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Abstract: As occupational rehabilitation services are part of the public medical and health services
in Hong Kong, work-injured workers are treated along with other patients and are not considered
a high priority for occupational rehabilitation services. The idea of a work trial arrangement in
the private market occurred to meet the need for a more coordinated occupational rehabilitation
practice. However, there is no clear service standard in private occupational rehabilitation services
nor concrete suggestions on how to offer rehabilitation plans to injured workers. Electronic Health
Records (EHRs) data can provide a foundation for developing a model to improve this situation. This
project aims at using a machine-learning-based approach to enhance the traditional prediction of
disability duration and rehabilitation plans for work-related injury and illness. To help patients and
therapists to understand the machine learning result, we also developed an interactive dashboard to
visualize machine learning results. The outcome is promising. Using the variational autoencoder,
our system performed better in predicting disability duration. We have around 30% improvement
compared with the human prediction error. We also proposed further development to construct a
better system to manage the work injury case.

Keywords: work injury; rehabilitation plan; rehabilitation case management; artificial intelligence;
variational autoencoder; interactive dashboard; electronic health record

1. Introduction

More than 90% of injured workers in Hong Kong receive occupational rehabilitation
services in hospitals or rehabilitation centres, operated exclusively by the Hong Kong
Hospital Authority. As occupational rehabilitation services are part of the public medical
and health services offered to the entire population in the territory, injured workers are
placed on a waiting list for occupational rehabilitation services along with other patients.
Long waiting times for treatments and services can often lead to workers missing the
“golden period” for rehabilitation, resulting in delays in recovery and returning to work.
After setting up the services model in the private market, we foresee that more injured
workers will be willing to receive private occupational rehabilitation services and the job
bank for return-to-work (RTW) decisions. To facilitate an effective and efficient service in
the private sector, we need a trustable and explainable system for predicting the sick leave
and rehabilitation plan, especially for junior case managers. We used 90,154 work injury
records and developed our smart work injury management (SWIM) system, which provides
prediction using multi-dimensional data and machine learning approaches. Compared
with predictions by case managers, we provide a better prediction result. We also developed
an interactive dashboard to visualize the machine learning result and embedded it into the
routine work of case managers. It offers an explainable result of what happens from the
date of the accident to the close date to the case managers.
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2. Literature Review

The massive amount of electronic health records (EHRs) data has become a rich
resource for research. EHRs data refer to collecting patient-related data, including patient
information, hospital information, and diagnosis information. Although the primary use
of EHRs data in the clinical system is to help doctors access patients’ previous records
quickly and improve efficiency, researchers are now interested in discovering and revealing
potentially valuable patterns from EHRs data. The early analyses of EHRs data relied on
traditional statistical techniques. However, with the development of computer hardware,
analysing and storing a massive amount of data has become possible and prevalent. Using
up-to-date techniques such as machine learning could reveal many possible truths that have
not been discovered before. EHRs data have been used for patient clustering [1], disease
prediction, suicide prediction, drug–drug interaction [2], Chinese herb prescription [3]
and clinical decision support [4]. Moreover, researchers have tried to adapt advanced
techniques to analyse the EHRs data in recent years, such as using deep learning techniques
to recognize doctors’ handwriting, speech recognition, and natural language processing [5].
Because of the importance of EHRs data, part of the research focuses on analysing massive
datasets to produce feasible treatment recommendations [5,6]. The others might focus on
improving EHRs data from different aspects, such as data storage [7–9] and data types [10].

Among that research, using EHRs data to predict patient trajectory with data-driven
clinical support is highlighted. Some researchers propose an efficient way for knowledge
representation of EHRs data and further developed a recommendation system to support
doctors [11–14]. Alternatively, some even use a purely mathematical way to calculate a
future medical event [15]. Others might focus on the machine learning approach, which
can predict in several fields [16,17].

