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Abstract: Compressed sensing in magnetic resonance imaging essentially involves the optimization
of (1) the sampling pattern in k-space under MR hardware constraints and (2) image reconstruction
from undersampled k-space data. Recently, deep learning methods have allowed the community to
address both problems simultaneously, especially in the non-Cartesian acquisition setting. This work
aims to contribute to this field by tackling some major concerns in existing approaches. Particularly,
current state-of-the-art learning methods seek hardware compliant k-space sampling trajectories by
enforcing the hardware constraints through additional penalty terms in the training loss. Through
ablation studies, we rather show the benefit of using a projection step to enforce these constraints
and demonstrate that the resulting k-space trajectories are more flexible under a projection-based
scheme, which results in superior performance in reconstructed image quality. In 2D studies, our
novel PROjection for Jointly lEarning non-Cartesian Trajectories while Optimizing Reconstructor
(PROJeCTOR) trajectories present an improved image reconstruction quality at a 20-fold acceleration
factor on the fastMRI data set with SSIM scores of nearly 0.92–0.95 in our retrospective studies
as compared to the corresponding Cartesian reference and also see a 3–4 dB gain in PSNR as
compared to earlier state-of-the-art methods. Finally, we extend the algorithm to 3D and by comparing
optimization as learning-based projection schemes, we show that data-driven joint learning-based
PROJeCTOR trajectories outperform model-based methods such as SPARKLING through a 2 dB gain
in PSNR and 0.02 gain in SSIM.

Keywords: MRI; non-Cartesian; k-space trajectories; reconstruction networks

1. Introduction

A major challenge limiting the use of Magnetic Resonance Imaging (MRI) is long
acquisition times, arising due to short decay of the MR signal, which is used to sample
multi-dimensional k-space data through numerous and repetitive radio-frequency pulses.
Using Compressed Sensing (CS) theories [1], significant speed up can be obtained by
undersampling the k-space according to Variable Density Sampling (VDS) [2–6], whose
shape depends on the underlying anatomy, contrast and coil structure. Non-Cartesian
sampling can be used to efficiently achieve VDS of k-space, as this type of sampling,
which relies on curves, is more flexible and efficient compared to straight lines used in
traditional Cartesian acquisitions. While conventional non-Cartesian sampling patterns
such as spiral, radial, rosette, etc. [7–12], have been proposed in the literature and can
sample the k-space according to VDS, they do not sample at a well-defined user specified
Target Sampling Density (TSD). Tailoring such non-Cartesian trajectories according to a MR
imaging protocol and a given TSD is hard, as these k-space sampling curves or trajectories
are constrained by the MR hardware limits, notably on the maximum gradient magnitude
Gmax and slew rate Smax.
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To meet these constraints in a safe manner, the Spreading Projection Algorithm for
Rapid K-space sampLING (SPARKLING) was introduced in [13,14], and then extended
to 3D [15] as an iterative procedure to optimize a non-Cartesian k-space sampling pattern
according to a prescribed TSD. Such patterns are typically segmented into multiple shots or
k-space trajectories, each of them being compliant with the above-mentioned MR hardware
constraints. Further, the algorithm results in locally uniform sampling patterns, and
thus avoids holes and clusters in k-space. However, the SPARKLING is a model-driven
framework, which is characterized by a TSD that needs to be known in advance to feed
the optimization process. Previously, in [16], to address this issue, we learned the TSD in a
deep learning setting using LOUPE [17] as an acquisition model. Although this allowed
us to improve the reconstruction performances, there was still a mismatch in the learning
process. Using LOUPE [17], gridded TSD was learned in the Cartesian domain, while
the actual trajectory being optimized was non-Cartesian. Additionally, we had to learn a
different non-Cartesian image reconstruction model (e.g., a convolutional neural network
or CNN) that was disconnected from the optimized trajectories, making the overall process
computationally expensive. Further, as such disjointedness between training a TSD and
testing on different non-Cartesian trajectories and image reconstruction neural nets could
lead to suboptimal results, there is a need to jointly learn both the TSD and the image
reconstruction deep learning architecture in a non-Cartesian setting.

