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Abstract: Numerical models of the musculoskeletal system as investigative tools are an integral part
of biomechanical and clinical research. While finite element modeling is primarily suitable for the
examination of deformation states and internal stresses in flexible bodies, multibody modeling is
based on the assumption of rigid bodies, that are connected via joints and flexible elements. This
simplification allows the consideration of biomechanical systems from a holistic perspective and
thus takes into account multiple influencing factors of mechanical loads. Being the source of major
health issues worldwide, the human spine is subject to a variety of studies using these models to
investigate and understand healthy and pathological biomechanics of the upper body. In this review,
we summarize the current state-of-the-art literature on multibody models of the thoracolumbar spine
and identify limitations and challenges related to current modeling approaches.

Keywords: musculoskeletal multibody dynamics; spinal biomechanics; spinal alignment; spinal
loading; muscle force computation; thoracolumbar spine; biomechanical model

1. Introduction

Chronic back pain is one of the major health issues worldwide. Though general risk
factors such as occupation, obesity or anthropometric parameters could be identified in
the past years [1], the specification of individual biomechanical indicators for the predic-
tion of symptoms and chronicity is challenging, as it requires an in-depth knowledge of
spinal kinematics and resulting loads. Even though experimental methods are essential
to help build this knowledge, they come with limitations. In vitro studies can help un-
derstand segment mechanics but are not applicable when it comes to the investigation of
complex in vivo biomechanics of the whole torso [2]. The invasive character of the in vivo
measurement of these parameters via intradiscal pressure sensors [3,4] or instrumented
vertebral implants [5,6] makes these methods unsuitable for clinical analysis. Compu-
tational, biomechanical models can provide a valuable alternative when it comes to the
estimation of spinal loads. There are two approaches for the numerical analysis of spinal
loading. While finite element models (FEM) hold the potential to investigate internal stress
states in flexible bodies and their underlying or resulting deformation, multibody models
(multibody system, MBS) can help analyze mechanical loads on the musculoskeletal system
at a holistic level. Breaking the system down to its essential mechanical components, classic
MBS models incorporate rigid bodies connected by joints and, depending on the respective
research question, force elements representing flexible structures such as intervertebral
discs (IVD), ligaments, cartilage, and other connective tissue. This way, MBS models rep-
resent a valuable tool to increase a profound understanding of healthy and pathological
biomechanics. Gould et al. published a review on FEM and MBS models of the healthy and
scoliotic spine in 2021 [7]. Focusing on the latter one, the authors state that their review
provides solely a brief overview on MBS models of the healthy spine and refer the reader
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to the review on MBS modeling of the cervical spine by Alizadeh et al. [8] and the review
by Dreischarf et al. on in vivo studies and computational models, published in 2016 [9].

The wide range of applications, improved technical capabilities, and increasing knowl-
edge of spinal biomechanics, which answer old questions and raise new ones, mean that
the demand for high-quality MBS models is not abating. As a consequence, the number of
published models is increasing every year providing new opportunities and insight.

In recent years, models have been introduced that extend the classic notion of a
multibody or musculoskeletal models. These models incorporate flexible bodies such
as beam elements into rigid body models and thus soften the boundary between FEM
and MBS models [10,11]. However, within the scope of this work, we want to review
the developments in the field of multibody models of the healthy thoracolumbar spine,
focusing on classical rigid body models. Hereby, we shed light on common modeling
methods and applications, as well as identify and discuss related limitations and challenges
in state-of-the-art spine modeling.

2. Methods

To generate a list of potentially relevant publications, a systematic search was carried
out in PubMed and Scopus in November and December 2022. The search included the
keywords “spine AND model AND ((multi AND body) OR musculoskeletal)”. Excluding
results prior to 2013 left 1288 publications on PubMed and 1304 on Scopus. However,
relevant citations in the articles were also included, if they were published before 2013. Sub-
sequently, duplicates were removed by identical PubMedIDs and titles. Remaining articles
were then filtered by title and abstract and the full text eventually analyzed. Publications
were excluded if they featured at least one of the following topics:

• Finite element modeling;
• Models of the cervical spine;
• Models without muscle incorporation;
• Models of the scoliotic spine;
• Models of the nonhuman spine;
• Studies with a medical scope other than biomechanics.

Inclusion criteria were set to

• Musculoskeletal models;
• Multibody models;
• Models of the thoracolumbar spine;
• Models of the healthy spine.

We analyzed the remaining studies systematically according to the represented model-
ing methods and applications and identified existing limitations and challenges.

3. Multibody Modeling of the Healthy Spine

After filtering a total of 2592 articles, 81 articles remained, which were included in
this review. Focusing on extensive musculoskeletal models of the thoracolumbar spine,
we discuss models with reduced complexity, such as abstracted models [12–16], skeletal
models neglecting muscular effects [17,18] or models of the lumbar spine [19–29] only
in passing.