Many pieces of research focus on knowledge representation of clinical data to con-
struct the data to easily search for similar cases. Some methodology would focus more
on temporal data, and they would extract the timestamp from EHRs text and form a
day-record vector to highlight the importance of temporal information [16]. Recently,
knowledge representation research work also pays attention to temporal information, such
as constructing temporally aware vectors from timestamped text data [18]. Spiotta further
uses the answer set programming method to point out that temporal discrepancies between
clinical guidelines and rudimentary medical knowledge are possibly due to prioritized
execution [4].

As machine learning techniques are developing quickly today, these have also become
a hot topic in clinical research [5,6]. Rajkomar used a deep learning model to achieve
high accuracy for predicting events such as in-hospital mortality [19], 30-day unplanned
readmission and prolonged length of stay [15]. Rahimian compared the random forest
model and gradient boosting classifier in predicting emergency admission [20]. Most
machine learning approaches show high accuracy (more than 70%) in prediction, which
shows the great potential of applying machine learning techniques for analysing EHRs
data and the importance of temporal data prediction.

Among the different features of EHRs data, temporal information in EHRs data is
attractive because predicting patients’ future visits could help save hospital resources
and insurance costs [21]. Zhang et al. [11] pointed out that the conventional knowledge
representation of EHRs data always represents the visit record as a feature vector that
abandons the temporal order. They proposed a bag-of-words matrix to highlight the
temporal information and to use dynamic time warping algorithms for calculating temporal
alignment between two sequences before similarity measuring. Xu et al. [22] further took
both time-invariant and time-varying features from patients’ EHRs data to calculate the
duration of patients in different care units (CU) by a modified point process model. Besides
those techniques, the machine learning approach is often raised because some machine
learning algorithms such as long short-term memory (LSTM) neural networks are designed
for temporal sequence data. It seems that supervised learning is promising in dealing with
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EHRs data. Therefore, supervised learning will be the main direction for handling work
injury cases in this project.

Lin et al. used the convolution neural network to extract hand position information
from a single red-green-blue (RGB) video and then put temporal position data into an
LSTM-based autoencoder to obtain low-dimension data for predicting bradykinesia, one
of the essential features of Parkinson’s disease [23]. Their method aims to simplify the
computer-aid motion processes learning by replacing traditional auxiliary smart garments
with machine learning neural networks. Their method presents an idea of applying machine
learning in aiding clinical diagnosis. However, they obtained few training samples and did
not explain the machine learning model mechanism.

Lin et al. used a gated recurrent unit (GRU) in predicting intensive care unit (ICU)
disease diagnosis with EHRs data [24]. They also tried to replace the traditional recurrent
neural network (RNN) machine learning method with GRU, which is more potent in
handling time-series data [25]. Later, they adopted GRU as an autoencoder trained by
a generative adversarial network (GAN) model to encode the diagnosis and procedure
information into an embedding vector for predicting drug–drug interactions [2]. The
experiment is based on real-world clinical dataset MIMIC-III and yet did not involve any
clinical experts in evaluating the result [26]. Since their work did not involve clinical experts
examining their model and result, it might need more examination before being put into
practical use.

Another common approach to handling the EHRs data is clustering before machine
learning prediction [27]. Liu et al. [1] used a heterogeneous information network (HIN)
to construct NetHealth data as a recommendation system to suggest individuals’ mental
health states. They suggest that HIN can yield a genuinely multiplicative effect of data
integration since time-series data are valued. Cheng et al. used health insurance data to
construct a HIN and used the tensor decomposition method to cluster the patients before
LSTM, predicting future hospital visits [21]. The purpose of clustering here is to minimize
omission of patients’ information. The validation is based on previous data and is validated
by clinical experts but does not involve any current data. Table 1 summaries the type of
algorithms of the papers mentioned above.

Table 1. Summary table.

