
Citation: Abdelaziz, A.G.; Nageh, H.;

Abdo, S.M.; Abdalla, M.S.; Amer,

A.A.; Abdal-hay, A.; Barhoum, A. A

Review of 3D Polymeric Scaffolds for

Bone Tissue Engineering: Principles,

Fabrication Techniques,

Immunomodulatory Roles, and

Challenges. Bioengineering 2023, 10,

204. https://doi.org/10.3390/

bioengineering10020204

Academic Editors: Lindsay

E. Fitzpatrick and Laura A. Wells

Received: 18 November 2022

Revised: 29 January 2023

Accepted: 31 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Review

A Review of 3D Polymeric Scaffolds for Bone Tissue
Engineering: Principles, Fabrication Techniques,
Immunomodulatory Roles, and Challenges
Ahmed G. Abdelaziz 1 , Hassan Nageh 2 , Sara M. Abdo 1, Mohga S. Abdalla 1 , Asmaa A. Amer 3,
Abdalla Abdal-hay 4,5 and Ahmed Barhoum 6,*

1 Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
2 Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo 11837, Egypt
3 Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research

Centre, Giza 12622, Egypt
4 Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
5 Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological

University, Cairo 11835, Egypt
6 School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
* Correspondence: ahmed.barhoum@dcu.ie

Abstract: Over the last few years, biopolymers have attracted great interest in tissue engineering
and regenerative medicine due to the great diversity of their chemical, mechanical, and physical
properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic
and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies.
The review comprehensively discusses the implications of biological macromolecules, structure, and
composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds
are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase
separation, gas foaming, electrospinning, and sol–gel techniques. Rapid prototyping technologies
such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting
are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications
are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using
advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to
conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based
BTE treatments in practice are discussed in-depth.

Keywords: tissue engineering and regenerative medicine; biopolymers; nanofabrication techniques;
additive manufacturing; rapid prototyping; customized therapy 3D scaffolds

1. Introduction

Tissue engineering (TE) is a discipline of biomedical engineering that uses a combi-
nation of cells, technology, material methods, and appropriate biochemical and physico-
chemical factors to restore, maintain, enhance, or replace various types of biological tissue.
The terminology TE was first introduced to the scientific community in 1987 [1]. It can be
described as a multidisciplinary approach aimed at replacing damaged biological tissue.
As a result of rapidly developing technologies, bone tissue engineering (BTE) has emerged
as a promising approach to reconstructing large segmental bone defects. Scaffolds, the
key component of tissue engineering, are designed to simulate host tissue functions and
provide a suitable microenvironment for the proliferation and differentiation of host cells
and the reconstruction of new healthy tissue. To design an ideal scaffold for the tissue
engineering of bone, it must have a number of crucial properties, such as biodegradability,
biocompatibility, osteoinductivity, osteoconductivity, bioactivity, and various other surface
properties such as suitable porosity and surface roughness [2]. The replacement of damaged
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tissues with an artificial prosthesis goes back to the past when archeologists excavated
materials such as metals (gold and silver), shells, and corals that were used to replace
broken/missing human bones. For example, the Etruscans replaced damaged teeth with
ox bones in the 6th century BC [3].

Since bone tissue damage occasionally occurs due to accidental trauma and patho-
logical causes, more than 2.2 million bone grafts are performed annually worldwide [4,5].
Currently, treatment protocols for bone tissue damage primarily focus on autologous and
allogeneic grafts, with autologous grafts considered the gold standard [5]. However, using
bone grafts to treat bone tissue damage is associated with several limitations, including
the risk of developing an immune response, an inadequate supply of grafts, donor site
morbidity, and the need for additional procedures [6]. Regenerative medicine and tissue
engineering have emerged in recent decades as promising approaches for the repair of
bone tissue damage, with the goal of reducing the complications associated with conven-
tional methods [7–10]. Biomaterials for bone tissue engineering (BTE) can be described
as impermanent matrices that provide a suitable microenvironment for cell proliferation
and differentiation. Scaffolds, on the other hand, are considered model structures that
support three-dimensional (3D) tissue reconstruction [9,11]. Scaffolds are used either as
cell-free microenvironments or as carriers for cells or/and drugs. Cell-free scaffolds must
allow the settlement of host cells once implanted at the injury site for the regeneration
process to occur. The scaffolds, combined with various cell types of different lineages, can
trigger bone formation in vivo through osteogenic differentiation or the release of soluble
mediators. Researchers have used the most common cells for this purpose: adult stem cells
(stem cells derived from bone marrow, adipose tissue, and peripheral blood), embryonic
stem cells and induced pluripotent stem cells, and genetically modified cells [7,9].