Overall, our literature review revealed that a large proportion of published studies
was based on a few original models [30–33]. Due to the accessibility of these models
via the commercially available software AnyBody (AnyBody Technology A/S, Aalborg,
Denmark) [30,33] or the open-source software OpenSim [31,32,34], numerous studies can
be found that used, modified, and extended these models, beyond the boundaries of the
respective research groups as well [35–58]. Apart from these widely reused models, further
original models can be found in the literature using alternative software [59–64]. Table 1
provides an overview of the original models found and subsequent studies associated
with them.
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Table 1. Overview of original models of the musculoskeletal thoracolumbar spine and related
modeling methods. Semi-individualized models are those that contain both individualized and
generic musculoskeletal components. Joint definitions include potentially assigned constraints.

Reference Included
Segments Joint Definition Generic/Indiv. Passive Force

Elements

Muscle Model
and Force

Estimation
Software Related Studies

de Zee et al. [30] Pelvis, sacrum,
L1-L5, thorax 3 rot. DOFs (IV) Generic - Act., ID, SO AnyBody [33,35,36,39,44,

45,47,65]

Christophy
et al. [31]

Pelvis, sacrum
L1-L5, thorax 3 rot. DOFs (IV) Generic - Hill type OpenSim [37,40,41,46,48–

53]

Bruno et al. [32]

Pelvis, sacrum
T1-L5, ribs,

sternum,
upper limbs,
head–neck

3 rot. DOFs (IV)
1 rot. DOFs (CV) Generic - Hill type, ID, SO OpenSim [38,42,43,54–58]

Ignasiak et al. [33]

Pelvis, sacrum
T1-L5, ribs,
sternum
head–neck

6 rot. DOFs (IV)
1 rot. DOFs
(CV/CT)

3 rot. DOFs (CS
I)

6 rot. DOFs (CS
II-X)

Generic CS, CT, CV, IV
joint (lin.)

Act., ID,
FSK [66], SO AnyBody [39,67,68]

Lerchl et al. [59]

Pelvis, sacrum,
L1-L5, thorax,
upper limbs,
head–neck

3 rot. DOFs (IV) Semi-indiv. Lig. (nonlin.)
IVD (nonlin.)

Actuators, ID,
SO Simpack -

Favier et al. [69]

Lower limbs
pelvis, sacrum,
L1-L5, thorax
(3 segments),
upper limbs,
head–neck

3 rot. DOFs (IV) Semi-indiv. Joint (lin.) Hill type, IK, ID,
SO OpenSim -

Malakoutian
et al. [60]

Pelvis, sacrum,
L1-L5, thorax,

humeri
6 DOFs (IV) generic Joint, IAP Hill type,

FD-assisted SO AriSynth [70]

Rupp et al. [61] Pelvis, sacrum,
L1-L5, thorax 6 DOFs (IV) Generic Lig. (nonlin.)

IVD (nonlin.) Hill type, FD In-house -

Fasser et al. [62] Pelvis, sacrum,
L1-L5, thorax 3 rot. DOFs (IV) Semi-indiv. - Hill type, IK, ID,

SO Matlab [71]

Bayoglu et al. [72]

Pelvis, sacrum,
C1-L5, ribs,
sternum,

skull
(3 segments),

shoulder
(3 Segments)

3 rot. DOFs (IV)
6 DOFs (CS)

1 DOF (CV/CT)
Individ. Joint (lin.) Act., ID, SO AnyBody [73–75]

Huynh et al. [63] Full-body, C1-L5 3 rot. DOFs (IV) Generic Lig. (lin.)
IVD (lin.), IAP IK, ID, SO LifeMOD [76]

Khurelbaatar
et al. [64]

Pelvis, sacrum,
C1-L5, ribs,

sternum, upper
limbs, head

6 DOFs (IV/CS),
3 rot. DOFs (CV)

Semi-indiv.
(bones)

Lig. (nonlin.),
IVD (nonlin.), CS

cartilage (lin.),
facet joints

Act., ID, SO RECURDYN -

Guo et al. [77]

Pelvis, sacrum,
C1-L5, ribs,

sternum, upper
limbs, head

6 DOFs (IV) Generic
Lig. (nonlin.),

IVD (lin.), facet
joints, IAP

Hill type, ALE,
FD OpenSim -

The definition of the abbreviations can be found at the end of this article.

3.1. General Model Setup and Kinematics

In the past two decades, simplified models of the whole torso with a detailed lum-
bar spine were developed to investigate lumbar loads [30,31,59,61,69]. One of the first
generic models for lumbar load estimation was introduced by de Zee et al. in 2007 [30],
which comprised seven rigid bodies for the pelvis including the sacrum, five lumbar ver-
tebrae, and one lumped segment representing the thoracic spine including the rib cage
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and cervical spine. The model anatomy was based on publications by Hansen et al. [78]
and Bodguk et al. [79]. De Zee defined intervertebral joints as spherical joints with their
respective center of rotation (COR) located in the intersection of the instantaneous axis of
rotation and the midsagittal plane according to Pearcy and Bodguk [80]. A total of 154
actuators representing muscle fascicles for the erector spinae (ES), rectus abdominis (RA),
internal obliques (IO), external obliques (EO), psoas major (PM), quadratus lumborum
(QL), and multifidus (MF) were implemented in the model either as a straight line between
insertion and origin or, in order to mimic more realistic lines of action, redirected using
so-called via points or wrapping surfaces [30].