Type of Algorithms Name of Paper

Supervised Learning

Adversarially regularized medication recommendation model with
multi-hop memory network [2]
Deep learning for electronic health records: a comparative review of
multiple deep neural architectures [5]
Artificial intelligence analysis of EEG amplitude in intensive heart care [16]
Utilizing electronic health records to predict multi-type major adverse
cardiovascular events after acute coronary syndrome [17]
DWE-Med: dynamic word embeddings for medical domain [18]
Scalable and accurate deep learning with electronic health records [19]
Predicting the risk of emergency admission with machine learning:
development and validation using linked electronic health records [20]
GGATB-LSTM: grouping and global attention-based time-aware
bidirectional LSTM medical treatment Behaviour prediction [21]
Bradykinesia recognition in Parkinson’s disease via single RGB video [23]
DMMAM: deep multi-source multi-task attention model for intensive
care unit diagnosis [24]
Deep dynamic imputation of clinical time series for mortality prediction,
information sciences [25]

Unsupervised Learning
Heterogeneous network approach to predict individuals’ mental health [1]
A hierarchical fusion framework to integrate homogeneous and
heterogeneous classifiers for medical decision making [27]
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Therefore, we propose a smart work injury management (SWIM) system to help the
case managers to evaluate the situation of work injury and to estimate sick leave and
rehabilitation plan.

3. Methodology

Smart Work Injury Management (SWIM) System 1.0 is a prediction system concerning
sick leave and the strategy for treating the injured worker [28]. The data generally contain
two parts, namely, static and dynamic data. A work injury consultancy company has been
collecting the data since 2000 in Hong Kong. We collected 90,154 work injury records (static
data) containing the worker’s basic information and the incident. Inside these records,
there are 15,515 work injury cases (dynamic data) which have logged the changes in the
records. For example, dynamic data contain the historical change log of estimated sick
leave (SL) and permanent disability (PD). The training machine learning model includes
the final outcome of patients, duration of SL, percentage of PD, compensation cost, and
result of legal dispute. Principal components analysis [29] and variational autoencoder
(VAE) [30] are used to project the information from traditional and statistical forms to latent
space form. Human factors of the case managers (self-experience) are also included and
are turned into a rule-based system. Finally, a web-based application based on node.js and
Microsoft Azure was built to predict the sick leave and strategy for treating new cases, as
shown in Figure 1.
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Figure 1. Overview of our current work (SWIM 1.0).

The idea of the machine learning process is simplified and explained in Figure 2.
Once a new case is queried, the information of the injured worker and the incident (static
data) will be encoded and projected into the latent space as ZStart. The sick leave progress
(dynamic data) will be treated as ZAt and projected in the latent space. Then, both ZStart and
ZAt will be used to estimate the normal situation, of which ZNormal will reflect the normal
sick leave and treatment strategy. Severity cliff will also be found in the latent space and
will estimate if the current case tends to be a high-level management case or not. Severity
cliff will also be used to find the ZHLM, which will reflect the high level management (HLM)
case’s sick leave as well as the strategy. Finally, K-nearest neighbours algorithm (KNN) [31]
will be used to find cases similar to ZNormal and ZHLM in the latent space. Similar cases will
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be decoded. Estimated sick leave, permanent disability, treatment strategies, and related
information of HLM and normal situation will be displayed to the user.
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3.1. Input Data

Input data are composed of static data and dynamic data. Static data include injured
worker’s personal information such as age, gender, and salary. They also include work
injury diagnosis information such as sick leave days, cause of injury, and injured body
parts. Most of the data would only be recorded after a case is closed. Those data show
injured workers’ entire situation and raise ideas about developing a neural network for
machine learning prediction. Part three shows the static data distribution plot of each
import column.

Dynamic data record the human manipulations of the system. Once the case manager
receives the injured worker’s recent update, they will record those updates or modify the
treatment strategy according to those updates. Dynamic data record those manipulations
and the timestamp when it happens. Therefore, the dynamic data provide a good vision
about what happens from the date of the accident to the close date.

3.1.1. Static Data Information

Static data consist of 90,154 work injury records. Each record has 124 columns. The
columns mainly fall into four categories: employee information, accident information,
compensation and intervention, and IDs/Ref numbers. Out of the 124 columns, only 17
of them are used as training data of the neural network. Employee information includes
gender, age, industry, etc. Accident information includes the date of the accident, injured
body parts, cause of the accident, etc. The case manager’s intervention, such as HLM and
alertness, are included. Alertness indicates whether the case manager thinks the case needs
extra attention. Table 2 shows the input and output data of the model. We separate them
into continuous and categorical data and preprocess the data before feeding them into the
neural network.
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Table 2. Input and output data.