Recently, new methods [18–20] have been developed to overcome the need for esti-
mating a TSD, through direct joint learning of the non-Cartesian k-space sampling trajec-
tories and MR image reconstruction in a data-driven manner on the fastMRI dataset [21].
In [18,20], the authors jointly learned Physics-informed learned optimal trajectories (PILOT)
trajectories along with U-net parameters as a reconstruction model to denoise the basic
image yielded by the adjoint of the Non-Uniform Fast Fourier Transform (NUFFT) oper-
ator. However, this method relies on auto-differentiation of the NUFFT operator, which
is inaccurate numerically as observed in [22], resulting in sub-optimal local minima. This
suboptimality was actually reflected in the final shape of the learned trajectories, which
only slightly deviated from their initialization.

In B-spline parameterized Joint Optimization of Reconstruction and K-space trajecto-
ries (BJORK) [19], the authors use [22] to obtain a more accurate Jacobian approximation
of the NUFFT operator. Both above-referenced approaches [18,19] enforced the hardware
constraints by adding penalty terms to the the loss that is minimized during training.
Although a viable option, this requires tuning a hyper-parameter associated with each of
these penalty terms in the cost function. Moreover, it does not guarantee that the optimized
trajectories will strictly meet these constraints. Further, these penalty terms affect the over-
all gradients of the loss function, thereby resulting in suboptimality of the trajectories. In
BJORK [19], the trajectories were parameterized with B-spline curves in order to reduce the
number of trainable parameters. Although this strategy drastically minimizes the search
space and the training time, such parameterization severely limits the degrees of freedom
of the trajectories and prevents them from an improved exploration of the k-space. Finally,
both methods do not make use of Density Compensators (DCp), which plays a key role in
obtaining clearer MR images in the non-Cartesian deep learning setting [23].

In this work, we first develop a generic model for PROJeCTOR. More precisely, we
introduce a method that learns the k-space trajectories in a data-driven manner while
embedding a projected gradient descent algorithm [24] to fulfill the hardware constraints
during the training stage. Unlike BJORK, we directly learn the k-space sampling trajectories
and use multi-resolution [25] similar to the SPARKLING to limit the number of trainable
parameters at each step. Then, we compare these PROJeCTOR results to two state-of-
the-art methods, PILOT [18] and BJORK [19] in 2D MRI. In a more controlled setting, we
show the importance of the projection step during the optimization of k-space trajectories
and demonstrate its superiority over penalty-based methods like PILOT and BJORK to
enforce hardware constraints. Finally, we compare and show the superiority of data-driven
PROJeCTOR trajectories compared to model-based non-Cartesian SPARKLING trajectories.
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2. Materials and Methods

In this section, we present a generic and modular framework (Figure 1) for learning
non-Cartesian k-space trajectories and deep neural networks for MR image reconstruction.
Particularly, we discuss 2 sub-models; namely, (1) an acquisition model parameterized by
k-space trajectory, and (2) a reconstruction model parameterized by a deep neural network.
Later, we discuss in detail how to handle the MR hardware constraints and which approach
seems the most efficient within the sampling pattern optimization process to end up with
hardware compliant k-space trajectories.
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Figure 1. A generic learning-based framework for joint optimization of the MRI acquisition and
reconstruction models. This framework consists of two sub-models: (1) the acquisition model FS(K)

parameterized by the k-space sampling trajectories K and interpolated through linear interpolation
S(K), and (2) the reconstruction modelRK

θ parameterized by θ. The input training data consists of
emulated single coil complex images, from which simulated k-space data are obtained through FS(K).
The loss L is calculated between the reconstructed image and the ground truth. The gradients are
backpropagated to result in a k-space trajectory and reconstructor parameters update. Projection
ΠQNc

α,β
is carried out after the trajectory update to make sure it satisfies the hardware constraints and

lies in the constraint setQNc
α,β. Further, the density compensator DS(K) of the k-space trajectory serves

as input to the reconstruction network.

2.1. Data and Preprocessing

In order to reduce the memory footprint and the training time, we did not process
multicoil k-space data as input in the pipeline shown in Figure 1. Instead, we learn
the trajectories and image reconstruction model on emulated single coil data obtained
using a virtual coil combination [26] of per-channel images. This is done through phase
reconstruction from multi-coil data through the use of a virtual reference coil. This virtual-
reference coil is generated as a weighted combination of measurements from all receiver
coils. The multiple phase-corrected coil complex images are combined using the inverse
covariance matrix, to result in a complex image with optimal estimates of the absolute
magnetization phase (see [26] for mathematical details).