Inspired by de Zee’s model, Christophy et al. published a generic multibody model of
the lumbar spine in 2012 [31], incorporating a more detailed muscle architecture regarding
the latissimus dorsi (LD) and the MF muscle. Using the open-source software OpenSim [34],
the model has been widely used and extended in the past years [31,37,40,41,48–52,81,82].
In recent years, other models with simplified thorax have been published [59,61,69].

Favier et al. published a full-body model with a detailed lumbar spine in 2021 [69].
The model was created in OpenSim and included in total 20 rigid bodies including the
head–neck, three-segment thoracic and cervical spine (spherical joints in T7-T8 and C7-
T1), five lumbar vertebrae, pelvis with sacrum, as well as upper and lower extremities.
The model incorporated a total of 538 muscle actuators for the lower limbs and lumbar
spine [69].

Lerchl et al. introduced a pipeline for the semiautomated generation of individualized
MBS models with a detailed lumbar spine created in the commercial multibody modeling
software Simpack (Dassault Systèmes, France) in 2022 [59]. Based on CT data, the models
included individual vertebrae T1-L5 with a fused thoracic part and rib cage and spherical
lumbar intervertebral joints, and generic segments for the head–neck, pelvis, sacrum,
and simplified arms. A total number of 103 actuators representing the muscles of the lower
back were incorporated [59].

Research devoted to the loading of the thoracic spine is less common and therefore,
only few models incorporating a detailed thoracic spine and rib cage can be found in the
literature [32,33,72]. As opposed to musculoskeletal models with a rigid thorax, these
models allow a comprehensive analysis of spinal loading for load cases involving tho-
racic movement. Based on the generic model of the lumbar spine by de Zee et al. [30],
Ignasiak et al. introduced a musculoskeletal model of the thoracolumbar spine with a
detailed articulated rib cage [33]. Ignasiak et al. extended the model by individual rigid
bodies of 12 vertebrae, 10 pairs of ribs, and a sternum. Intervertebral thoracic joints were
defined as six-DOF joints and lumbar joints, originally modeled as spherical joints [30],
were also modified, respectively. Costovertebral (CV) and costotransverse (CT) joints were
defined as revolute joints with the rotation axis in the frontal direction and all joints between
the ribs and the sternum were modeled with six DOFs, except the first pair, which were
modeled as spherical joints. The model was validated against in vivo data and used in
follow-up studies [33,39,67,68].

A comprehensive model of the upper body including 60 segments (vertebrae, ribs,
skull, sternum, hyoid, thyrohyoid, clavicles, scapulas, humeri, sacrum, and pelvis) created
in AnyBody was published by Bayoglu et al. in 2019 [72].

Based on the lumbar spine model of Christophy et al. [31], Bruno et al. developed
and validated a fully articulated model of the thoracolumbar spine in OPENSIM includ-
ing individual vertebrae, ribs, and sternum [32]. Like Christophy’s model, the thora-
columbar model of Bruno et al. has been widely used and adapted since its publica-
tion [32,43,54,56–58,83,84].

In biomechanical MBS modeling, intersegmental connections are usually implemented
as joints with defined DOFs, which can either be defined directly in the joint or are im-
plemented as constraints, limiting the joint’s effective degrees of freedom to its relevant
components. It is common practice to model intervertebral joints as spherical joints allow-
ing rotation around three spatial axes [31,62]. Few models exist, that defined intervertebral
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joints with six DOFs, additionally accounting for translational motion [33,37,41,61]. The cen-
ters of rotation are located either in the geometrical center of the IVD [33,59,62] or in the
instantaneous axis of rotation according to Pearcy and Bodguk [30,31,69,80]. CV joints
are modeled as pin joints rotating around the vector between the costovertebral and cos-
totransverse joints [32,33,72] or spherical joints [64] and CS joints as six DOFs [33,64,72].
Depending on the simulation approach (Section 3.4), kinematic data have been most com-
monly assigned to the respective DOFs according to findings from our own experimental
studies or the literature (Section 3.3). This way, model kinematics are usually described
using relative minimum coordinates. However, for inverse kinematic approaches, absolute
coordinates are assigned to the end link of the kinematic chain. Providing stable boundary
conditions for the mechanical analyses, the models are usually connected to the inertial
frame of reference and therefore leaving the head–neck complex as the end link of the open
kinematic chain. Upper-body weight is either combined and included in the center of mass
of the lumped thoracic body [61], distributed according to the literature [85,86] or derived
from patient-specific CT or MRI data and distributed levelwise along the thoracolumbar
spine [59,62].