Data Category Name of Fields Data Type

Input

Age
Salary
Sick Leave Total Days (SL)
Days Until HLM Continuous
Alertness Score
Date of Accident (DOA)
Date of Case Closed

Injured Body Parts
Nature of Loss
Cause
Industry
Position Categorical
Position Physical Demand Level
Position Handling Frequency

Output

Form7 PD (PD)
Sick Leave Total Days (SL) Continuous
Alertness Score

BLM/HLM Categorical

3.1.2. Dynamic Data Information

Dynamic data include change logs of 15,515 work injury cases. The strategy column’s
change logs are the focus for training data, while change logs of some other columns are
used for evaluation.

Case_ID, date, and type of strategy are extracted from the logs for training. Because of
the lack of dynamic data, the strategy column from the static data is used to compensate for
the missing records. Alongside the latent representation from the neural network output,
the combined dataset is used to train a KNN classifier for strategy suggestion. The change
log of columns, including estimated SL and estimated PD, are used for evaluation. By
comparing model output with estimated sick leave and permanent disability % in different
timestamps (relative to the starting date of each case), the KNN and neural network model’s
performance in different timestamps during case development can be assessed.

Figure 3 shows the dynamic logs count for each strategy. It is seen that RTW—Full
Duties has the most change logs. However, the number is relatively small compared to the
whole static dataset, which has more than 90,000 cases.
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To better understand the nature of data, we suggest running the PCA for identifying
the key features and running the copula matrix approach for identifying the non-linear
relationship [32].

3.1.3. Data Preprocessing

The continuous data were processed to be a standard score. The categorical data were
one-hot encoded to be a binary vector. The missing data were dropped because during
the training process, we found that replacing the missing data with the mean value would
pollute the prediction results. We split the preprocessed data into testing data and training
data. The split ratio was 5%.

3.2. Latent Space and VAE

There is a need to reduce the cost of return-to-work management [33]. The goal of
SWIM 1.0 is to utilize machine learning to predict the cost and development of a case in
order to aid the case manager’s decision making. To achieve this target, we need to firstly
model a case for computational purposes.

The key (conceptual) idea of SWIM’s AI module is to model a case as a dynamic
path. Each injured employee (IE) will have their own path, and the path represents the
history of his/her case. The start of a path represents the starting condition and details of
a case (e.g., the IE is hit in the chest; he is male, 24 and works as a cargo mover), and the
end of a path represents how the case ended (e.g., the IE returned to work normally after
30 days). The zigzag of the path represents how the case is influenced by events (e.g., the
case manager has contacted the employee to check on his progress) as shown in Figure 4.
Nag et al. [34,35] proposed a similar concept, but their approach was about personal health
care. The details will be illustrated in the following paragraphs.
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Within this conceptual model, cases that are similar will have similar paths. For
example, most cases where the IEs suffer minor injuries will end within 10 days. The path
of similar cases will act like case 0167 and case 9687, as shown in Figure 4. Similarly, cases
that are different will have different paths (e.g., IE will have minor vs. major injury). For
example, case 0167 and case 7231 behave in different ways, and their paths are different.
Their differences can be seen where the paths start and end, including the shapes of the
paths. Although cases may start at similar locations, this does not mean that they will
progress or end similarly due to external (or unforeseeable) factors.

