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Abstract: Diagnostic results can be radically influenced by the quality of 2D ovarian-tumor ultra-
sound images. However, clinically processed 2D ovarian-tumor ultrasound images contain many
artificially recognized symbols, such as fingers, crosses, dashed lines, and letters which assist artificial
intelligence (AI) in image recognition. These symbols are widely distributed within the lesion’s
boundary, which can also affect the useful feature-extraction-utilizing networks and thus decrease
the accuracy of lesion classification and segmentation. Image inpainting techniques are used for
noise and object elimination from images. To solve this problem, we observed the MMOTU dataset
and built a 2D ovarian-tumor ultrasound image inpainting dataset by finely annotating the various
symbols in the images. A novel framework called mask-guided generative adversarial network
(MGGAN) is presented in this paper for 2D ovarian-tumor ultrasound images to remove various
symbols from the images. The MGGAN performs to a high standard in corrupted regions by using an
attention mechanism in the generator to pay more attention to valid information and ignore symbol
information, making lesion boundaries more realistic. Moreover, fast Fourier convolutions (FFCs)
and residual networks are used to increase the global field of perception; thus, our model can be
applied to high-resolution ultrasound images. The greatest benefit of this algorithm is that it achieves
pixel-level inpainting of distorted regions without clean images. Compared with other models, our
model achieveed better results with only one stage in terms of objective and subjective evaluations.
Our model obtained the best results for 256 × 256 and 512 × 512 resolutions. At a resolution of
256 × 256, our model achieved 0.9246 for SSIM, 22.66 for FID, and 0.07806 for LPIPS. At a resolution
of 512 × 512, our model achieved 0.9208 for SSIM, 25.52 for FID, and 0.08300 for LPIPS. Our method
can considerably improve the accuracy of computerized ovarian tumor diagnosis. The segmentation
accuracy was improved from 71.51% to 76.06% for the Unet model and from 61.13% to 66.65% for the
PSPnet model in clean images.

Keywords: ovarian tumor; 2D ultrasound image; image inpainting; lesion segmentation; attention
mechanism; GAN; deep learning; medical image analysis

1. Introduction

Medical ultrasonography has turned out to be the preferred imaging technique for
many illnesses due to the fact of its simplicity, speed, and safety [1–5]. Two-dimensional
gray-scale ultrasound and coloration Doppler ultrasound has been broadly used in the
diagnostic tasks of ovarian tumors. Doctors can first perceive the benign and malignant
nature of tumors. With the non-stop development and improvement of deep learning [6,7],
AI, as a riding pressure for intelligent healthcare, has acquired a massive range of achieve-
ments in tasks such as clinical image classification and segmentation [8–11]. The accuracy
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of the model additionally relies upon the quality of the dataset [12,13]. There is exceedingly
little research on the current use of AI for lesion recognition and segmentation of ovarian
tumor diseases. In addition, the effectiveness of AI in processing ovarian-tumor images
depends on a large-scale AI dataset. Zhao et al. [14] proposed an ovarian-tumor ultrasound
image dataset for lesion classification and segmentation. The dataset consists of a complete
of 1469 2D ovarian ultrasound images which are divided into eight categories according to
tumor types. The giant majority of the images in the dataset contain annotated symbols,
which are overwhelmingly allotted to inside the lesion.

Nevertheless, hidden but crucial trouble has been recognized in practice: most 2D
ovarian-tumor ultrasound images incorporate extra symbols. Actually, in clinical opera-
tions where ovarian ultrasound images are acquired, the physician will mark the location,
size, and border of the tumor in the ovarian ultrasound image, and observe where the
lesion is positioned (left or right ovary). Due to equipment factors and the clinical prac-
tice environments, the artificially marked component of these aids to image recognition
(symbols such as fingers, crosses, dashes, and letters) cannot be separated from the original
image. This phenomenon is also widespread in different medical fields [15–18]. The ideal
situation would be to train and test deep learning models using clean images without any
symbols in lesion areas.