3.2. Passive (Visco)elastic Components

Various approaches have been taken regarding the modeling of viscoelastic structures
that passively stabilize the spine, such as IVD, spinal ligaments, or the (cartilage) tissue
of the thorax. The modeling approach can vary both in the level of detail and in the
mechanical characteristics considered. Thus, some models neglect the effects of these
components entirely [30–32,62], whereas others combine them partially or completely into
one single stabilizing element per joint [60,69,72], or even integrate individual components
explicitly [59,61,64,77]. The majority of approaches simplify the mechanical properties of
connective tissue to linear elastic force elements, which produce corresponding forces and
moments exclusively depending on their deformation. In multibody models, such material
behavior is described via spring elements with constant stiffness for the corresponding
DOFs. Only a few models incorporate the nonlinear mechanical behavior of biological
passive structures [87]. However, modeling these components as purely elastic does not
account for viscous effects that influence the mechanical response as a function of the
deformation rate, also known as damping behavior. A detailed nonlinear viscoelastic
modeling of IVDs and spinal ligaments, such as the anterior and posterior longitudinal
ligament, the flavum ligament, as well as the interspinal and supraspinal ligament, can
be found in only a few models [59,61]. The respective parameters are usually taken from
in vitro studies available in the literature [88–92].

To examine thoracic loads, models require an appropriate force transmission from
the rib cage to the thoracic spine in addition to intervertebral passive structures. In this
context, costosternal (CS), costotransverse (CT) and costovertebral (CV) articulations are a
central issue. Commonly, these connections are constrained and modeled as linear elastic
elements according to the resulting DOFs. Stiffness parameters are usually taken from
in vitro studies or adapted from previously published in silico studies. Bruno et al. included
point-to-point actuators, which were placed between the ends of the ribs and the sternum
(ribs 1–7) or between the ends of adjacent ribs (ribs 8–10) to represent forces transmitted by
costal cartilage. As a result of a sensitivity analysis, forces generated by the actuators were
set to 1000 N allowing the costal cartilage to provide a high supporting force to the end of
the ribs [32].

Mechanical properties are usually incorporated either directly from mechanical testing,
such as ligament tensile tests [88,93] or by simulating in vitro protocols, such as stepwise
reduction studies, where individual connective structures are gradually removed from
functional biological units, such as the FSU or the rib cage, while measuring the mechanical
properties of the units after every resection [89,94,95]. However, due to the high level of
intra- and interindividual variability regarding the mechanical characteristics of biological
materials, the resulting parameters usually come with high standard deviations [96].
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3.3. Scaling and Individualization

Spinal loading is highly dependent on a variety of subject-specific characteristics, such
as spinal alignment, anthropometry, body weight distribution, or kinematics. While finite
element models exist that account for individual characteristics [97–104], multibody models
are predominantly generic in nature. In the past years, an increasing number of studies have
been published, putting an emphasis on the individualization of the models [54,55,58,59,62].

A wide range of MBS models are based on measurements available in respective
databases, e.g., in the OpenSim database (https://simtk.org/projects/osimdatabase, ac-
cessed on 27 December 2022). To gain reliable insights for the examined load cases, it is
important to match the subject characteristics to the investigated kinematics as congruently
as possible. It is common scientific practice to use available data based on measurements of
bone geometries derived from imaging data or cadaver studies of individuals and scale
and adapt the relevant parameters to the desired anthropometry depending on the charac-
teristics of the studied target group. The need to make use of various sources in this regard
makes it essential to be clear about the underlying data sets, in order to draw meaningful
conclusions from simulation results. Thus, segment masses and body weight distribution
and simplified kinematics are usually taken from the literature [85,86,105]. Some studies
include experimental data collection of kinematics to scale the existing model appropri-
ately [45,51,83] and include muscle activity from electromyography (EMG) measurement
to drive the model [52]. This usually does not incorporate individual bone geometries,
muscle morphology, or the mechanical properties of viscoelastic components.

However, the neglect or only limited consideration of interindividual variation makes
these models poorly suitable for a detailed subject-specific analysis. Models based on coher-
ent datasets regarding bone geometry, anthropometry, and muscle architecture, and kine-
matics are rare in the literature. Bayoglu et al. built a model based on extensive measure-
ments of one cadaver, incorporating general kinematic data from the literature [72–74].
Dao et al. published a patient-specific model based on CT and MRI data [20] of the lumbar
spine. Bruno et al. used their generic model [32] for the investigation of the impact of
the integration of subject-specific properties [42]. Therefore, they incorporated CT-based
measurements of trunk anatomy, such as spinal alignment and muscle morphology, indi-
cating the relevance of considering these factors [42]. Based on this publication, Banks et al.
investigated lumbar load in a patient-specific MBS model using CT data and marker-based
motion capturing to combine individual musculoskeletal geometry and coherent kinemat-
ics [58]. However, the individualization of those models usually involves a time-consuming,
manual, or semiautomated process which requires expert knowledge. To the best of our
knowledge, only two publications can be found that deal with the topic of automating the
individualization of MBS models [59,62].