We further specifically conceptualize serious and benign cases. The latter are consid-
ered cases that are “normal”. They are cases that require little intervention and can be
expected to manifest in a common pattern (e.g., most employees will return to work within
some timeframe without events worth noting). The former, however, requires special atten-
tion from case managers to keep the progress under control. These serious cases are ones
for which we might expect very long recovering time, fraudulent behaviours, legal actions
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and other obstacles that prevent case closing. To separate serious and benign cases, we
conceptualize a separate severe region. Case 7231 and case 8216 in Figure 4 are considered
serious cases, while case 0167 and case 9687 are benign cases. The path of serious cases is
expected to end somewhere in the severe region, such as case 7231, and more severe cases
will end in legal regions, such as case 8216. Assuming that a newcoming case is a severe
case, the path of a new case behaves like the blue path in Figure 4. Initially, it would end at
a legal region without intervention. The dashed line indicates its original path. However,
the conceptual model should be able to predict the border of the severe region, and the case
manager could manage the case according to the model-predicted information and then
change the path of the new case to behave like a benign case, as shown in the right-hand
picture of Figure 4.

We call this conceptual model the rose garden model. For the actual implementation,
the case path aforementioned is modelled within a latent space, a hyperdimensional space
constructed by a machine learning model [36]. We therefore refer to it as a latent path. A
latent path consists of latent points where each represents a key event of the corresponding
case at some point in time. To construct this latent space, a model based on a variational
autoencoder (VAE) [30] is used. VAE is a generative machine learning model that can
construct a meaningful abstract representation for data [37]. In our scenario, we use the
static data to train the VAE model and to generate the latent space. We refer to case
information that exists in the feature space as the information of a case is its feature.

Figure 5 shows the network architecture in this project. The data were fed into
the encoder according to their data type. For the continuous data encoder, a one-layer
linear fully connected (FC) network with the LeakyReLU activation function was used to
project each continuous data item to a higher dimension. The categorical data encoder is
a one-layer FC network with a LeakyReLU activation function. The encoded data were
concatenated and fed into the processing layers. The processing layers contain three layers
with the same number of neurons, which is 100. After the processing layers, the continuous
data decoder and categorical data decoder decode the embeddings and generate outputs.
Both the continuous data decoder and categorical data decoder have a two-layer FC with
LeakyReLU as an activation function. After training the neural network, we project a
case into the latent space. Therefore, a projected case becomes a latent case vector, a
high-dimensional representation of a case.

In SWIM1.0, input features include industry, position, physical demand level, age,
salary, gender, injured body part, nature of injury, cause of injury, frequency of manual han-
dling operation and alertness. The goal of SWIM is to predict the cost and development of
a case. For SWIM1.0, these predictions are how long it takes for the IE to recover and return
to work (SL), the permanent disability for the IE due to the injury (PD), whether the case
requires high-level management (HLM) and a timeline reference which shows how similar
cases progressed in their lifetimes. To predict them, two different but related methods are
used, a neural network approach and a latent nearest neighbour approach. The neural
network will predict the path of a new case while the KNN approach is responsible for
finding similar cases around each path step in the latent space. In addition, the case features
in SWIM1.0 are divided into either static or dynamic components. Static components refer
to case data that will remain static. For example, the age/salary/job of an IE will remain
the same throughout the case. The dynamic component, on the other hand, refers to data
that will change with time. In SWIM1.0, the dynamic component includes the DayPassed,
indicating how many days have passed since the case started, and HLMDay, indicating
when and if HLM is applied. In addition, currently, the path of SWIM1.0 involves a starting
and ending point, an event that the model considers to be HLM.
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The concept and the related interface of the system are summarized in Figure 6. We
first discuss how latent paths actually manifest. Since feature F and latent space L are
different domains but correspond to each other, it is necessary to map these two spaces.
This can be achieved by utilizing an encoder E and decoder D. Given case feature f (f e F),
it can be projected into L via z = E(f) where z is the latent representation of the case. With
f = D(z), a latent representation can be projected to F for viewing. We can now see that a
latent path Z can be formed by Z = {Z0, Z1, Z2}. When projecting a case c to L, we consider
static Cs and the dynamic components. A case that has passed t days in L is therefore
Zt = E({Cs, t}). Thus, cases start at z_0 = E({Cs, 0}).