We observe that these symbols are centered in ovarian tumor lesions, which negatively
affects the training of the model to a positive extent, causing the network to focus more on
the symbols in the lesions, which in turn reduces the recognition accuracy of ovarian tumors
in the clean images and the segmentation accuracy of the lesions. The different types of
images in this paper are shown in Figure 1. The original images with symbols were used as
the training set, and two different test sets of clean images and original images with symbols
were used as a way to discover the impact of symbols on the segmentation accuracy of
the model. Figures 2 and A1 exhibit the effects of our experiments. Fewer training epochs
are required to segment more accurate lesion regions in images with symbols, and the
segmented regions targeted the yellow line roughly. The clean images, on the other hand,
required more epochs and reached lower segmentation accuracy. The results show that the
symbols in the images provide additional information to the model enhancing the accuracy
of segmentation, which is unrealistic in clinical practice. There is little research on this
issue, and it is certainly inappropriate to use the marked ovarian-tumor ultrasound images
directly to train the segmentation model. Thus, it is critical for the corrupted areas of the
images to be painted, so it is significant for healthcare professionals to use clean images for
the artificial intelligence-aided diagnosis of ovarian tumors.

Figure 1. (Clean Image) The clean images indicate images that are not clinically labeled. (Original
Image) The original images indicate clinical images that are labeled. The red-boxed areas show the
various marker symbols used by physicians. (Inpainting Image) The inpainting images indicate
images whose symbols are repaired.
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Figure 2. The accuracy graph of lesion segmentation of the Unet [19] model. The blue line represents
the accuracy of using the clean images as the testing set. The yellow line represents the accuracy of
using the original images with symbols as the testing set. The figure also shows the visualization of
the segmentation results for the 50th and 150th epochs.

Currently, image inpainting in medical images is in the process of booming and has a
lot of potential for development. Existing methods are primarily divided into traditional
methods and deep learning-based methods. Traditional methods make use of patch-based
or diffusion-based methods, the core of which is to use the redundancy of the image itself
to fill in the missing areas with low-level texture features of the image. The following four
methods are historically used for inpainting: interpolation [20], non-local means [21], diffu-
sion techniques [22], and texture-dependent synthesis [23]. However, ordinary methods
cannot learn the deep semantic features of medical images frequently and can not attain
excellent results.

Deep-learning-based methods use convolutional neural networks to extract and learn
high-level semantic features in the image to guide the model to fill the missing parts.
Inspired by EdgeConnect [24], Wang et al. [25] migrated the method using edge information
to medical images. This paper details the study of these methods and use of an attention
mechanism, a pyramid-structured generator, to enforce the inpainting of thyroid ultrasound
images, which automatically detects and reconstructs the cross symbols in ultrasound
images. However, this method has some limitations: the cross symbols in the thyroid
ultrasound images used in this approach are small and few, and the effect is negative
for ultrasound images containing many large symbols; the detected cross symbols are
labeled with rectangular boxes, and this approach does not apply to different symbols with
irregular shapes; the real background is covered by these symbols, and the restoration
areas have no real background, so how to guide the generative adversarial network for
training and evaluation, in this case, is a very necessary issue. Wei et al. [26] proposed
the MagGAN for face-attribute editing. The MagGAN does this by introducing a novel
mask-guided adjustment strategy to encourage the affected regions of each target attribute
to be positioned in the generator, using the corresponding attributes of the face (eyes,
nose, mouth, etc.). The method is applied to the face-attribute editing task, which requires
segmentation of the face’s attributes, which is different from our task. However, the
motivation of making the results more realistic by bootstrapping the model is similar.
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In addition, various attention mechanisms have been proposed and are broadly used
in image processing. These attention mechanisms have been steadily utilized in the image
inpainting task. Zeng et al. [27] expanded on this by proposing a pyramidal structure for
contextual attention. Yi et al. [28] proposed a contextual residual aggregation of attention
for high-resolution images. The spatial attention mechanism was utilized to solve this
problem. To acquire results with a clear structure and texture, the Shift-Net model proposed
by Yan et al. [29] replaced the fully detailed layer in the upsampling process with a shift-
connected layer, through which the features in the background region are shifted to fill in
the holes.