Nowadays, the most common fabrication technologies for processing biomaterials
into 3D scaffolds for tissue engineering are (i) conventional and (ii) rapid prototyping
approaches [12]. Examples of conventional techniques include solvent casting and parti-
cle leaching [13], freeze-drying [14], thermally induced phase separation (TIPS) [15], gas
foaming [16], electrospinning [17], and sol–gel techniques [18]. However, the application of
conventional techniques has its limitations, such as the high cytotoxicity of organic solvents
and the difficult control of scaffold microstructure and accuracy [19]. Rapid prototyping
(RP) technologies are more commonly known as additive manufacturing, as the material
is applied layer by layer in a stepwise manner until the final shape is achieved. Rapid
prototyping technologies include stereolithography [20], fused deposition molding [21],
selective laser sintering (SLS) [22,23], and 3D bioprinting [24]. These rapid prototyping
technologies eliminate the need for cytotoxic organic solvents used in conventional meth-
ods [25]. The pore size and neat geometry can be precisely controlled. Currently, the use of
scaffolds for BTE still faces many obstacles. These include finding suitable materials for
scaffold fabrication, the high cost of in vitro, in vivo, and clinical studies, marketing the
new scaffold-based products, convincing patients to try new scaffold-based treatments,
and trying to meet their high expectations. Finally, the complex regulations governing the
use of biomedical devices vary immensely from country to country [21].

This review aims to spotlight the potential applications of biopolymers and their
3D scaffolds in BTE and to discuss the current challenges of both natural and synthetic
polymers. The hierarchical structure and chemical composition of bone tissue is high-
lighted. Different phases of secondary bone fracture healing are discussed. In addition,
the essential requirements for the fabrication of ideal BTE scaffolds are discussed in detail.
Conventional approaches for fabricating 3D BTE scaffolds are discussed including sol-
vent casting and particle leaching, freeze-drying, thermally induced phase separation, gas
foaming, electrospinning, and sol–gel techniques. Rapid prototyping technologies such as
stereolithography, fused deposition molding, selective laser sintering, and 3D bioprinting
are also discussed. The advantages and disadvantages of 3D BTE scaffolds fabricated using
different fabrication technologies are discussed in detail. Finally, the challenges in the
application of these novel BTE therapies and their future prospects are discussed.
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2. Bone Composition and Structure

Bone tissue is considered a special type of connective tissue with mineral inclusions,
which performs many important functions in the body of the organism: locomotion, pro-
tection and support of soft tissue weight, the main calcium and phosphate storage in
the body, and a reservoir for bone marrow [26]. From a chemical point of view, bone
tissue is a composite material consisting of 45–60% (weight/weight) inorganic minerals,
20–30% (weight/weight) organic materials, and 10–20% (weight/weight) water. Most of
the organic matrix of bone is composed of type I collagen, which has an aligned triple helix
structure [27]. The remaining smaller portion of the bone matrix consists of non-collagenous
proteins (NCPs), which are composed of non-collagenous glycoproteins and bone-specific
proteoglycans. Some examples of these proteins are osteocalcin, osteonectin, bone sialo-
proteins, bone phosphoproteins, and small proteoglycans [28]. These non-collagenous
proteins play an important role in the mineralization of bone and the association of cells
and matrix with structural proteins. Growth factors, secreted by bone cells and having an
effect on bone cells themselves, account for less than 1% of non-collagenous proteins [29].
The inorganic part of bone tissue is mainly composed of hydroxyapatite (HA) with the
chemical formula Ca10(PO4)6(OH)2. The composition of HA crystals changes with time,
so their biological properties depend on the amount and age of the crystallites [30]. The
chemical composition and anatomy of bone are depicted in Figure 1.
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Through the activity of highly specialized cells, namely osteoblasts, osteoclasts, osteo-
cytes, and bone lining cells, bone remodeling occurs constantly throughout a person’s life
to ensure a balance between the process of bone resorption and new bone formation [31].
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Osteoblasts are best known as bone-forming cells and account for 4% to 6% of the total bone
cell [32]. Osteoblasts are responsible for the synthesis of various bone proteins involved
in bone hemostasis, such as type I collagen, osteonectin, osteopontin (OPN), γ-carboxy
proteins, osteocalcin (OCN), proteoglycans, and alkaline phosphatase (ALP). Numerous
growth factors are also synthesized by osteoblasts, such as transforming growth factor β
(TGF-β), insulin-like growth factors I and II (IGF-I and IGF-II), and bone morphogenetic
proteins (BMPs) [33]. While osteocytes settle on the bone surface where little or no bone
resorption/formation occurs [34], bone lining cells regulate the influx and efflux of minerals
at sites where the bone is in contact with other tissues [35]. Osteocytes are the most abun-
dant bone cells and account for 90–95% of the bone cell population. These cells perform
several important functions in hemostasis in bone, such as (i) harmonization of osteoblast
and osteoclast activity, (ii) endocrine regulation of phosphate balance, (iii) sensors of local
mechanical stress, and (iv) regulation of cell signaling [36]. Osteoclasts play an essential role
in the initial phase of bone remodeling (i.e., resorption), as they can engulf aged/damaged
bone matrix to make room for the synthesis of neo-bone tissue [31].