The latent space is the computational representation of reality. To predict how a case
will develop, we predict how a case will move in the latent space. This is related to [38–40]
in manipulating/interpreting the latent space. Thus, the key to prediction is the predictor P
which can predict where the case will end: Zp = P(Zt). We can know that a case will end at
day RTWDays by decoding Zp with D(Zp). Since cases are categorized as benign and serious
cases, we assume that these cases are handled differently. If a case is benign, where the
case will end will be predicted by ZBLM = PBLM (Z0). We only use the information already
available at the start of the case, as it is expected that the case is benign and uneventful,
meaning that the case has a common pattern that can be derived at the very beginning. If
a case is severe, we assume that the case will involve HLM, and where the case will end
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is predicted by ZHLM = PHLM (Zt), where t is HLM_DAY. We can see that PBLM and PHLM
are networks that predict different management behaviours (i.e., with and without HLM).
Because PD is related to the nature of the case and how long it takes for the injured worker
to recover, an estimator PPD (Zp) can predict the PD, given that the case ends at Zp.
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It is important to identify benign and serious cases. It is hypothesized that one
important factor to determine is whether or not a case is benign or serious and for how
long the case has progressed. Given an injury, it is reasonable to assume there is a common
timeframe for an injured worker to recover. If the case is significantly longer than the
said period, we can reasonably assume that such a case may be serious. Therefore, we
introduce the HLM predictor PHLM that classifies whether a case needs HLM or not. The
classification value is LHLM = PHLM (Zt). As the number of days passed increases, it will
become more and more likely for a case to require HLM, as it moves further and further
away from its common timeframe. From here, we can see that PHLM can provide a HLM
cliff that separates benign and serious cases.

3.3. KNN

Based on previous research, a latent nearest neighbour approach is used for find-
ing timelines for reference [41,42]. More than 45,000 past cases would be processed by
the VAE model and would generate equal numbers of points with 100-dimension coor-
dinates. When a new work injury case comes in, the model will process the case and
generate a new 100-dimension coordinate. In this research, the K in the KNN method
is set at 50 considering our computation time and limited cases. Since we are dealing
with 90,154 case points, computing one new case will take around 10 s to find the nearest
50 samples. The computation time is acceptable at the current stage. If the case manager
reports time-consuming issues, we will run the case indexing to improve the efficiency of
KNN. According to the incoming case coordinate, the system will find the 50 nearest points.
To find the nearest neighbour, the endpoint is used: ZEnd = E(f, RTWDays). Thus, to find the
reference timeline for a predicted case, we compare ZP and ZEnd.

Each of those 50 points would have a distance to the incoming case point. The system
uses the distance to calculate the weights of each case. The system will then collect each
case’s ground-truth data, such as their strategies and happening date after the date of
accident (DOA). The system will calculate the probability of a strategy applied according
to the distance-weighted average and its occurrence time in ground-truth data.
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4. Result and Discussion
4.1. Result of the Prediction

The goal of SWIM 1.0 is to aid in the case manager’s decision making by providing an
objective prediction of a case. Specifically, this is achieved by predicting the sick leave of
the IE (SL), the permanent disability of the IE (PD) and whether the case requires high-level
management (HLM). To evaluate SWIM 1.0′s ability in prediction SL and PD, a test set
is created to compare its performance with that of a human. The test set has a total of
2932 samples. For each sample, a case manager has made an estimation on when the case
will end at some point in time. The 2932 samples contain benign and serious cases. They
are predicted separately. For the benign cases, the compared human prediction is the first
prediction made. For the serious cases, the compared human prediction is the prediction
nearest to the day when HLM is applied. We also showcase SWIM 1.0 performance dif-
ference when alertness is used or not used. When compared with human prediction, we
assume alertness is used.