Overall, we rely on notations developed in [15], and we assume isotropic resolution
and FOV with matrix size in each axis as N. This assumption is purely for notational
convenience and does not limit the applicability of our framework to isotropic data. If D is
the imaging dimension, we denote a MR image or volume as x ∈ CND

, over a field of view
FD. Throughout the manuscript, we refer to x as MR image, while it can be MR volume
when D = 3. The k-space of this acquisition is defined in [−Kmax, Kmax]D, with Kmax = N

2F .
However, for the sake of simplicity, we normalize the k-space to Ω = [−1, 1]D. For both
2D and 3D imaging, we take observation time (TObs) = 5.12 ms (readout time), giving us
Ns = 512 samples per trajectory (see details in Section 2.2). This readout value is fully
compatible with those used in T1- and T2-weighted imaging.

For our experiments in 2D imaging, we used the fastMRI brain MR data set [21], which
consists of 1447 T1 and 2678 T2-weighted images with N = 320. In contrast, for validation
in 3D imaging, we used the Calgary brain data set [27], which consists of 167 T1-w MR
volumes at 1 mm isotropic sagittal acquisitions, with matrix size 256× 224× 170. For both
imaging protocols, we used an Acceleration Factor (AF) = ND−1

Nc
of 20 (see [15]), resulting in
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a number of trajectories Nc = 16 for 2D imaging and Nc = 1681 for 3D imaging (see details
in Section 2.2).

2.2. K-Space Trajectory (K)

The acquisition model is parameterized by a k-space sampling pattern K, which is
composed of Nc shots, K = (ki)

Nc
i=1. Each shot can be played by the scanner hardware at the

pace of gradient raster time ∆t, throughout the readout time Tobs, resulting in Ns = b
Tobs
∆t
c

samples per shot and an overall sampling pattern as K ∈ ΩNc×Ns .
The k-space trajectories are constrained in speed and acceleration by the maximum

gradient strength Gmax and maximum slew rate Smax, respectively. Additionally, affine
constraints are added to the trajectory design to ensure that the center of k-space is sampled
at Echo Time (TE) in every shot, resulting in a stable and required target contrast of
reconstructed MR images. From [15,24], we model these constraints as follows:

QNc
α,β =


∀i = 1, . . . , Nc, ki ∈ R3×Ns ,

Aki = v,
‖ki‖∞ ≤ 1, ‖k̇i‖2,∞ ≤ α, ‖k̈i‖2,∞ ≤ β,

 (1)

where

k̇i[n] =
ki[n]− ki[n− 1]

∆t

k̈i[n] =
ki[n + 1]− 2ki[n] + ki[n− 1]

∆t2

‖c‖2,∞ = sup
0≤n≤Ns−1

(
|cx[n]|2 + |cy[n]|2 + |cz[n]|2

)1/2
,

for all c ∈ ΩNs , and (α, β) are obtained by normalizing hardware and Nyquist constraints
to the sampling domain Ω (from [13]):

α =
1

Kmax
min

(
γGmax

2π
,

1
FOV · δt

)
(2a)

β =
γSmax

2πKmax
(2b)

The TE point constraints are modeled through A and v in (1) (see [24] for details and
more complex affine constraints). A and v are tailored to have the following equivalent
expression on each k-space trajectory:

kd
i [kte] = 0

∀ i ∈ {1, . . . Nc},
∀ d ∈ {x, y, z},

kte = b TE
∆t c .

(3)

2.3. Acquisition Model (FK)

With the k-space sampling pattern K, we model the acquisition process at the MR
scanner with non-uniform fast Fourier transform (NUFFT) [28] operator FK. However, in
practice, the k-space data is sampled in analog-to-digital converter (ADC) at every dwell
time δt, with o = ∆t

δt ≥ 1 the oversampling factor along each trajectory. Thus, a more
realistic acquisition model of k-space data y ∈ CNc×Ns×o is:

y = FS(K)x + ε (4)

where S is the linear interpolator, which interpolates the k-space trajectory to have o× Ns
samples during readout, to model the oversampling by ADC, and ε is the simulated noise,
which is already present in the data set as it is prospectively acquired by the MR system.
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As the k-space trajectories are non-Cartesian, this creates a variable density sampling
in k-space, due to which a simple adjoint of NUFFT operator F∗K is not close to the inverse
operator and is not sufficiently accurate to reconstruct a clear MR image. To prevent this, a
density compensation (DCp) mechanism has been introduced in the non-Cartesian image
reconstruction community for more than 20 years [29]. It allows us to more fairly balance
the weights of k-space samples associated with the low and high frequencies during the
iterative reconstruction process. Following this principle, we obtained DS(K) for the linearly
interpolated k-space trajectory S(K), which is computed by 10 iterations of the algorithm
described in [29]. As noted in [23], DCp is crucial for deep learning-based reconstruction to
avoid numerical issues and result in better reconstructed image quality.