The macroscopic structure of bone is based on the repetitive arrangement of mi-
croscale units. These microscale units are assembled in nanoscale structures [37,38]. At the
macroscale, bone is divided into two categories: cortical (compact) and cancellous (trabecu-
lar) bone. The macrostructure of the long limb bones (e.g., femur, tibia, and fibula) shows an
inner trabecular bone surrounded by an outer compact bone, whereas the macrostructure
of the flat bones (e.g., skullcap) shows more of a sandwich arrangement [29,30]. Micro-
scopically, the collagen fibers with mineral intercalations are arranged in planar structures
called lamellae, which are 3–7 µm wide. These lamellae are arranged concentrically around
a central channel (Haversian channel) to form what are known as osteons [39]. Osteons
are concentric rings 200–250 µm in diameter that runs parallel to the bone’s long axis [40].
At the nanoscale structure, bone is composed mainly of mineral-deposited collagen fibrils.
These collagen fibrils and mineral crystals, whose size is in the range of tens of nanometers
(nm), are composed of sub-nano mineral crystals, collagen molecules, and molecules of
non-collagenous proteins [40]. The hierarchical structure and composition of the bone are
shown in Figure 1.

3. Bone Reconstruction and Self-Healing Capacity

Loss of bone tissue may be due to various causes, including surgical removal of bone
tumors (osteosarcomas), diseases affecting bone quality, bone infections (osteomyelitis),
and traumatic injuries. Currently, the above bone damage/losses are treated with autol-
ogous grafts (gold standard), allogeneic grafts, and metal prostheses [40,41]. (1) Bone
infection (osteomyelitis): osteomyelitis stands for bone marrow inflammation [42]. Os-
teomyelitis may originate from a single area or from multiple areas, including the cortex,
periosteum, and bone marrow, as well as the soft tissues surrounding the affected area [43].
(2) Diseases affecting the quality of bone: in general, bone undergoes continuous remod-
eling/reconstruction in a dual process of bone resorption and bone formation. Bone
remodeling allows the bone to remove damaged parts and replace these damaged parts
with new bone, thereby increasing bone strength. However, if bone resorption and bone for-
mation are not evenly balanced, this can result in a net gain or loss of bone tissue. Therefore,
bone remodeling/turnover affects bone quality and bone mineral density (BMD) [44,45].
(3) Bone cancer (osteosarcoma): osteosarcoma is the most common primary malignant
tumor of bone tissue in clinical practice. It arises from mesenchymal tissue composed of
stromal cells with spindle-shaped morphology that can form bone-like tissue. Osteosarco-
mas account for approximately 20% of all cases of primary malignant tumors registered
worldwide [46,47].

Bone reconstruction and self-healing: fracture reconstruction is a reconstruction pro-
cess that can be divided into two main types: primary and secondary bone healing. Primary
bone healing occurs in cases where bone fragments are held tightly together under pressure.
This type of bone healing is characterized by the absence of bony calluses and the rejoining
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of the ends of the two bone fragments by the action of osteoblasts and osteoclasts. Thus, the
healing process takes place directly [31,32]. Secondary bone healing is the most common
form of bone healing and occurs in response to low mobility at the fracture site, leading
to the formation of soft callus and then secondary bone formation by ossification [31,33].
Secondary bone healing is divided into four main stages: (i) hematoma formation at the
fracture site: immediately after the fracture, a hematoma forms as a result of the death of
bone cells and swelling of the tissue at the fracture site (this phase is characterized by the
development of a new blood supply that grows into the hematoma, and phagocytic cells
begin to engulf and digest debris). This process is also characterized by the immigration of
osteoblasts and osteoclasts to the fracture site. (iii) Bone callus formation: this process also
occurs three to four weeks after fracture. In this phase, there is a proliferation of osteoblasts
and osteoclasts, the action of which transforms the fibrous-cartilaginous calluses into bony
calluses. (iv) Remodeling of the bone: in this stage, excess bone calluses are removed, and
cortical bone is built up to reconstruct the bone diaphysis [34,35]. The four main stages of
secondary bone healing are shown in Figure 2.
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Figure 2. Main stages of secondary bone healing. (A) A hematoma forms after the fracture. (B) In the
first stage of regeneration, the fibrin is gradually replaced by fibrous-cartilaginous tissue forming
woven bone. (C) At a later stage of the regeneration phase, ossification of the cartilaginous tissue
occurs, and more neocartilaginous tissue is formed. (D) Once the bone has grown back together over
bony calluses, the original morphology of the bone cortex is restored by remodeling [48]. The image
was created using Biorender.