Fasser at al. used annotated bi-planar radiography images (EOS imaging, Paris, France)
for the automated generation of semi-subject-specific MBS models of the torso. The models
included individual size and the alignment of bony structures as well as an individual
body mass distribution. In the process, 112 and 109 points were marked in the frontal and
sagittal plane, respectively, and converted into 3D coordinates. The body mass distribution
was determined using the individual body contour of the imaging data. Individual bone
geometries, muscle morphology, and passive elements were not included in the model. [62]

Based on the use of artificial neural networks (ANN), Lerchl et al. introduced a pipeline
for the automated segmentation of vertebrae [106] and soft tissue of the torso, as well as the
generation of the points of interest defining muscles and ligaments’ attachment points and
the location and orientation of intervertebral joints. All data were derived from CT imaging
and the model generation required minimal manual interaction, making it suitable for the
analysis of large patient cohorts. However, the individual characteristics of the muscles
and connective tissue could not yet be integrated in the process [59].

https://simtk.org/projects/osimdatabase
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3.4. Muscle Force Estimation

A mechanical analysis with multibody systems can follow two approaches, which
define the necessary input data. Forward dynamic simulations (FD) require kinetic data to
drive the model to generate specific kinematics. This usually means that muscle forces are
applied directly or indirectly to the model to produce a desired motion. This is contrasted
with the idea of inverse dynamic simulations(ID), which use kinematic data as input to
calculate the required kinetic data. Thus, joint kinematics during as specific movement
is imposed to the model and necessary joint moments and therefore, associated muscle
forces are calculated. However, having more control variables, namely, muscle fascicles,
than DOFs, the human musculoskeletal system is redundant. This leads to an infinite
number of solutions for each load case. In order to determine the most suitable solutions,
a mathematical optimization is a commonly used method. Numerous algorithms are
available to find the optimal solution. Hereby, depending on the chosen algorithm, control
variables, namely, muscle activation, excitation, or forces are varied in a deterministic or
stochastic way until some given optimality criteria and constraints are met. Most commonly,
a combination of inverse dynamics and static optimization (SO) is used [30,32,45], some-
times including inverse kinematics (IK) to determine individual joint kinematics [62,63,69].
The inverse dynamic simulation provides joint moments necessary to generate the simu-
lated movement. Subsequently, the static optimization solves the redundancy problem for
each time frame sequentially under the consideration of meeting equilibrium conditions.

In MBS models of the spine, muscles of interest are usually modeled as multiple
fascicles, which comprehensively consider the respective lines of action (Section 3.1). Indi-
vidual fascicles are modeled either as simple force actuators or, more complex, as Hill type
muscles [107]. The classic muscle model according to Hill comprises serial and parallel
elastic elements, representing passive elastic properties of the muscle–tendon complex
as well as a contractile element representing the active component, namely, the function
of myofilaments. This element can include muscle-specific characteristics, such as the
force–length and force–velocity relationship as well as activation dynamics. Depending on
how far these dynamics are taken into account, the muscle excitation, activation, or force
can drive the model and therefore represent control variables for optimization routines.
Detailed definitions of muscle-specific dynamics can be found in the literature [108,109].

4. Applications of MBS Models

MBS models can be used to address a wide range of questions. There are numer-
ous publications devoted to the evaluation of methods in numerical modeling, including
sensitivity analyss or validation studies. Furthermore, validated models can help to gain
valuable insights into biomechanically or clinically relevant load cases. However, depend-
ing on the investigated load case and subject collective, model extensions, and modifications
are usually necessary. Table 2 provides an overview of the most relevant studies using
existing models to address specific research questions.

Table 2. Overview of representative studies using available original models to address methodologi-
cal or biomechanical research questions.

Study Focus Modifications Original Model

Actis et al. [48]

Methodological Validation for flexion,
extension, lateral bending, axial

rotation for participants with and
without transtibial amputation

model extension by lower body [110],
muscle strength [32], and body mass

distribution [86] inclusion of
experimental protocol for EMG and

kinematic data collection

[31]

Arshad et al. [38]
Biomechanical Influence of spinal
rhythm and IAP on lumbar loads

during trunk inclination

Adapted spinal rhythm, inclusion of
ligaments, IVD, and IAP [30]

Arx et al. [83] Biomechanical Lumbar loading
during different lifting styles

Integration of measured kinematic
data [32]
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Table 2. Cont.

Study Focus Modifications Original Model

Banks et al. [58]

Biomechanical Comparison of static
and dynamic vertebral loading during

lifting patient-specific models in an
older study population

CT-based individualization and
integration of patient-specific

kinematic data
[32]

Bassani et al. [45]
Methodological Model validation for
various loading tasks via spinopelvic

rhythm and IDP according to [4]
Integration of kinematic data [30]

Bassani et al. [47] Biomechanical Effect of spinopelvic
sagittal alignment on lumbar loads

Variation of spinal alignment based on
four parameters [30].