2.4. Reconstruction Model: Deep Neural Network (Rθ
K)

The reconstruction network Rθ
K is a deep neural network that reconstructs an MR

image x̂ from the k-space data y and the k-space trajectory S(K). The estimated DCp are
also provided as input to the network, to better condition the reconstruction problem,
resulting in faster convergence and giving us:

x̂ = Rθ
K(y, DS(K)) . (5)

A simple parameter-free reconstruction would be the density compensated adjoint, i.e.,
Rθ

K = DS(K)F∗K. To go further, we implemented the density compensated non-Cartesian
primal dual network (NC-PDNet [23]) as the reconstruction network. The latter alternates
between a data consistency step in k-space and convolutional neural network (CNN) based
denoising in the image domain with kernel size 3× 3 in 2D and 3× 3× 3 in 3D. We used
the same network architecture as in [23] except that this time we expanded the architecture
over 12 unrolled iterations, and the number of filters per iteration N f = 32 filters.

2.5. Loss, Gradients and Optimizer

The reconstruction error used as loss function Lr (between the reference MR image x
and its reconstruction x̂) in this study was inspired by [30] and is defined as a weighted
sum of `1, `2 and the multi-scale structural similarity index (S) [31]:

Lr(x, x̂) = α(1− S(x, x̂)) + ᾱ||x− x̂||1 +
ᾱ2

2
||x− x̂||2

with ᾱ = 1− α, and the value of α was tuned to 0.995 to give nearly equally balanced loss
terms. The training was carried out by minimizing reconstruction loss Lr with respect to
both parameters θ of the reconstruction network and k-space trajectory K as follows:

(K̂, θ̂) = arg min
(K∈QNc

α,β ,θ)

Lr

(
x,Rθ

K

(
FS(K)x

))
(6)

For optimizing the trajectory K, we derived the gradient of the loss function Lr with
respect to K:

∂Lr(x, x̂)
∂K

= ∇Lr(x, x̂)
∂x̂
∂K

= ∇Lr(x, x̂)
∂Rθ

K(y)
∂K

(7)

For ease of mathematical derivation, here we take the case of a parameter-free recon-
struction as described in Section 2.4 with Rθ

K = DS(K)F∗S (K). In order to simplify this
gradient calculation and reduce its computational complexity, we neglect the contribution
of gradients from density compensators DS(K). This contribution of gradients from DS(K)
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was also ignored in realistic implementations to reduce gradient computation time and
GPU memory requirements. These assumptions lead to the following gradient expression:

∂Lr

∂K
= ∇Lr

 ∂x̂
∂DS(K)y

DS(K)

∂
(

FS(K)x
)

∂K
+

∂F∗S(K)

∂K


In order to compute the gradient of NUFFT operators FS(K) and F∗S(K) with respect to

the k-space trajectory K, we used [22] to obtain a fast and accurate approximation of the
Jacobians. As these underlying gradients vary extremely in norm depending on the k-space
region (as noted in [32]), we used the ADAM optimizer for learning the trajectories, while
we relied on a rectified-ADAM solver for optimizing the image reconstruction networkRK

θ .
During training, the gradient descent was carried out stochastically with a batch size

of 64 in 2D, while due to memory limitations, it was limited to 1 in 3D. However, as the
gradients with respect to k-space trajectory were extremely noisy for this low batch size in
3D, we relied on a smaller learning rate of 2× 10−4 as compared to 10−3 in 2D runs. On
the other hand, for the optimization for the reconstruction networks, the corresponding
gradients were more reliable, and hence the learning rate was always set to 10−3. The
noise levels in gradients and their reliablity are quantified through the descent rate of the
loss while optimizing with a fixed learning rate of 10−3 at varying batch sizes obtained
through gradient accumulation. During gradient accumulation, gradients for the target
batch size was obtained by running the network sequentially on multiple single data points
repeatedly and accumulating the gradients.