4. Properties of Ideal Polymeric Scaffolds for Bone Tissue Engineering

To construct an ideal BTE framework, some properties must be present within
that framework.

(1) Biocompatibility: the biocompatibility of biomaterials or biomedical devices can
be defined as their ability to perform their functions while maintaining an appropriate
host response within a specific application. It can be studied by measuring the extent
of adverse changes that affect homeostasis and thus determines the host response to the
implanted biomaterial/biomedical device [49]. Therefore, the application in which the
biomaterial is used should be specified as biocompatible or non-biocompatible [50]. In 1963,
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Charnley invented a metal-on-plastic hip replacement made of polytetrafluoroethylene
(PTFE) [51]. Many years after Charnley’s findings, PTFE-based monolithic materials were
considered biocompatible and were used clinically after passing all preclinical biosafety
studies [50]. As reported by Williams [50], the biological host environment should be
considered because the interaction between implanted biomaterials and host tissue is
time-dependent and the biomaterial itself may undergo conditioning after a period of
contact with the host tissue. Biocompatibility is a critical property that BTE scaffolds must
possess. Biocompatible BTE scaffolds should: (i) allow cell-to-cell communication via
biomolecular signaling while being non-toxic to the surrounding host tissue [52]; (ii) have
some degree of osteoconductivity, which refers to the ability of the scaffold to allow the
synthesis of new bone tissue on its surface and within its pores [53]; (iii) exhibit some
degree of osteoinductivity, which refers to the ability of the scaffold to recruit progenitor
cells to the healing site and promote their osteogenic differentiation [53]; (iv) induce
neovascularization to allow the exchange of nutrients, waste products, and oxygen through
the newly formed blood vessels surrounding the implant [54]. However, implantation of
polymer scaffolds often results in the initiation of an inflammatory response leading to
the recruitment of immune cells, particularly monocytes, which differentiate into either
macrophages of the inflammatory M1 or anti-inflammatory M2 phenotype; a biocompatible
scaffold should promote the differentiation of monocytes into the anti-inflammatory M2
macrophage phenotype [55]. Thus, the immunomodulatory effect of the scaffold can be
tailored to enhance bone regeneration. The immunomodulatory role of polymer scaffolds
is discussed in detail in the following section.

(2) Biodegradability: this refers to the ability of the biomaterial to be actively degraded
by enzymatic action or passively degraded by hydrolysis both in vitro and in vivo [56]. It
should be noted that the mechanism by which polymer-based biomaterials are degraded
depends primarily on the type of bonds found in their backbone. For example, polycarbon-
ates with hydrolytically very stable bonds such as carbonyl and ether linkages cannot be
passively degraded by hydrolysis and require the assistance of enzymes to be degraded at
a reasonable rate [57]. Other polymers that have bonds such as esters, ortho-esters, amides,
anhydrides, and phosphates can be passively degraded by hydrolysis under physiolog-
ical conditions [58]. Biodegradability is a key property that should be considered in the
design of BTE scaffolds [59]. A successful BTE scaffold must be biodegradable in vivo at a
controlled rate and release non-cytotoxic byproducts [60]. However, different applications
require implants with different degradation rates. For example, in the case of severe bone
tissue damage, the implant may be permanent [61]. Spinal fusion requires an implant
that degraded completely after nine months. For craniomaxillofacial applications, the
ideal implant should be completely degraded after three to six months [62]. As Dorozhkin
reported, the overall architecture of the scaffold changed with degradation, and the released
byproducts affected the osteoinductivity and osteoconductivity of the scaffold [3].