Bayoglu et al. [75]
Methodological Sensitivity of muscle

and IV disc force computations to
variations in muscle attachment sites

Variation of the location of muscle
insertion [72]

Raabe et al. [40] Biomechanical Jogging biomechanics Combination with full-body model
by [111] [31]

Beaucage-Gauvreau et al. [49–51] Biomechanical Effects of lifting
techniques on lumbar loads

Adjust all spinal joints with 3 DOFs
and inclusion of kinematic data from

motion capturing during lifting
[31,40]

Burkhart et al. [54]

Methodological Reliability of
optoelectronic motion capturing for

subject-specific spine model
generation

Combination with model of lower
limbs [110] [32]

Malakoutian et al. [70] Methodological Effect of muscle
parameters on spinal loading

Variation of biomechanical parameters
of paraspinal muscles [60]

Senteler et al. [41] Methodological Joint reaction forces
for flexion and lifting

Combination with models of upper
limbs and neck, IV joints set to 6 DOFs,

added passive lin. joint stiffness
[31]

Meng et al. [37] Methodological Force-motion
coupling in 6-DOF joint 6 DOFs (IV), added 6-DOF stiffness [31]

Molinaro et al. [52]
Biomechanical Effects of throwing

technique solid waste collection
occupation on lumbar loads

Incorporation of collected kinematics
and EMG data, EMG-assisted muscle

force estimation and SO
[49]

Schmid et al. [56]
Methodological Validation of a

thoracolumbar model for children and
adolescents

Combination with model of the lower
limbs [112], scaling to anthropometry

of children and adolescents
[32]

Schmid et al. [57]
Methodological Feasibility of a

skin-marker based method for spinal
alignment modeling

Reduction of muscle architecture,
implementation of skin-marker

derived alignment
[56]

Wang et al. [84] Methodological Implementation of a
physiological FSU

Adaption of IV joints to represent
passive properties of a physiological

FSU
[32]

Overbergh et al. [55]

Methodological Workflow for
generation of an image-based (CT),

subject-specific thoracolumbar model
of spinal deformity

Addition of kinematic coupling
constraints, personalization of bone

geometries, alignment, IV joint
definitions and kinematics

[32]

Han et al. [36]

Methodological Effect of centers of
rotation on spinal loads and muscle
forces in total disc replacement of

lumbar spine

Ligaments and facet joints added,
altering location of CoR [30]

Zhu et al. [46] Biomechanical Effects of lifting
techniques on lumbar loads

Combining with models of upper and
lower limbs, 6-DOF IV joint,

integration of a customized marker set
[31]

Kuai et al. [44]
Biomechanical Influence of disc

herniation on kinematics of the spine
and lower limbs

Integration of kinematic data from
patients with lumbar disc herniation [30]

Senteler et al. [113]
Methodological Sensitivity of

intervertebral joint forces to CoR
location

Altering location of CoR [41]
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4.1. Studies with Methodological Focus

Various publications can be found in the literature evaluating and validating new
approaches in MBS modeling [19,30–32,45,63,64,69]. For the purpose of validating these
approaches, it is common scientific practice to compare simulation results with existing
results from in vivo or in vitro measurements. Of note, those comparisons are mainly
relative, as few in vivo measurements are available and exact boundary conditions are
hard to control. Frequently used in vivo studies to validate results on spinal loading from
simulation are intradiscal pressure measurements [4,114]. Estimated muscle forces are
usually compared to EMG measurements from one’s own experimental studies [48] or the
literature [59].

Apart from evaluating the validity of the modeling approach, the simulation results of
generated MBS models can be used to validate novel methods in data processing regarding
the derivation of both relevant modeling data from imaging [19–21] and kinematic data
motion capture [54]. Due to the usually extensive effort connected to the processing of
individual data, recent publications have focused on the automation of the process [59,62].

Simplifications are an integral part of any model and have to be taken into considera-
tion when it comes to the interpretation of the results. To understand and evaluate their
influence, MBS models have been used to systematically investigate common assumptions,
such as the reduction of complex mechanics of the functional spine unit (FSU) [37,115].
Further, the sensitivity of the model accuracy to assumed positions of intervertebral cen-
ters of rotation [23,36] or muscle insertions [75] have been analyzed. Rockenfeller et al.
investigated the effect of muscle- or torque-driven centrodes using an MBS model of the
lumbar spine.

Furthermore, a systematic model-based analysis can help standardize clinical proce-
dures, such as the classification of spinal shapes [116] or to define boundary conditions for
experimental protocols [24].

4.2. Studies with Biomechanical or Clinical Focus

Validated models are used to comprehensively investigate biomechanical and clin-
ical aspects of a wide range from routine scenarios to nonphysiological, or even trau-
matic events.

The relevance of low-dynamic everyday or work-related activities for the general
population, as well as their experimental accessibility, make these scenarios among the
most studied in biomechanical simulations. Therefore, numerous models exist that deal
with the mechanical effects of lifting [12,13,25,46,76,77,82], everyday activities such as
walking, flexion, extension, or lateral bending [15,43,69] or work-related situations such
as high-frequency axial loading [17,18]. In this context, different lifting techniques were
evaluated [50,51,83,117]. Accident situations were investigated by Wei et al. [16] for snow-
boarding and for frontal impact by Valdano et al. [14]. Incorporating noncritical higher
dynamics, Raabe et al. combined a generic model of the lumbar spine [31] with a model of
the lower limbs [111] to analyze the biomechanics of jogging [40]. Studies investigating
specific kinematic boundary conditions usually involve an experimental setup to collect
kinematic data in a healthy adult population [46,47,52,58,83]. Comparably few studies
target more vulnerable populations, such as amputees [48,53] or children [27,56], who used
validated models of adults and scales them according to the literature to match the average
anthropometric data of children.