Table 3 shows the mean prediction errors compared to the ground-truth data. SWIM
performed better when predicting SL for benign and serious cases and when predicting
PD for serious cases. For SL of serious cases, human prediction has an average error of
154.857 days while SWIM1.0 has an average error of 107.447 days, which is a significant
~30% improvement. For benign cases, human error is 16.344 while model error is 9.737,
an even more significant ~40% improvement. For PD, SWIM1.0 performed better only
for serious cases. The human prediction error is 2.104 while SWIM is 1.329, yielding an
improvement of ~37%. Although for benign cases, SWIM1.0 performed worse than humans,
the difference is only ~7%. Figure 7 shows the error metrics of all industries in BLM and
HLM conditions.

Table 3. Results comparison.

SL Prediction Error (Days) PD Estimation Error (%)

BLM HLM BLM HLM
Model w Alertness 9.727 107.447 0.293 1.329
Model w/o Alertness 9.663 121.373 0.289 1.362
Subjective (Human) 16.344 154.857 0.272 2.104
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If the system predicts that the probability of a strategy that occurs is more than 40%,
and that the ground-truth data have this strategy, then this prediction is considered as
a correct prediction. The above figure shows the BLM and the HLM cases’ prediction
accuracy separately. The reason for separating BLM and HLM cases is that the BLM case
usually has much fewer strategies than the HLM case. BLM cases typically take less time
than HLM cases and therefore have no need for extra treatment strategies.
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4.2. Result of KNN

Each case would have a latent space coordinate after the machine learning model
processes the case information. It is believed that similar cases have closer distances than
the others. The K-nearest neighbours (KNN) method could help find similar target cases
because of the small data quantity and poor dynamic data quality [42–44]. The system
will then have a rough dynamic data prediction such as strategy and the date of strategy
applied predictions.

More than 3000 cases have been prepared as test data to see if the KNN method
can find similar cases and therefore predict the strategies. If the system predicts that the
probability of a strategy that occurs is more than 40%, and the ground-truth data have this
strategy, then this prediction is considered as a correct prediction. Figure 8 shows the BLM
and the HLM cases’ prediction accuracy separately. The reason for separating BLM and
HLM cases is that the BLM case usually has much fewer strategies than the HLM case.
BLM cases typically take less time than HLM cases and therefore have no need for extra
treatment strategies.

Bioengineering 2023, 10, 172 13 of 17 
 

  

(a) (b) 

Figure 8. Accuracy of: (a) BLM test cases using KNN; (b) HLM test cases using KNN. 

If we only look into some critical strategies such as “legal” and “DS”, we can see that 
the “legal” strategy has a prediction accuracy of 28.65% while the “DS” strategy has a 
prediction accuracy of 22.28%. The predicted “DS” strategy probability distribution is 
shown in the left-hand side of the Figure 9, and the predicted “legal” strategy probability 
distribution is shown in the right-hand side of the following figure. It can be seen that 
there is no prediction probability higher than 0.8 for both scenarios. We assume that this 
is because the VAE model cannot separate the HLM and the BLM cases. Therefore, the 
prediction probability is pulled down by those BLM cases because BLM cases usually have 
no “legal” or “DS” strategies. 

  

(a) (b) 

Figure 9. Distribution of: (a) predicted DS probability; (b) predicted legal probability. 

5. Limitation and Further Improvement 
Currently, SWIM 1.0 and case management of injured workers are one-way. This 

may be an ineffective and inefficient form of communication. The system predicts the path 
based mainly on static data. However, dynamic data could also contribute to the path 
prediction. Therefore, dynamically updating the model based on incoming dynamic data 
could be one of the future improvements. Dataset limitation is another concern in the pro-
ject. The dataset only comes from one single case management company. Although the 
cases of the current company cover 15 kinds of industries and 523 corporations, the strat-
egy of case management is affected by the policy of the case management company. 

Figure 8. Accuracy of: (a) BLM test cases using KNN; (b) HLM test cases using KNN.

BLM cases usually have one or two strategies for each case. Therefore, in most cases,
the accuracy is either 100% or 0%. From this test set result, 100% correct cases take the
domain. However, in HLM cases, the accuracy drops down to 20–50%. More than half of
the strategies fail to correctly predict. The less accurate scenario might be because of the
lack of data. For example, some strategies show up less than 100 times in the whole training
dataset and testing dataset. Therefore, the KNN method might not find those strategies
because the training dataset is too small. In the future, we will use more oversampling
techniques to solve the data shortage problem.