(3) Mechanical properties: for a BTE scaffold to effectively replace defective bone
tissue, the scaffold should have similar mechanical properties to the host bone at the defect
site, and it must accelerate bone healing after implantation [63,64]. It should be noted that
the mechanical properties of human bone vary drastically depending on the bone type.
According to the results of Olszta et al. [65], compact bone had a modulus of elasticity
of 15–20 GPa, while this value was much lower for trabecular bone, 0.1–2 GPa. On the
other hand, the compressive strength for compact bone was 100–200 MPa, while much
lower values between 2 and 20 MPa were observed for trabecular bone. Due to these
drastic differences in the mechanical properties of bone, the fabrication of an “optimal
scaffold” for BTE is a complicated process, as the mechanical properties of the host bone
tissue and the implant should be very similar. Another important characteristic of the
mechanical strength of the scaffolds is their fatigue behavior under stress. Fatigue failure
of polymeric scaffolds is due to the repetition of stresses less than the ultimate compressive
strength of the scaffold, which eventually leads to cracks as a result of these repetitive load
cycles. Fatigue failure can be caused either thermally by melting the polymer material or
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mechanically by repetitive stress/strain cycles. Polymeric scaffolds exhibit fatigue failure
similar to metallic prostheses in that it begins with microscopic cracks that eventually
grow to macroscopic cracks and eventually lead to scaffold failure. Depending on the
type of strain, fatigue testers include (i) an axial loading testing apparatus, which applies
cycles of uniform compression or tension scaffolds uniformly until the scaffold network
fails; (ii) rotational bending testers, in which the scaffold is cyclically bent and compressed;
(3) fracture testing devices in which the initiation and propagation of a fracture are tested
by placing a notch in the framework with repeated cycles of compression.

(4) Pore size/porosity: the ability of the scaffold to promote osteogenesis on its surface
and in its pores (osteoconductivity) depends on its microporosity, which mainly depends
on pore size, volume, and interconnectivity. The porosity of the scaffold is a crucial factor
for the influx of oxygen and nutrients and the efflux of waste products, which are essential
for cell growth, migration, and proliferation, as well as for providing a suitable structure
for the synthesis and neovascularization of the ECM [66]. Based on their average pore size,
scaffolds can be classified into three main types: (i) macroporous scaffolds with an average
pore size greater than 100 µm, (ii) microporous scaffolds with an average pore size less
than 10 µm, and (iii) mesoporous scaffolds with an average pore size less than 100 nm [67].
However, the optimal porosity and pore size required to build a three-dimensional BTE
scaffold have not been clearly elucidated [68]. However, Karageorgiou and Kaplan reported
that scaffolds with a pore size of less than 200 µm supported osteoblast survival both in vivo
and in vitro, and osteogenesis was restricted to the surface and periphery of the scaffolds
due to the lack of oxygen and nutrient flow in the scaffolds [69]. Karageorgiou and Kaplan
also showed that scaffolds with pores with a mean diameter of 300 µm promoted the
proliferation and differentiation of osteoblasts within the entire scaffold due to enhanced
oxygen and nutrient diffusion and angiogenesis [69]. It has been reported that a pore size of
200 to 350 µm allows optimal osteogenesis and that scaffolds with pores support better bone
formation at both micro- and macroscale compared to scaffolds with only macropores [70].

(5) Surface roughness/topography: the surface roughness of the scaffold directly af-
fects the ability of host cells to attach [71,72] and it also directs host response and modulates
the crosstalk between different cell components [73]. Macroscopically, the implant should
be fixed at the implantation site. Microscopically, the cells interact directly with the micro-
and sub-microstructures of the implant. At the nanoscale, cells have been observed to
interact with integrin binding sites of the implant through their receptors [74,75]. Different
cell types seem to preferentially adhere to different surface topographies. For example, fi-
broblasts have been shown to adhere better to smooth surfaces, while they are stimulated to
proliferate and synthesize collagen when seeded on surfaces with intermediate roughness.
In contrast to fibroblasts, epithelial cells should adhere better to rough surfaces. In addition,
the nanoscale topographic features of the scaffold were found to influence ECM synthesis,
adhesion, proliferation, and differentiation of osteoblasts [76,77]. In a study conducted
by Lee and his colleagues [78], it was found that MG-63 osteosarcoma cells seeded on
polycarbonate membranes (PC) with different surface roughness (200 nm to 8 µm) behaved
differently (Figure 3). With increasing surface roughness, there was a gradual inhibition of
cell adhesion and proliferation. Lee et al. [78] explained that this inhibition was due to the
large discontinuities on the surface.

(6) Osteoconductivity: osteoconductivity refers to the ability of the scaffold to promote
osteogenesis on its surfaces and pores, as it should allow proliferation and adhesion of bone-
forming cells as well as ECM formation on its entire surfaces [79]. The osteoconductivity of
the scaffold is determined by several parameters such as chemical composition, architecture,
biodegradability, biocompatibility, hydrophilicity, porosity, and mechanical properties of
the scaffold. An ideal scaffold should have a mean pore size of 100 µm to allow angiogenesis
as well as the diffusion of nutrients, waste, and oxygen required for osteogenesis [80].