Due to the above issues, in this paper, a one-stage generation model based on GANs is
proposed, which swaps the regular convolution with fast Fourier convolutions to enhance
the image-wide acceptance field of the model and includes a channel attention mechanism
to minimize the model’s focus on symbols to fill the holes using effective features. To the
best of our knowledge, we are the first to accomplish image inpainting on 2D ovarian-
tumor ultrasound images with large and irregular masks, and our approach achieves more
convincing results than others.

Our contributions are as follows:

• We refined 1469 2D ovarian-tumor ultrasound images for irregular symbols and
obtained binary masks to establish a 2D ovarian-tumor ultrasound image inpaint-
ing dataset.

• We introduced fast Fourier convolution to enhance the model’s global perceptual field
and a channel attention mechanism to enhance the model’s attention to significant
features, and the model uses global features and significant channel features to fill
the holes.

• Our model achieved better results both subjectively and objectively compared to exist-
ing models while for the first time performing image inpainting without clean images.

• We use the restoration images for segmentation training, which significantly enhances
the accuracy of the classification and segmentation of clean images.

The rest of the paper is organized as follows: Section 2 describes our dataset and model
in detail. The associated experiments and results are detailed in Section 3. The conclusions
are introduced in Section 4.

2. Methodology
2.1. Dataset

In recent years, research about ovarian tumors has increased, and researchers have
combined ovarian tumor sonograms with deep learning for ovarian tumor classification
and lesion segmentation [30–33]. Most of the 2D ovarian-tumor ultrasound images used
in these studies contain symbols, which are broadly allotted to the edges or inner parts
of the lesions. We experimentally confirmed the negative effect of these symbols on
the classification accuracy and lesion segmentation accuracy of tumors. The MMOTU
dataset [14] is a publicly available ovarian ultrasound image dataset. We obtained a 2D
ovarian-tumor ultrasound image inpainting dataset based on the MMOTU dataset by
refining annotation processing. As shown in Figure 3, the green dashed line in the figure is
how the MMOTU dataset is annotated. We labeled the fingers and letters (brown boxes),
numbers (blue boxes), and yellow lines (yellow boxes) in the figure on this basis.

With annotation, a corresponding mask for each image is generated, which masks
the various symbols in the image. Figure 4 indicates our pipeline. With these annotations,
the corresponding mask for each image was generated to build an inpainting dataset
containing 1469 2D ultrasound images of ovarian tumors and masks. We performed
experiments about image inpainting on our dataset and the effect of image inpainting on
lesion segmentation accuracy in the MMOUT dataset.
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Figure 3. Original 2D ovarian-tumor ultrasound images and images with annotated symbols.

Figure 4. The pipeline of mask generation. (a) The original image. (b) The annotation. (c) The
boundary. (d) The mask.

2.2. Implementation Details

In this study, we used a complete, 2D ovarian-tumor ultrasound dataset with 1469 im-
ages that we produced, of which 1200 images were used for training and 269 images
were used for testing. Arbitrarily shaped masks were used during training and testing.
To make certain the equity of the experiments, we generated unique irregular masks for
the images used for testing. The inputs in our experiments had two specifications: one
specification was 256× 256 (h × w), and the other specification was 512× 512 (h × w).
We trained and tested our model with both image specifications. The Adam optimizer
was chosen to optimize the network. We set the initial learning rate to 0.0001, the batch
size for training to 16, and the epoch to 1000. In addition to generating masks using our
proposed mask generation strategy, we also performed data enhancement operations on the
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images during training. The framework was PyTorch, and the devices were two NVIDIA
GeForce RTX3090Ti.

2.3. Proposed Methods
2.3.1. Network Architecture

We propose an image inpainting model based on fast Fourier convolutions (FFCs) with
a channel attention mechanism. Figure 5 indicates the details of our model. The images
are downsampled by three convolutional layers and then encoded with the aid of nine fast
Fourier Convolution Residual Network Blocks. The decoder obtains the inpainting image
by predicting the output of the encoder. These inpainting and original images are fed into
the discriminator for adversarial training. Traditional fully convolutional models, such as
ResNet [34], suffer from slow perceptual-field growth due to a small convolutional kernel
size and limited receptive fields. Due to this reason, many layers in the network lack global
context, such that the result has a lack of global structural consistency. We replaced the
regular convolution with the fast Fourier convolution to solve this problem. In addition,
due to the presence of symbols such as yellow dashed lines in the images, we added a
channel attention layer to our model to permit the model to focus more on useful features
and make the results more realistic. Figure 6 suggests the specified architecture of the Fast
Fourier Convolution Block.