If we only look into some critical strategies such as “legal” and “DS”, we can see
that the “legal” strategy has a prediction accuracy of 28.65% while the “DS” strategy has
a prediction accuracy of 22.28%. The predicted “DS” strategy probability distribution is
shown in the left-hand side of the Figure 9, and the predicted “legal” strategy probability
distribution is shown in the right-hand side of the following figure. It can be seen that
there is no prediction probability higher than 0.8 for both scenarios. We assume that this
is because the VAE model cannot separate the HLM and the BLM cases. Therefore, the
prediction probability is pulled down by those BLM cases because BLM cases usually have
no “legal” or “DS” strategies.
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5. Limitation and Further Improvement

Currently, SWIM 1.0 and case management of injured workers are one-way. This may
be an ineffective and inefficient form of communication. The system predicts the path based
mainly on static data. However, dynamic data could also contribute to the path prediction.
Therefore, dynamically updating the model based on incoming dynamic data could be
one of the future improvements. Dataset limitation is another concern in the project. The
dataset only comes from one single case management company. Although the cases of the
current company cover 15 kinds of industries and 523 corporations, the strategy of case
management is affected by the policy of the case management company.

From the perspective of academia, there is also great value in improving return-to-
work management [45]. The panel doctor and the injured worker will pass the physical
document to the case manager. Then, the case manager will review the document and
provide a suggestion. This is a passive and reactive approach. However, this planning
may not be well rounded. This suggestion is also based on the experience of the case
manager, which may be subjective. We will improve our work to SWIM 2.0 and enhance
communication with different stakeholders and improve the RTW planning and RTW
review with other cutting-edge technologies. Communication and collaboration between
stakeholders are essential for RTW [46]. The development of this project consists of five
technological insights as shown in Figure 10.

1. Enhance communication by APP and QR code technology. We will develop a user-
friendly APP which involves QR code technology to replace document/email com-
munication between the injured worker, case manager and panel doctor.

2. Enhance communication through APP and OCRAI technology. We will embed the
OCRAI technology to replace document exchange, data entry and verification between
the injured worker and case manager.

3. Enhance communication with smart contracts and blockchain technology. We will
use the decentralized approach to handle the data storage and synchronization of a
different isolated system among the stakeholders.

4. Enhance job matching with artificial intelligence. We will improve SWIM 1.0 from a
one-off prediction from the beginning stage to a continuous prediction and monitoring
system. The medical data will enhance the latent space of SWIM 1.0 to estimate the job
ability of injured workers in different stages. Various artificial intelligence types, such
as rule-based, fuzzy measure and integral, will be used to develop a job-matching
system, as shown in Figure 11.
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5. Enhance the job review with workflow management technology. We will adopt a pa-
perless approach by using workflow management. All the documents will be changed
into digital form and embedded into a well-defined structure in workflow manage-
ment applications to enhance the job review process in RTW as shown in Figure 12.
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6. Conclusions

In this paper, a smart work injury system was introduced. We came up with a
conceptual model, namely the rose garden model, to describe the injured case path in a
high-dimensional space. A NN model was trained to project the incoming case into the
high-dimensional latent space, as the conceptual model describes. The incoming case is
represented as a latent space vector. The vector was used later in the KNN model to search
for the 50 most similar cases to find the possible strategies according to previous cases. In
summary, we made three main contributions in this work: (1) We introduced a high-quality
machine learning model to handle the multi-modality work injury data and to make a more
accurate prediction than the human case managers. (2) We introduced a concept named the
rose garden model to project a work injury case into a high-dimensional space where the
case becomes a latent case vector, a high-dimensional representation of a case, which well
represents the recovery path of an injured worker. (3) We developed a complete system
that translates the machine learning result into human-readable results that could support
modern work injury case management well.

Our system is currently used by case managers. In the future, we will make further
improvements and field tests after collecting feedback from case managers.
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