(7) Osteoinduction: osteoinduction can be described as the ability of the scaffold
to recruit progenitor cells to the healing site and promote their osteogenic differentia-
tion via biomolecular signaling [77]. It has been observed that the rough surface and
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nanoscale structures of the scaffold promote the osteogenic differentiation of stem cells into
osteoblasts. It has also been observed that implants with reduced oxygen partial pressure
promote the dedifferentiation of pericytes in blood vessels into bone-forming cells [79]. The
characteristics of an ideal BTE scaffold are shown in Figure 4.
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5. Polymer Materials Used in Polymer Scaffolds for Bone Tissue Engineering

Polymer scaffolds can be made from both natural and synthetic polymers. The advan-
tages of natural polymers are their exceptional biocompatibility, osteoinductive capabilities,
and lower likelihood of eliciting an immune response [81–83]. Natural polymers have many
advantages in BTE applications, including their high biodegradability, biocompatibility,
the presence of cell adhesion sites, high biomimicry due to their similarity to the native
ECM, a high degree of bioactivity, and the fact that their processing does not require the
use of strong chemicals. However, the use of natural polymers in BTE applications is
still associated with many problems, such as their mediocre mechanical properties, the
high cost of their fabrication and isolation, their low thermostability, and their suscepti-
bility to cross-contamination [84,85]. There are also some disadvantages associated with
the use of natural polymers, such as the fact that their degradation rate cannot be fully
controlled, and their mechanical properties are inferior. Natural polymers are generally
either proteins or polysaccharides [36]. Protein-based scaffolds exhibit higher cell adhesion
compared to polysaccharide-based scaffolds because the amino acids that form the proteins
are involved in cell adhesion through integrin-binding domains. The cellular adhesion and
osteoconductivity of polysaccharide-based scaffolds can be improved either by chemical
modification of their surface, by association with an osteoconductive material, or by combi-
nation with cell adhesion proteins [37,39]. The most commonly used natural polymers in
BTE are silk [86], chitosan [87], alginate [88], keratin [89], collagen [70], glycosaminoglycans
(GAGs) [90], and hyaluronic acid [91]. The advantages and disadvantages of protein- and
polysaccharide-based natural polymers in BTE applications are listed in Table 1.

On the other hand, synthetic polymers have several optimistic features for BTE appli-
cations, including their high purity, tunable mechanical and chemical properties, long shelf
life, ability to be uniformly produced in large quantities, and low cytotoxicity. However,
the use of synthetic polymers in BTE applications still poses many challenges, such as their
low biodegradability, cytotoxic degradation products, unclear cell–matrix interactions, ad-
verse effects due to prolonged retention in the body (non-degradable polymers), and their
low extensibility [92,93]. Synthetic polymers such as PCL, polyetheretherketone (PEEK),
poly(glycolic acid) (PGA), polypropylene fumarate (PPF), and polylactic acid (PLA) have
higher mechanical properties, manipulable degradation rates, and long shelf life, and can
be produced inexpensively on a large scale. However, the use of synthetic polymers has
some disadvantages, including their lower bioactivity compared to natural polymers [94].
Synthetic polymers have proven to be extremely advantageous in biomedical applications
because they are easy to manufacture, inexpensive, tunable in properties, have superior
mechanical properties, and have easily controlled physicochemical and morphological
characteristics [92]. However, the use of synthetic polymers in biomedical applications also
has some drawbacks, such as their considerable hydrophobic nature, which affects their
ability to transport hydrophilic drugs, the striking irregular degradation behavior due to a
phenomenon called autocatalysis, and the denaturation of biologically active proteins and
inflammation of surrounding tissues due to their acidic degradation products [95]. Some
of the most commonly used synthetic polymers in biomedicine are PLA [96], PCL [97],
PGA [98], and PLGA [99].
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Table 1. Examples of natural polymers used as biomaterials for the production of BTE scaffolds along
with their advantages and disadvantages.

Polymer Advantages Disadvantages Refs.

Protein-based
natural polymers

Collagen

- Biocompatibility
- Biodegradability
- Fiber-like nature
- Biomimicry
- Low antigenicity
- Self-renewing ability
- High ability to promote cellular adhesion
- Bio-functionality

- Inferior mechanical properties
- Inferior chemical stability
- Relatively low melting point
- Hard to process
- Hard to manipulate the rate of

degradation
- Nanofibers tend to fuse together

in aqueous environments
- High costs to be produced via

recombinant approaches

[100–102]

Gelatin

- Biocompatibility
- Biodegradability
- Anti-thrombotic effects
- Presence of cell recognition sites
- Low antigenicity
- Easy to be molded into different shapes

with different dimensions (injectable
hydrogels)

- Low chemical stability
- Low mechanical properties
- High brittleness
- The necessity for chemical

crosslinking

[48,103]