Figure 5. The overall architecture of our MGGAN model. The generator consists of 9 FFC Residual
Network Blocks with our mask to a priori guide the generator for image inpainting.

2.3.2. Fast Fourier Convolution Block

Regular convolution is mostly used in deep learning models; however, it cannot
capture the global features. Fast Fourier convolutions [35] can be an appropriate solution
to this problem. The FFCs divide the input channel into local and global paths: the local
path uses regular convolution to capture local information; the global path uses the real
fast Fourier transform to obtain information with a global receptive field. The fast Fourier
change consists of the following five steps:

• Transforming the input tensor to the frequency domain using the real fast Fourier

transform: RH×W×C → CH×W
2 ×C.

• Concatenating the real and imaginary parts in the frequency domain:

CH×W
2 ×C → RH×W

2 ×2C.
• Obtaining convolution results in the frequency domain through the ReLU layer, Batch-

Norm layer, and 1 × 1 convolution layer: RHand2×2C → RH×W
2 ×2C.
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• Separating the result of frequency domain convolution into real and imaginary parts:

RH×W
2 ×2C → CH×W

2 ×C.
• Recovering its spatial structure using Fourier inverse transform: CH×W

2 ×C → RH×W×C.

As shown in Figure 6, we add a squeeze-and-excitation (SE) layer after the spectral
transform block, which performs the squeeze, excitation, and reweight operations in turn.
The SE layer automatically acquires each feature channel’s weight via learning, then boosts
the beneficial features and suppresses the ones that are no longer beneficial according to
the weight. By using the SE layer, we make the model focus more on the useful features
rather than on the features of these symbols in the image. Finally, the output of the local
and global paths are merged.

Figure 6. The architecture of the Fast Fourier Convolution Block (FFC Block).

2.3.3. Generation of masks during training

The approach of mask generation during training has been extensively mentioned in
previous research, and it is crucial for the inpainting effect of the model. In early studies,
the generated masks are rectangular in shape [36], centered on the geometric center of the
image. Models trained with these masks have bad results for images with non-centered
rectangular masks. Therefore, the method of generating masks at random locations [37]
in the image during training was proposed, but this method fails to provide effective and
realistic inpainting of images with irregular masks. Subsequently, the strategy of randomly
generating irregular masks [38–40] at random locations in the image has emerged.

There are many symbols in the image that obscure the clean image. If these areas
are repaired, the results cannot be evaluated realistically due to the fact there is no clean
image. We need to guide the network to learn to use features of the non-symbolic regions
to fill holes. In our task, we propose a new mask generation strategy by generating
random irregular masks at random locations outside the symbolic regions in the image.
The generation formula for the masks is as follows:

m = mgen −mprior (1)

where mprior is the mask corresponding to the image in the dataset, mgen is the mask
generated by the mask generator, and m is the final mask.
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2.4. Loss Function

The loss function in the generation task is essential for the training of the model, and it
calculates the distinction between the ground truth and the inpainting image as the loss
value. The loss values are back-propagated, and the model is penalized to update the
parameters of each layer. In the end, the loss value is reduced, and the result is closer to the
ground truth.

Several extraordinary loss functions were used in our task. In our model, the input
uses the corrupted image Iin = Iori � (1−m), where Iori denotes the original images and
m denotes the corresponding mask, for which one denotes the missing pixels and zero
denotes the existing pixels. The symbol � denotes the multiplication of the matrix. G
denotes the generator, Iinp denotes the final inpainting image generated by the model,
and the expressions for the inputs and outputs are shown in Equation (2).

Iinp = G(Iin) (2)

The perceptual loss [41] is derived by calculating the distance between features cap-
tured by the pre-trained network Ψ(.) from the generated images and the original images.
To enable the network to understand global contextual information, we compute high
receptive field perceptual loss [42] using a pre-trained ResNet with global receptive fields.
The calculation of LResNet can be expressed as follows:

LResNet(Iori, Iinp) =M
([

ΨResNet(Iori)−ΨResNet(Iinp)
]2
)

(3)

where Iori is the original image or the target image of the generator, Iinp is the generated
image, and M is the operation of calculating the inter-layer mean after calculating the
intra-layer mean. ΨResNet(.) is a pre-trained ResNet implemented with dilated convolution.