2.6. Multi-Resolution

Inspired by SPARKLING [15], the learning of the k-space sampling trajectories was
performed using a multi-resolution strategy [25] which starts by learning 2Rmax

times
decimated sampling trajectories K at the maximal Rmax = 5 decimation level. Next, the
solution K̂2Rmax

at the resolution level Rmax was then interpolated and used as a warm
restart for the up-sampled problem at resolution level Rmax − 1.

We used dyadic scaling and trained our trajectory over five decimation levels (Rmax = 5).
This implies that the underlying trajectories were optimized first at 25 = 32 decimation level
(32 times downsampled trajectory), followed by upscaling the problem by 2, following the
decimation levels as 16→ 8→ 4→ 2→ 1. This multiresolution strategy was instrumental
in ensuring fast convergence toward a local minimizer. Indeed, initially the optimization
is carried out with faster convergence as we coarsely optimize the k-space trajectory over
a reduced number of locations (R = Rmax = 5). Then, the process is refined at higher
resolutions as we approach convergence (R = 1).

2.7. Constraints: Projection vs. Penalty

A common method in the literature [18–20,33] to enforce these constraints is to add
a penalty Lc(K) to the loss L, which acts like a regularizer on the k-space trajectories K
being optimized. With this, the loss function L becomes:

L(x, x̂, K) = Lr(x, x̂) + Lc(K), (8)

where the penalty Lc(K) follows the expression from [19,33]:

Lc(K) =
Nc

∑
i=1

Ns

∑
n=1

(
λ1φα

(
‖k̇i[n]‖2

)
+ λ2φβ‖k̈i[n]‖2

)
+ λ3φ0‖k[kTE]‖2 (9)

with φa(x) = max(0, x− a) and λ1, λ2 and λ3 are hyper-parameters to balance the penalty
terms with respect to the reconstruction loss Lr.

However, this penalty-based approach has the following limitations:
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• Need for hyper-parameter tuning: Under the penalty based formulation, the hyper-
parameters λi ∀ i ∈ {1, 2, 3} need to be tuned, which requires additional computation.
Note that while we can view Equation (8) as an augmented Lagrangian form for
the constrained optimization problem Equation (6), the corresponding Karush-Kuhn-
Tucker (KKT) conditions are computationally complex to be solved. Further, as we
do not satisfy the Slater’s conditions, as the reconstruction loss Lr is non-convex, the
solutions of the KKT conditions are not guaranteed to be global minima.

• Influence of gradients and convergence: With the addition of penalty terms Lc, the
gradient updates involve added gradients from these penalties ∇Lc, which influence
the overall trajectory development, and hence the final optimized k-space trajecto-
ries. Gradient updates with these additional gradient terms can no longer guarantee
optimal image reconstruction by minimizing the reconstruction loss Lr.

• Guarantee of admissibility: Finally, the optimization of the augmented Lagrangian
form does not guarantee that the final optimized k-space trajectory K satisfies the
constraints Equation (1).

To tackle the above issues, we implemented the projector ΠQNc
α,β

from [24] to project the

k-space trajectories K to the feasible set QNc
α,β. This results in a projected gradient descent-

based optimization of the loss function L, which is given by the following updating step
for the k-space trajectories K:

Kt+1 = ΠQNc
α,β

(
Kt − ηt∇KLr(x, x̂)

)
. (10)

The projected gradient descent formulation gives an equivalent result to optimize
the original reconstruction error Lr, with the indicator function of the feasible set QNc

α,β as
the penalty term. However, as the indicator function is non-differentiable, direct use of
such a penalty term in auto-differentiation frameworks (as an alternative to the projection
step as shown in Equation (10)) generates sub-gradients, which make the optimization
process extremely slow due to oscillations as there are multiple sub-gradients at each
evaluation point.

Practical implementations involved 50 iterations of the projection algorithm from [24],
which was sped up using GPU implementations as shown in [15]. In practice, benchmarking
with a very small reconstruction network (NC-PDNet with three iterations, rather than
twelve) showed 2.25 s per step for penalty-based schemes, while with projection, the
computation time was 3.16 s per step.

2.8. Practical Implementations

All our implementations in 2D were carried out on a V100 GPU with 32GB memory,
while our 3D implementations needed the next generation A100 GPUs with 80 GB of
memory. Most of the memory in 3D was occupied by the activations from the 3D convolu-
tional neural networks used in the image denoising step in NC-PDNet. Memory efficient
implementations of NUFFT was carried out by using tensorflow-nufft [34], which is based
on tensorflow implementations of cuFINUFFT [35].