Regarding the influence of healthy anatomical and anthropometric and anatomical
characteristics, biomechanical modeling have been used to determine the effect of spinal
alignment [28,43,47], to gain insight into load sharing of passive structures of the FSU [22],
the effect of ligament stiffness [65] or muscle strengthening [118].

Furthermore, MBS models can help to understand and treat pathological developing
or surgically induced pathological biomechanics. Kuai et al. analyzed the impact of disc
herniation on the kinetics of the spine and lower extremities during everyday activities [44].
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Surgical interventions always represent a major intervention in the natural biomechan-
ics of the musculoskeletal system. Thus, several studies on the effects of spinal fusion can
be found in the literature [29,71,119]. The resulting kinematic effects of spinal fusion were
investigated by Ignasiak et al., who proposed a method for the prediction of a full-body
sagittal alignment including reciprocal changes as a reaction to spinal fusion [68].

5. Limitations and Challenges

It is in the nature of numerical models that they come with limitations. One of
the great challenges is to keep the balance between necessary accuracy and reasonable
complexity. This requires not only in-depth knowledge of the object to be modeled but also
the corresponding data from experimental studies and the appropriate technical solutions
for implementation. During our literature research, we were able to identify several core
limitations that could be found in a wide range of MBS models of the spine and the related
challenges when it came to addressing these limitations.

5.1. Database

Any model can only be as good as its input data. In the context of biomechanical
models, this comprises bony geometry, anthropometry, muscle architecture, the mechanical
parameters of viscoelastic components and kinematic data. Due to the necessary measure-
ments to determine these parameters, it is currently not possible to build models based
on fully consistent datasets. While anthropometric and kinematic data can be determined
via noninvasive measures in biomechanics labs, such as marker-based motion capturing,
the derivation of bony geometries, muscle architecture, and a detailed distribution of
soft tissue usually need medical imaging or are performed in cadaver studies. However,
the mechanical properties of viscoelastic components such as ligaments or the IVD can
currently only be determined with the help of in vitro studies, which require the isolation
of the structure of interest to mount them in respective testing machines. Consequently,
these measurements are also usually performed with specimens from cadaver studies and
highly dependent on the experimental conditions.

In the past years, more studies including widely individualized models were pub-
lished [55,59,62]. However, even these models can only offer a limited customization.

In order to obtain consistent data sets for biomechanical models, alternative, noninva-
sive methods must be developed to determine these parameters in large subject cohorts.
Here, the combination of experimental studies, multimodal imaging, and ANNs could be
a possible solution to increase the level of model individualization beyond its anthropo-
metric and skeletal characteristics. Thus, the individual mechanical condition of functional
components can be evaluated partly on the basis of imaging data. For instance, according
to the Pfirrmann scale, a potential degradation of the IVD can be determined via the height
and signal intensity from MRI data [120]. Correlating this degradation with the mechanical
alteration of IVD [121], this can be used to consider the individual mechanical state of
connective tissue, when it is implemented in respective models. Training ANNs with these
data will provide large, more diverse datasets for individualized multibody models.

Furthermore, invasive experimental studies on spinal loading for model validation
are rare and are not widely feasible due to ethical reasons. Accordingly, even consistently
constructed models cannot ultimately be validated against data pertaining to the individual
in question. Additionally, the high level of variability in mechanical properties of biological
materials as mentioned in Section 3.2, and therefore, the integration of parameters with
high standard deviations inevitably leads to models containing inaccuracies. Depending
on the complexity of the model, these inaccuracies can accumulate and further blur the
generated results. It is necessary to be aware of existing inconsistencies and imprecision
when interpreting simulation results in order not to draw incorrect conclusions.
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5.2. Joint Definition

Intervertebral connections are a complex combination of the IVD, ligaments, facet
joints, and articulated capsules. Depending on the applied load, this leads to complicated
kinematics in which the instantaneous center of rotation migrates in the course of the
motion [122]. However, in the vast majority of spine models, intervertebral joints are sim-
plified to spherical joints allowing three rotational DOFs around a fixed center of rotation.
The sensitivity of this assumption has been subject to several in silico studies [23,113,123],
indicating that the effect of this assumption on the calculated muscle forces and spinal
loading should not be neglected. Detailed modeling requires six degrees of freedom and the
consideration of appropriate stabilizing structures, the validity of which depends primarily
on the definition of their mechanical parameters (Section 5.1). There are some models
to be found in the literature incorporating such detailed representation of intervertebral
connection [22], mainly focusing on load sharing in passive structures.