To make the generated inline images more realistic and natural in detail, we addi-
tionally use adversarial loss. The adversarial loss function Ladv is calculated as follows:

Ladv
(

Iinp, Iori, Iin
)
= max

D
Ex∈X [log(D(Iori, Iin)) + log(1− D(Iinp, Iin))] (4)

where Iori is the target image, Iinp is the inapinting image, Iin is the corrupted image, and D
is the adversarial discriminator.

In our total loss, we also use the L1 loss and the perceptual loss of the discriminator
network LDisc [43]. The formula for the perceptual loss of the discriminator network LDisc
is similar to Equation (2). The L1 loss is calculated as follows:

L1 =
1
N ∑ |Iori(p)− Iinp(p)| (5)

where Iori denotes the original image, Iinp denotes the inpainting image, and p represents
the pixel at the same location in both images.

Our total losses are calculated as follows:

Ltotal = η1L1 + η2Ladv + η3LResNet + η4LDisc (6)

where η is the weight of each loss function. Following [36,39,42], we set η1 = 10, η2 = 10,
η3 = 30, and η4 = 100 in training.

2.5. Evaluation Criterion

We used the evaluation metrics of structural similarity (SSIM) [44], Frechet inception
distance score (FID) [45], and learned perceptual image patch similarity (LPIPS) [46] to mea-
sure the performance of our model. In addition, we used the mean intersection over union
(mIoU) evaluation metric to measure the accuracy of lesion segmentation results.



Bioengineering 2023, 10, 184 9 of 19

The SSIM is calculated between two windows of size H × W. The value of SSIM
is between −1 and 1, where 1 means the two images are identical and −1 means the
opposite. The closer the value of SSIM is to one, the better the inpainting effect is. The SSIM
calculation formula is defined as follows:

SSIM =
(2µAµB + c1)(2σAB + c2)

(µA
2 + µB2 + c1)(σA

2 + σB2 + c2)
(7)

where µA and σA
2 are the mean and variance of image A, µB and σB

2 are the mean and
variance of image B, σAB is the covariance of the two images, and c1 and c2 are the constants
that maintain stability.

The Frechet inception distance score (FID) is a metric to calculate the distance between
the real image and the generated image feature vectors. It uses the 2048-dimensional vector
of Inception Net-V3 before full concatenation as the feature of the image to evaluate the
similarity of the two sets of images. The value of FID is greater than or equal to zero.
A lower score means that the two sets of images are more similar, and the FID score in the
best case is 0.0, which means that the two sets of images are identical. The FID calculation
formula is described as follows:

FID =
∥∥∥µgt − µpred

∥∥∥2
+ Tr

(
Σgt + Σpred − 2

(
ΣgtΣpred

)1/2
)

(8)

where µgt and Σgt are the mean and covariance matrices of the real image features, µpred
and Σpred are the mean and covariance matrices of the generated image features, and Tr is
the operation to calculate the matrix trace.

LPIPS is used to measure the difference between two images in terms of deep-level
features, and LPIPS is more consistent with human perception than traditional methods
such as `2, PSNR, and FSIM. The value of LPIPS is greater than or equal to zero. A lower
value of LPIPS indicates that the two images are more similar, and vice versa. The LPIPS
calculation formula is defined as follows:

d
(

Igt, Ipred

)
= ∑

l

1
HlWl

∑
h,w

∥∥∥wl �
(

ŷl
gt−hw − ŷl

pred−hw

)∥∥∥2

2
(9)

where l is the current computed layer; Hl and Wl are the sizes of the patches; and ŷl
gt−hw

and ŷl
pred−hw ∈ RHl×Wl×Cl are the outputs of the current layer. The feature stack is extracted

from the L layers and unit-normalized in the channel dimension. The vector wl is used to
deflate the number of active channels and calculate the `2 distance.