3. Results

In this section, we first compare our results with state-of-the-art methods, particularly
BJORK [19] and PILOT [18]. Next, we provide an explanation on why our approach
outperforms its competitors. In short, the reason is tightly linked to the use of a projection
step in the optimization process for enforcing the hardware constraints rather than using
penalty terms in the loss function. Finally, we benchmark our jointly learned k-space
sampling pattern and reconstruction network in 3D by comparing it to SPARKLING
trajectories with a learned neural network for image reconstruction.
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3.1. Comparison with State-of-the-Art Methods in 2D

We learned k-space trajectories with Nc = 16 shots and Ns = 512 samples per shot
(observation time Tobs = 5.12 ms, raster time ∆t = 10 µs, dwell time δt = 2 µs). For
comparison with an earlier baseline, we used SPARKLING trajectories generated with the
learned sampling density using LOUPE [17] as obtained in [16] and trained NC-PDNet [23]
as a reconstruction model for it.

We compared our results with PILOT and BJORK trajectories (Figure 2), which were
obtained directly from the respective authors. As we did not receive their trained reconstruc-
tion networks, we trained an NC-PDNet by ourselves for a fair comparison: NC-PDNet
makes use of DCp, and its Cartesian version stood second in the 2020 fastMRI challenge [36].
This way, we used the same reconstruction neural network for all the trajectories (with the
same parameters), which was trained individually. Our comparison with PILOT (Figure 3)
was carried out for T1 and T2 weighting contrasts in the fastMRI data set.

(a) PILOT
(b) SPARKLING

Learned Density

(c) PROJeCTOR (d) BJORK
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Figure 2. The optimized hardware compliant non-Cartesian k-space trajectories using (a) PILOT,
(b) SPARKLING with learned density using LOUPE, (c) PROJeCTOR scheme, and (d) BJORK. The
number of shots is Nc = 16. The number of dwell time samples are set to match the same number
of sampling points overall. Zoomed in visualizations of the center of k-space (bottom) and slightly
off-center (top) are presented at the right of the corresponding trajectories. The `2 norm of the
corresponding gradient ||G||2 (in mT/m) and slew rate ||S||2 (in T/m/s) profiles are depicted below
each trajectory.
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(a) Metrics

(b) Qualitative analysis
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Figure 3. (a) Box plots comparing the image reconstruction results on a retrospective study at UF
= 2.5 (Nc = 16, Ns = 512, ∆t

δt = 5) using 512 slices of T1 and T2 contrasts (fastMRI validation
data set) using PILOT (blue), SPARKLING with learned density (orange) and PROJeCTOR (green).
SSIMs/PSNRs appear at left/right. The median values of these metrics are highlighted inside
the box plots. The significance levels are indicated as a paired t-test and are all significant with
p < 10−4 (Significance level indicated with **** between groups in box plots). (b) Top: T1-w reference
image and reconstruction results for a single slice from file_brain_AXT1PRE_209_6001221.h5 with
corresponding strategies. (b) Bottom: The residuals maps, scaled to match and being comparable
across methods.

As the BJORK trajectory was learned for ∆t = 4 µs, to ensure fair comparison, we
obtained trajectories with the same specifications. This comparison (Figure 4) was done at
different Undersampling Factor (UF) = ND

Nc×Ns
. Note that UF is a measure of how much the

k-space is under-sampled with respect to the fully sampled Cartesian k-space, while AF
reflects on how fast the scan is with respect to the Cartesian reference scan.

We first proceed to analyze the k-space trajectories as compared to those yielded by
BJORK and PILOT. Then, we compare the reconstruction results of the learned trajectories
with BJORK and PILOT.
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Figure 4. (a) Box plots comparing the image reconstruction results on a retrospective study us-
ing 512 slices on T2 contrast (fastMRI validation dataset) using BJORK (blue), SPARKLING with
learned density (orange) and PROJeCTOR (green). The median values of these metrics are high-
lighted inside the box plots. We present the results at varying UF characterized with Nc = 16,
24 and 32. SSIMs/PSNRs appear at left/right. The significance levels are indicated as paired t-
test and are all significant with p < 10−4 (Significance level indicated with **** between groups
in box plots). (b) Top: T2-w reference image and reconstruction results for a single slice from
file_brain_AXT2_205_2050175.h5 with corresponding strategies. (b) Bottom: The residuals maps,
scaled to match and being compared across methods.