Silk Fibroin

- Biocompatibility
- Biodegradability
- Elevated thermal stability
- Remarkable mechanical properties
- High tensile strength

- Inadequate supply (as its
production is restricted to some
moths and spiders)

- Relatively high brittleness
- Requirement for additional steps

to remove other contaminants

[104,105]

Hyaluronic acid

- Biocompatibility
- Biodegradability
- Highly viscoelastic
- Remarkable solubility in water
- Excellent biomimicry as it is a component

of natural ECM and has a high
resemblance to GAGs

- Ease of manufacture in large quantities
via microbial action

- Ease of functionalization

- Hard to be electrospun into
nanofibers due to its high
viscosity and surface tension

- Inferior mechanical competence
- High costs of preservation as it

requires to be stored in a
cryo-freezer

[104,106,
107]

Peptides
- Biocompatibility
- Biodegradability - Inferior mechanical properties [108,109]

Keratin
- Biocompatibility
- Biodegradability - Inferior mechanical properties [89,105,110]
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Table 1. Cont.

Polymer Advantages Disadvantages Refs.

Fibrin

- Biocompatibility
- Biodegradability
- Excellent cell-to-matrix interaction

- Inferior mechanical properties
- Inferior mechanical and thermal

stability
- Relatively low osseointegration
- Relatively quick degradation

in vivo

[48,111]

Heparin

- Biocompatibility
- Biodegradability
- Excellent choice for growth factor loading

- Decreased rate of cellular growth [112]

Polysaccharide-based
natural polymers

Chitosan

- Biocompatibility
- Biodegradability
- Low antigenicity
- Low cytotoxicity
- Ease of extraction and low costs of

manufacture
- Remarkable antimicrobial activity
- Capable of self-renewal
- High capability to load negatively

charged molecules due to its positively
charged surface

- Hard to be electrospun into
nanofibers

- Low osteoconductivity
- Inferior mechanical properties
- Inferior chemical and thermal

stability

[48,104,113]

Alginate

- Biocompatibility
- Biodegradability
- Can easily form gels
- Relatively easy to functionalize
- Easily crosslinked and can form

injectable gels
- Can withstand acidic conditions
- Tunable properties which are dependent

on the ratio of its two monomers

- Inferior mechanical properties
- Leaching of loaded bioactive

molecules and drugs
- Unpredictable degradation

patterns
- Hard to sterile and difficult to

handle

[104,105]

Cellulose

- Highly abundant and readily available
- Biocompatibility
- Low costs of preparation and extraction
- Porous structure
- Ease of conversion to its derivatives

- Prolonged self-renewal
- Low biodegradability in vivo [106,114]

Starch

- Biodegradability
- High abundance
- Capable of self-renewal

- Relatively high brittleness
- Difficult to process
- Notable semi-crystalline regions

of starch during processing
[106,115]

Agar
- Biodegradability
- Biocompatibility − Difficult to process and extract [48,116]
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Table 1. Cont.

Polymer Advantages Disadvantages Refs.

Dextran

- Biodegradability
- Biocompatibilityz
- The availability of several derivatives

with a variety of molecular weights

- High cost of isolation
- Overhydration
- Suspected to being coagulated
- High risk of anaphylaxis

development

[48,117]