MIoU is a widely used standard metric in semantic segmentation, which calculates the
mean of the ratio of intersection and merges sets of all categories. The value is between zero
and one. Closer to one means better the segmentation, and closer to zero is the opposite.
Its calculation formula is defined as follows:

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(10)

where k is the number of categories, TP is the number of true positive pixels, FP is the
number of false positives, and FN is the number of false negatives.

3. Experiments and Results
3.1. Results
3.1.1. Experiments on the Image Inpainting

Figure 7 indicates the effects of our model on the restoration of the symbolic regions in
the ovarian ultrasound images. The boundary, texture, and structure have high similarity
to those in the original image. The results show that we have flawlessly removed the
symbols from the images. Especially in the lesion area, we removed the yellow line while
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reconstructing the boundary of the lesion and the content filling of the yellow line area very
well. This proves the power of our model. Furthermore, we compare our approach with
robust baselines that are publicly available on FID, LPIPS, and SSIM metrics. We performed
statistical analysis of the inpainting results on 269 images of the test set.

Figure 7. The results of our model for the inpainting of the symbolic regions in the ovarian ultra-
sound images.

Table 1 suggests the overall performance of each baseline on our dataset, and the
values of the three metrics in the table are the means of the test samples. Smaller FID
and LPIPS indicate better performance of the model, and a larger SSIM indicates better
performance of the model. Table 2 presents the overall performance of each baseline on
our dataset, and the values of the three metrics in the table are the variance of the test
samples. The size of the input images in the experiment was 256 × 256. In the statistical
analysis, we observed that our model outperformed all other comparable models in SSIM,
FID, and LPIPS metrics. Our model achieved 0.9246 for SSIM, 22.66 for FID, and 0.07806
for LPIPS. Table 3 suggests that the upper and lower limits of our method surpass those of
the other methods for all three metrics at a confidence level of 95%.

Figure 8 indicates the inpainting results for different models (we show more results in
Appendix A). A clear distinction can be found in the blue box area. These baseline models
use the learned symbol features to generate the symbol regions, resulting in yellow pixels in
the restoration regions. In addition, the regions they generate show significant distortions
and folds, with unsatisfactory textures and structures. We address this problem by using
an attention mechanism for the model to focus on the features of the fee-symbolic region in
the image. Fast Fourier convolution allows the first few layers of the network to quickly
increase the receptive field, which allows the model to gain a global receptive field faster
and increase the connection between global and local features. The model can better use
the global and local features to fill the holes, and the results of the restoration will have the
same structural and textural features as the original image, including smoother boundaries
and more realistic content. By introducing the channel attention mechanism, our model
pays more attention to the features of non-symbolic regions rather than the features of
symbolic regions and chooses useful features for image inpainting. Thereby, the restored
image is closer to the original image in terms of content, and no yellow pixels appear in the
restoration region. In the qualitative comparison, our model showed the best authenticity
and details in the results, including smooth edges and high similarity to the original images.
Our method better reconstructed the edge structure and content of the lesion in the image,
which dramatically improved lesion segmentation accuracy.
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Figure 8. Comparison between the results of our proposed model and other models. (a) The original
image. (b) The mask for the original image. (c) The masked image. (d) Results from publicly
available code using the LaMa method. (e) Results from publicly available code using the GL method.
(f) Results from publicly available code using the DF 1 method. (g) Results from publicly available
code using our method. (h) Results from publicly available code using the PC method. (i) Results
from publicly available code using the DF 2 method.

Table 1. Means of the quantitative comparison of the proposed method with already publicly
available, robust baselines in FID, LPIPS, and SSIM metrics. The results of each model were derived
from its public code.

Model SSIM FID LPIPS

PC [39] 0.6847 79.42 0.13550
GL [38] 0.3026 170.69 0.29589

DF 1 [37] 0.6578 81.74 0.14090
Df 2 [40] 0.8932 54.38 0.10150

LaMa [42] 0.9209 25.54 0.08215
Ours 0.9246 22.66 0.07806

Table 2. Variances of quantitative comparison of the proposed method with already publicly available,
robust baselines in FID, LPIPS, and SSIM metrics. The results of each model were derived from its
public code.