3.1.1. Trajectory Analysis

When looking at the zoomed portions of optimized trajectories in Figure 2, we observe
that PILOT has a hole at the center of k-space (cf. the white spot shown in the bottom inset),
while BJORK samples the k-space densely slightly off the center (cf. bottom inset), which
is suboptimal. In contrast, PROJeCTOR and SPARKLING methods sample the central
region of k-space more densely, which could help obtain improved image quality, notably
the contrast.

We also observe at the bottom of each panel in Figure 2 that PILOT and BJORK do
not use the hardware gradient capacities at their maximum values and have similar gradi-
ent (G(t)) and slew rate (S(t)) profiles, while SPARKLING and PROJeCTOR trajectories
are hitting the gradient constraints more often for the maximal gradient and almost every-
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where for the slew rate. This difference could be attributed to using a projector for handling
hardware constraints in PROJeCTOR and SPARKLING as compared to handling them
through penalty terms in PILOT and BJORK.

3.1.2. Retrospective Study

Next, we compared the results of image reconstruction from retrospectively under-
sampled k-space data using PILOT (Figure 3) and BJORK (Figure 4) trajectories. To this end,
we used 512 slices from the fastMRI validation data set. We observe that both SPARKLING
with a learned density and PROJeCTOR outperform PILOT and BJORK, with PROJeCTOR
yielding the best scores with a gain of nearly 0.06 in SSIM and 3–4 dB in PSNR values
as compared to PILOT and BJORK. We computed paired t-tests on Structural Similarity
Index (SSIM)/Peak Signal-to-Noise Ratio (PSNR) scores between PILOT and PROJeC-
TOR on one hand and BJORK and PROJeCTOR on the other hand and obtained p-values
p < 10−4, thus confirming that the improvements we observed visually and quantitatively
are statistically significant.

3.2. Hardware Constraints: Penalty vs. Projection

In the above section, we showed how our method outperforms PILOT and BJORK
in terms of reconstructed image quality. We assume that these results are due to the
different manners that the hardware constraints on the gradients are enforced in the learning
process (projector vs. regularizer). To validate this hypothesis, we learned 3D hardware
compliant k-space sampling trajectories through joint optimization with a reconstruction
network using a penalty term instead of a projector.

In Figure 5, we present the learned hardware compliant k-space sampling trajectories
using the projection and penalty-based methods, and then in Figure 6 we depict their
corresponding slew rate and gradient profiles. Additionally, we also show in Figure 6 the
validation SSIM scores as a function of the penalty weight (λ). For the sake of simplicity, we
assume λ = λi, i ∈ {1, 2, 3} and we obtain results for λ = 10−3, which is the lowest level of
penalty resulting in hardware-compliant trajectories at the end of training. By doing so,
we ensure that we do not influence too much the trajectory shape. However, in our grid
search experiments of varying λ across different orders of magnitude, we did not observe
any significant drop in validation loss within the range [102, 10−3]. Further, to obtain an
insightful baseline, we also obtain results for λ = 0 corresponding to non-admissible
trajectories as we do not enforce any penalty on the gradients and slew rates. Last, we also
display the learned trajectories using the PROJeCTOR.

We observed that the best reconstructed image quality can be obtained for λ = 0 in
terms of validation SSIM and PSNR scores. Further, increasing the weight λ of penalty
terms, the validation SSIM and PSNR scores drop as the k-space trajectories get more
constrained. Interestingly, as λ = 10−3 the k-space trajectories are getting hardware compli-
ant (see Figure 5B(iii)), but they become strongly constrained and do not reach the same
level of flexibility as those learned by PROJeCTOR. This results in a significant decrease in
the performance of penalty-based methods as compared to projection-based methods.

Finally, we observed that using a projection-based method, the k-space trajectories are
closer to those obtained with λ = 0.
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3.3. Comparison with SPARKLING in 3D

Finally, we compared the performances of our data-driven jointly learned k-space
trajectories to the model-driven SPARKLING trajectories in 3D imaging. The networks
were trained for 240 epochs, with 32 steps per epoch on the Calgary brain data set [27],
for trajectories at AF = 20, resulting in Nc = 1681 shots. To ensure a fair comparison,
we learned the same NC-PDNet, i.e., image reconstruction neural network for the same
number of steps as was done for PROJeCTOR trajectories.

