10%] 0.0003 0.0473 0.0844 0.0968 0.9440
[0%,20%] 0.0117 0.0133 0.0260 0.0315 0.9434
[0%,30%] 0.0031 0.0023 0.0473 0.0022 0.9023
[0%,40%] 0.0032 0.0078 0.0339 0.0350 0.9080
[0%,50%] 0.0227 0.0510 0.1251 0.1370 0.8984

CIRS

[0%,10%] 0.0224 0.0011 0.0270 0.0351 0.9717
[0%,20%] 0.0061 0.0025 0.0081 0.0104 0.9764
[0%,30%] 0.0086 0.0018 0.0158 0.0181 0.9609
[0%,40%] 0.0174 0.0177 0.0084 0.0262 0.9702
[0%,50%] 0.0022 0.0043 0.0477 0.0479 0.8826



Bioengineering 2023, 10, 144 9 of 13

5. Discussion
5.1. Traditional Registration in Data Augmentation

We used traditional intensity-based image registration for data augmentation to com-
plete the registration between phases. Here we present the two most distorted parts of the
three data, the end of expiration and the end of inspiration, for evaluation. The experimental
results are shown in Figure 6.

Figure 6 shows the results from three directions before and after the registration.
The odd columns are the unregistered images. The even columns are the results after the
traditional registration method. Conventional image registration can be accomplished for
real patients and models from exhalation to the end of inspiration, ensuring that our aug-
mentation data encompasses all respiratory phases of the lung. In addition, the registration
covers the larger deformations at both ends.

Figure 6. The traditional registration method results from the end of exhalation to the end of
inhalation. The first two columns are the registration results on the patient, the middle two are the
registration results on the normal human lung, and the last two are the registration results on the
phantom. The odd columns are the unregistered images, and the even columns are the results of the
registered images.

5.2. Landmark Error

For the Dirlab data, the landmark points and the deformation field for performing
data augmentation are known. Thus, the landmark points of the image generated after data
augmentation are also known and used as our ground truth. The mean target registration
error (mTRE) is evaluated with our model-predicted images.

The data obtained from the evaluation are shown in Table 3. The corresponding box
plot is shown in Figure 7, in which green indicates the data before registration, yellow is
the data after registration of the proposed method, and purple represents the data after
3D/3D registration using Demons [45]. The results show that the proposed model can
achieve effective 2D/3D registration, but the accuracy is lower than the existing advanced
3D/3D registration models because the experimental data are only two 2D X-rays with
orthogonal angles. Although the proposed method transforms 2D/3D registration into a
3D/3D registration problem, some image details are indeed lost compared with the 3D
images, resulting in the loss of information on tiny details, such as capillaries, leading to a
lower accuracy of landmark error based on detailed information. However, in the 2D/3D
registration mission, more attention is paid to the global overall changes in the lung and the
tumor location. The proposed method greatly reduces the irradiation dose and improves
the registration speed.
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Table 3. Mean target registration error of landmarks in Dirlabs.

(mm) Initial Proposed (2D/3D) Demons (3D/3D)

Dirlab1 3.9776 (1.8616) 2.0065 (0.6748) 1.6297 (0.3196)
Dirlab2 6.3989 (2.1719) 4.0079 (1.0077) 3.3807 (0.5089)
Dirlab3 6.2138 (1.7843) 2.9219 (0.7237) 2.1556 (0.2991)
Dirlab4 7.6437 (2.3978) 4.0682 (0.9898) 3.2525 (0.3918)
Dirlab5 6.6075 (2.1448) 2.6253 (0.7719) 1.6408 (0.4824)

Figure 7. Box plot of landmark points in Dirlab; green indicates the data before registration, yellow
is the data after registration of the proposed method, and purple represents the data after 3D/3D
registration using Demons.

In addition, our method can complete 2D/3D registration in 1.2 s. In contrast, other
data-driven 2D/3D registration models, such as [20], may take a few seconds. On the other
hand, traditional image registration methods may take tens of minutes or even hours. Our
method also only needs two different angles of X-rays, which greatly reduces the amount
of radiation and makes the hardware in the clinic easier to use. Of course, our method
also has some limitations. First of all, since real medical images do not exist at the same
moment of paired orthogonal angles of X-ray and corresponding 3D CT, we use 2D DRR.
Although DRR and real X-ray use the same imaging way, it is undeniable that there are
some grayscale and noise differences between the two. However, it can be corrected by
using existing methods, such as histogram matching [24], network of GAN [25], etc., which
is not the main focus of our study. We will also make some improvements to the program
to speed up the processing speed for radiotherapy or interventional procedures that require
more real-time, etc. In addition, since there are few non-rigid 2D/3D registration articles,
the code is not open source. We have yet to choose a suitable comparison experiment,
and we will continue to look for it in the future.
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6. Conclusions

This study proposes a deep learning-based 2D/3D registration method using two
orthogonal angular X-ray projection images. The proposed algorithm has been verified
on lung data with and without tumor and phantom data, and obtained high registration
accuracy, where Dice and NCC are greater than 0.97 and 0.92. In addition, we evaluated
the accuracy on the data containing tumor, and the tumor center-of-mass error was within
0.15 mm, which indicates the promising use of our model for tumor tracking. The registra-
tion time is within 1.2 s, and this is promising for clinical applications, such as radiotherapy
or surgical navigation, to track the shape of organs in real time. Moreover, we only need
to use two orthogonal angles of X-rays to achieve 2D/3D deformable image registration,
which can greatly reduce the extra dose during treatment and simplify the hardware
system required.
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