Model SSIM FID LPIPS

PC [39] 1.47 × 10−5 0.2755 4.5 × 10−8

GL [38] 1.81 × 10−5 0.4878 9.7 × 10−8

DF 1 [37] 1.39 × 10−5 0.2801 4.3 × 10−8

Df 2 [40] 1.10 × 10−5 0.2311 2.1 × 10−8

LaMa [42] 9.90 × 10−6 0.1777 1.1 × 10−8

Ours 9.10 × 10−6 0.1373 8.1 × 10−9
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Table 3. The lower (left) and upper (right) limits of confidence are 95% of quantitative comparison of
the proposed method with an already publicly available, robust baselines in FID, LPIPS, and SSIM
metrics. The results of each model were derived from its public code.

Model SSIM FID LPIPS

PC [39] (0.6771, 0.6923) (78.17, 80.67) (0.13510, 0.13590)
GL [38] (0.2939, 0.3111) (169.81, 171.57) (0.29556, 0.29622)

DF 1 [37] (0.6502, 0.6654) (80.57, 82.40) (0.14050, 0.14130)
Df 2 [40] (0.8860, 0.9004) (53.46, 55.30) (0.10122, 0.10178)

LaMa [42] (0.9145, 0.9273) (24.72, 26.36) (0.08195, 0.08235)
Ours (0.9186, 0.9306) (21.96, 23.36) (0.07788, 0.07824)

3.1.2. Ablation Experiments

To verify that our approaches do reduce the capabilities of the model, we designed
ablation experiments for the baseline model. The dataset used for the experiments was our
inpainting dataset. We used solely FFCs as the baseline in this experiment.

• FFCs
Fast Fourier convolutions have a larger and more effective field of repetition, which can
effectively enhance the field of repetition of our model and improve its capability. We
performed quantitative experiments on fast Fourier convolution, dilated convolution,
and regular convolution. The convolution kernel size was set to 3 × 3, and the
expansion rate of the dilated convolution was set to 3. Table 4 shows the scores of
different types of convolution. FFC performed the best, and dilated convolution was
second only to FFC; however, dilated convolution depends on the resolution of the
image and has poor generalization.

• Mask generation
The types, sizes, and positions of the mask during training impact the generative and
generalization capabilities of the model. In our task, we focused on exploring the effect
of mask generation location on the model. Regular, irregularly shaped masks will
overlap with a variety of symbols in the image, and this part of the region was devoid
of realistic background for a realistic inpainting quality assessment. Additionally, we
avoided network learning to use the features of these symbols. We compare our mask
generation approach with the conventional method, and Tables 5 and 6 show that our
method effectively improves the SSIM, LPIPS, and FID.

• Attention mechanism
For the network to attenuate the focus on symbolic features in the image and enhance
the focus on other features in the real background, we introduced the SE layer. By in-
troducing the channel attention mechanism, our model pays more attention to the
features of non-symbolic regions rather than the features of symbolic regions and
chooses useful features. By this method, the restored image is more similar to the
original image in terms of content and no yellow pixels show up in the restoration
region. Tables 5 and 6 show the effects of the experiments.

Table 4. Effects of different convolutions.

Convs LPIPS FID

Regular 0.92230 30.84
Dilated 0.08447 26.77

Fast Fourier 0.08215 25.54



Bioengineering 2023, 10, 184 13 of 19

Table 5. Results of experiments on input with a resolution of 256 × 256.

Model SSIM FID LPIPS

Base (only FFCs) 0.9209 25.54 0.08215
Base + Mask 0.9240 23.08 0.08044

Base + SE-Layer 0.9238 23.02 0.07987
Base + Mask + SE-Laye 0.9246 22.56 0.07806

Table 6. Results of experiments on input with a resolution of 512 × 512.

Model SSIM FID LPIPS

Base (only FFCs) 0.9170 28.58 0.08939
Base + Mask 0.9189 27.15 0.08842

Base + SE-Layer 0.9102 26.89 0.08769
Base + Mask + SE-Layer 0.9208 25.52 0.08300

3.1.3. Experiments on the Lesion Segmentation

As we noted in the introduction, our aim of inpainting of 2D ovarian-tumor ultrasound
images is to enhance the accuracy of currently popular segmentation models such as Unet
and PSPnet for the segmentation of ovarian lesions.