From the mid-slice cuts of gridded sampling patterns in k-space in Figure 7A,B(b,d),
we see that SPARKLING trajectories present radial-like sampling at the center of k-space,
which could induce some k-space holes (see red arrows in (A.b) and (A.c)). This type of
imperfection is not present in the learned PROJeCTOR k-space sampling pattern ((B.b)
and (B.c)). Further, as the trajectories and reconstruction network were learned on partial
Fourier k-space data, PROJeCTOR trajectories also learned to exploit this by not sampling
these regions (see the dark areas pointed out by green arrows in (B.b) and (B.d)).

Finally, comparing the actual reconstructed MR images in Figure 8, we see that the
SPARKLING trajectories result in blurrier images, while the PROJeCTOR retains the high-
frequency details. This can be observed qualitatively through the residual images and
quantitatively through box plots indicating the SSIM and PSNR scores, taken on 20 test
data sets. We see that PROJeCTOR outperforms SPARKLING by nearly 0.02 points in SSIM
and +2 dB in PSNR scores. As our evaluation is done on 20 matched data points, we use the
Wilcoxon signed-rank test, which is a non-parametric statistical hypothesis test used here
to compare the locations of two populations using two matched samples. We found that
the differences in both the SSIM and PSNR scores are statistically significant with p < 10−5.

(A) SPARKLING (B) PROJeCTOR

kx k y

k z

(a) 3D Trajectory

ky

k x

(c) z-plane

kz

k y

(d) x-plane

kz

k x

(b) y-plane

kx k y

k z

(a) 3D Trajectory

ky

k x

(c) z-plane

kz

k y

(d) x-plane

kz

k x

(b) y-plane

Figure 7. k-space sampling trajectories for (A) SPARKLING and (B) PROJeCTOR. For easier visual-
ization, only 70 shots of 3D trajectory are shown in (a). The resulting gridded sampling pattern is
shown for mid-plane slices along the (b) y-plane, (c) z-plane and (d) x-plane.
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Figure 8. Qualitative and quantitative comparisons of reconstructed images from 3D (B) SPARKLING
and (C) PROJeCTOR trajectories at AF = 20 as compared to (A) Cartesian reference. The reconstructed
images are shown in the top row, while the residuals are shown in the bottom. Further, box plots of
the SSIM and PSNR scores on 20 test data sets are shown in the bottom-left. The significance levels
are marked through a paired samples Wilcoxon test.

4. Discussion

In this work, we present a generic framework for jointly learning the trajectory and
image reconstruction neural network. We embedded the projection step from [24] and
learned these PROJeCTOR trajectories through a novel projected gradient descent fashion
to ensure hardware compliance.

Although the learned neural networks in PILOT [18] and BJORK [19] were not avail-
able for a full end-to-end comparison, we performed a fair assessment by training a
NC-PDNet [23] as a common deep neural network reference for image reconstruction.
Through retrospective studies in 2D on the fastMRI validation data set, we showed that
PROJeCTOR works across multiple resolutions and leads to superior performance of the
trajectories and improved image quality overall, with a nearly 3–4 dB gain in PSNR value
and almost 0.06 gain in SSIM score.

This improvement over state-of-the-art methods can be attributed to the embedded
projection step as compared to penalty to ensure hardware compliance. We carried out an
ablation study and showed that the projection step is crucial for having significantly im-
proved performance of the learned trajectories, as compared to penalty-based approaches.

Finally, in 3D, we compared the model-driven method SPARKLING with the data-
driven method PROJeCTOR and showed a gain of 2 dB in PSNR and 0.02 gain in SSIM in
favor of the latter.

Future prospects of this work include prospective implementations through modifica-
tions of T1 and T2-w imaging sequences. Such practical implementations could possibly
bring up new sequence-specific constraints on k-space trajectories and also affect the overall
performance due to lower Signal-to-Noise Ratio (SNR).
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A limitation of current work is that our training paradigm was set-up in an emulated
single coil setting as we were limited by memory constraints on GPU. A more realistic im-
plementation would involve a multi-coil imaging setting, which is mandatory to efficiently
utilize parallel imaging and become closer to the real data acquisition context, allowing us
to reach higher AF. However, this memory bottleneck can be alleviated through efficient
transfers between CPU and GPU or multi-GPU implementations. Further, the network can
be improved by extending the currently implemented simple forward acquisition model
NUFFT to a more realistic and complex model, which takes off-resonance effects due to
B0 inhomogeneities [37] and gradient imperfections into account. These aspects will be
explored in our future works.
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