Larger data sets could also help to better understand intervertebral dynamics in order
to develop corresponding valid modeling approaches. As already mentioned in Section 5.1,
the combination of imaging, machine learning for process automation, and in vitro studies
can contribute to progress.

5.3. Intra-Abdominal Pressure

The stabilizing influence of intra-abdominal pressure (IAP) on the spine has been widely
studied [124,125]. However, only a few MBS models consider its effects [38,60,63,70,77]. In
consequence, spinal loads in lifting tasks or the inclination of the upper body are assumed
to be overestimated in the MBS modeling of the spine. Arshad et al. observed a decrease
of up to 514 N in lumbar compression force and 279 N in global muscle force due to the
inclusion of intra-abdominal pressure [38]. These results indicated that it was necessary to
consider the effects of IAP to obtain reliable quantitative results on spinal loads.

5.4. Muscle Modeling and Muscle Force Estimation

A valid representation of relevant muscles is crucial to gain meaningful findings on
the biomechanics of the spine. Most of the models contain a detailed muscle architecture
consisting of multiple fascicles spanning between origin and insertion according to the
literature. Deploying modeling components, that are usually defined as point-to-point force
elements, can lead to nonphysiological lever arms depending on the imposed movement.
De Zee’s model used so-called via points to redirect the lines of action of the modeled
long muscle fascicles along the rib cage and thus create more realistic lines of action
compared to simple straight lines [30]. However, this approach came with an increased
computational cost, making it only conditionally suited for a systematic analysis of large
participant cohorts.

Another aspect that has to be critically discussed is the applied muscle model. While
simple force actuators are considered sufficient for a static investigation, high-dynamic
load situations require the consideration of activation and contraction dynamics. This
requires an in-depth knowledge of the characteristics of individual muscle morphology
such as optimal fiber length, physiological cross-sectional area (PCSA), or pennation angle.
Again, the need for subject-specific solutions is evident, as muscle morphology is highly
dependent on the individual.

The vast majority of currently published models use a combination of inverse dy-
namics and static optimization for muscle force calculation. This approach provides a
sufficient accuracy in static and quasi-static simulations but is dependent on the defined
cost function, constraints, and used algorithm. Most commonly used are criteria for min-
imum fatigue [126], or the sum of squared muscle strength [127] or activation [34], and
the maximum muscle stress is defined as the upper-bound constraint, which is usually set
to 100 MPa [32,49,59] to guarantee that equilibrium conditions are met reliably. However,
this value does not correspond to a physiological value [49]. Furthermore, SO neglects
cocontraction, which incorporates the activation of the antagonist in addition to the ag-
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onist stabilizing the respective joint and therefore increasing muscle activation. This is
in contradiction to the idea of static optimization, which aims at minimizing the defined
cost function (e.g., muscle activation) [128]. In high-dynamic load cases, where the role of
cocontraction is more evident, this leads to an underestimation of spinal loading.

One way to address this problem is to use dynamic optimization (DO). In contrast to
static optimization, the entire time history of the motion under investigation is taken into
account [128]. Integrating the respective criteria in the optimization objective, stabilizing
effects such as cocontraction can come into play [25]. However, this method comes with a
massive increase of computational cost [129]. Another possibility would be to train models
with the help of artificial intelligence. However, such training requires large quantities of
data, which is not possible due to the still widely manual and therefore time-consuming
process of modeling [128]. Anderson et al. compared both approaches for the simulation
of normal gait in 2001, stating that both provided equivalent results for low-dynamic
simulations [129]. A similar comparison was made by Morrow et al. for wheelchair
propulsion, noticing significant differences in estimated muscle activations [130]. Keeping
in mind that wheelchair propulsion comprises higher dynamics than normal gait, these
findings indicate that the validity of the chosen approach was largely dependent on the
investigated load case.

6. Conclusions

Multibody models are a powerful tool to gain insight into the healthy and patho-
logical musculoskeletal system. They can promote a general understanding of the patho-
biomechanics of a large set of medical impairments and might even be able to support
diagnostics and therapy planning in the future. Although simplifications and assumptions
are an integral part of any model, it is essential to look closely at the implications of these
assumptions, potential interactions, and possible solutions. Modern technology holds
the potential to provide some of these solutions. Thus, artificial intelligence and state-of-
the-art medical imaging can provide the necessary extensive data basis to systematically
investigate critical parameters to derive appropriate solutions. These technical approaches
coupled with a distinct awareness of existing limitations will lead us towards a growing,
more profound understanding of musculoskeletal mechanics.
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MBS Multibody system
FEM Finite element method
DOF Degree of freedom
FSU Functional spine unit
IAP Intra-abdominal pressure
EMG Electromyography
COR Center of rotation
IVD Intervertebral disc
IV Intervertebral
CS Costosternal
CV Costovertebral
CT Costotransversal
FD Forward dynamic
ID Inverse dynamic
IK Inverse kinematic
SO Static optimization
DO Dynamic optimization
ANN Artificial neural network
ALE Arbitrary Langrangian–Eulerian
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