Figures 2 and A1 show the negative effect of symbols in the image on the segmentation
of the lesion: they make the model focus more on these symbols. These symbols provide
additional information such that the accuracy of segmentation of ovarian-tumor images that
are completely clean and without symbols is substantially reduced, which is unacceptable
in clinical practice. Therefore, we used the inpainting images and the original images as
two training sets, and the clean images as the common test set for experiments on lesion
segmentation. Figures 9 and A5 confirm that the segmentation accuracy was improved from
71.51% to 76.06% for the Unet [19] model and from 61.13% to 66.65% for the PSPnet [47]
model in clean images. Figure 10 indicates the segmentation results of the Unet model
using the clean images as a testing set. Our approach appreciably improves the accuracy of
lesion segmentation, and the visualization of segmentation is much better for experiments
on lesion segmentation with clean images. These experiments confirm our conjecture and
our original aim of performing image inpainting.

Figure 9. The accuracy graph of lesion segmentation of the Unet [19] model. The blue line represents
the accuracy of using the inpainting images as the training set. The yellow line represents the accuracy
of using the original images with symbols as the training set.
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Figure 10. Visualization of the results of lesion segmentation of Unet. (a) The clean image. (b) The
ground truth image. (c) Segmentation result of the Unet model using the inpainting images as the
training set. (d) Segmentation result of the Unet model using the original images as the training set.

4. Conclusions

In this paper, we proposed a 2D ovarian-tumor ultrasound image inpainting dataset
to investigate the effect of prevalent symbols in images on ovarian-lesion segmentation.
Based on this image inpainting dataset, we proposed a 2D ovarian-tumor ultrasound image
inpainting model based on fast Fourier convolution and a channel attention mechanism.
Labeled images are used as a priori information to guide the model to focus on features
in the non-symbolic regions of the images, and fast Fourier convolution is used to extend
the receptive field of the model to make the texture and structure of the inpainting images
more realistic and the boundaries smoother. Our model outperformed existing methods
in both qualitative and quantitative comparisons. It received the highest scores in all
three metrics, LPIPS, FID, and SSIM, which proves the effectiveness of our model. We
used the inpainting images for training and validation with Unet and PSPnet models,
which appreciably enhanced the accuracy of lesion segmentation in clean images. This
additionally demonstrates the great significance of our study for computer-aided diagnosis
of ovarian tumors.

Our study in this paper did not currently use ground truth of lesion segmentation in the
dataset, which may further improve the similarity of lesion boundaries in inpainted images.
In future work, we will do further exploration on how to apply the edge information of the
lesion to the model to make the boundaries more similar to those in the original image and
extend our model to other types of medical images—CT, MRI, etc.
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Appendix A

Figure A1. The accuracy graph of lesion segmentation of the PSPnet [47] model. The blue line
represents the accuracy of using the clean images as the testing set. The yellow line represents
the accuracy of using the original images with symbols as the testing set. The figure also shows a
visualization of the segmentation results for the 50th and 150th epochs.

Figures A2–A4 show the results of different methods on images containing different
types of symbols.

Figure A2. Comparison between the results of our proposed model and those of other models. (a) The
ground truth image. (b) The mask for the ground truth image. (c) The masked image. (d) LaMa
method. (e) GL method. (f) DF 1 method. (g) Our method. (h) PC method. (i) DF 2 method.



Bioengineering 2023, 10, 184 16 of 19

Figure A3. Comparison between the results of our proposed model and those of other models. (a) The
ground truth image. (b) The mask for the ground truth image. (c) The masked image. (d) LaMa
method. (e) GL method. (f) DF 1 method. (g) Our method. (h) PC method. (i) DF 2 method.

Figure A4. Comparison between the results of our proposed model and those of other models. (a) The
ground truth image. (b) The mask for the ground truth image. (c) The masked image. (d) LaMa
method. (e) GL method. (f) DF 1 method. (g) Our method. (h) PC method. (i) DF 2 method.
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Figure A5. The accuracy graph of lesion segmentation of the PSPnet [47] model. The blue line
represents the accuracy of using the inpainting images as the training set. The yellow line represents
the accuracy of using the original images as the training set.
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