5.1. Natural Polymers-Based Composite Scaffolds

To enhance the properties of natural polymers, they are often combined with other
materials such as other polymers (natural or synthetic) or bioceramics (TCP or HAp) to form
biocomposites. For example, the poor mechanical properties of pure chitosan nanoscaffolds
have paved the way for the production of biocomposites by combining chitosan with
other polymers and nano-sized bioactive particles. To overcome its poor mechanical
properties, chitosan has been blended with various synthetic polymers such as polymethyl
methacrylate (PMMA) [118], PEG [119], PCL [120], and PLA [121]. Since most scaffolds
synthesized from synthetic polymers lack cell recognition sites and cell affinity and have
low hydrophilicity, natural–synthetic polymer blends are becoming increasingly popular
in this research area [121]. X Jing et al. [120] reported the preparation of a chitosan-PCL
composite with a unique “shish kebab-like” morphology. This composite was prepared
by crystallizing chitosan-PCL copolymers “kebabs” on the surface of electrospun PCL
nanofibers (“shish”) Figure 5. This resulted in higher surface roughness of the nanofibers,
improving cell adhesion, and integrin binding sites were created by the chitosan-PCL
structures (“kebabs”), leading to an increase in cell viability and proliferation.
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Chitosan biocomposites have good biocompatibility and osteoconductivity, but they
may still lack the required osteoinductivity. The two most commonly used approaches
to improving the osteoinductive properties of chitosan biocomposites are either doping
with trace elements or incorporating cytokines into biocomposite scaffolds [122]. The most
commonly used cytokines for this approach are platelet-derived growth factor (PDGF), vas-
cular endothelial growth factor (VEGF), and bone morphogenetic protein-2 (BMP-2) [123].
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However, the major problem with this approach is that the release of cytokines is diffi-
cult to control because it depends on the microstructure of the scaffold as well as some
other factors such as temperature, pH of the medium, porosity, surface topography, and
chemical composition of the scaffold [124]. Tong et al. [125] reported the preparation
of a three-dimensional VEGF-silk fibroin-chitosan scaffold (VGEF-SF-CS). The scaffolds
were prepared by lyophilization of a premixed solution of SF, CS, and VEGF. The authors
reported that an in vitro assay performed with the osteoblast cell line hFOB1.19 using
Cell Counting Kit-8 (CCK-8) showed that the scaffolds from VEGF-SF-CS had a higher
proliferation rate compared with the scaffolds from SF-CS after 3 days of cultivation. The
authors also reported that VEGF-SF-CS scaffolds showed the highest ALP activity after
4–10 days of cultivation. However, it was reported by the authors that the incorporation of
VEGF had no significant effect on the adhesion of hFOB1.19 osteoblast cells.

The second approach to improve the osteoconductivity of chitosan biocomposite
scaffolds involves doping HAp with trace elements such as Sr2+, Zn2+, Mg2+, Cu2+, and
Si4+ through substitution with Ca2+ ions, which can accelerate neovascularization and
promote osteogenic differentiation of mesenchymal stem cells (MSCs). Strontium (Sr2+) is a
promising candidate in BTE because it can stimulate osteogenesis and inhibit the process of
bone resorption [126]. Yong et al. [25] reported the preparation of a nanohybrid Sr-HAp
chitosan scaffold. They investigated the effect of different concentrations of nano-sized
Sr-HAp crystals on the osteoinductivity of chitosan scaffolds. As reported by the authors,
the Sr-HAp chitosan scaffold stimulated the mesenchymal stem cells to proliferate and
undergo osteogenic differentiation. They also reported that doping HAp with Sr increased
ECM mineralization and ALP activity in MSCs and enhanced their expression of ALP
and osteogenic COL-1. The synergism between Sr2+ and Ca2+ in the nanohybrid scaffold
developed by the authors showed that Sr is a promising candidate for BTE applications.

Several alginate–chitosan composites have been fabricated and used in BTE applica-
tions. Li et al. [127] fabricated alginate–chitosan composites that were tested in vivo for
filling and reconstructing bone defects in Sprague Dawley rats. After 16 weeks of filling the
defects, micro-scans (CT), immunohistochemical studies for phenotypic bone tissue mark-
ers, and histological evaluations showed that the defects were partially reconstructed in all
test groups, while the group whose defects were filled with alginate–chitosan scaffold com-
posites together with BMP-2 had the highest defect reconstruction of about 71.56 ± 19.74%.
In another study conducted by Soumya et al. [128], lyophilized alginate-o-carboxymethyl
chitosan scaffolds loaded with an extract of Cissus quadrangularis (Veld Grape) were
prepared. The composite scaffolds were seeded with MSCs and their ability to induce
osteogenic differentiation of MSCs and formation of mineral-deposited ECM was inves-
tigated. As reported by Soumya et al. [128], the composite scaffolds loaded with herbal
extract exhibited the highest cell proliferation and attachment. In addition, the composite
scaffolds loaded with herbal extract induced the differentiation of MSCs into osteoblasts
and promoted the formation of mineralized ECM after 14 days of incubation.

Composites of alginate and synthetic polymers have also been reportedly prepared.
Nanocomposite hydrogels with micro- (lyophilized) and nanoscale (non-lyophilized) pores
were prepared by incorporating alginate together with polyethylene glycol monomethacry-
late (PEGmM) and polypropylene glycol monomethacrylate (PPGmM) crosslinked via
methacrylalginate (MA), as shown in Figure 6. After one week of incubation in modified
stimulating body fluid (mSBF), the composite caused mineralization by the formation of
apatite crystals. In addition, it was found that increasing the proportion of the synthetic
polymer compared to alginate enhanced mineralization due to the subsequent increase in
hydrophobic nature, pore size, and charge density [129].

Hyaluronic acid has been reportedly crosslinked to hydrogel-based composites loaded
with bioactive molecules for BTE applications (Figure 7). A hyaluronic acid/poly-L-lysine
composite scaffold loaded with curcumin and BMP-2 was prepared. In vitro studies on
MG63 osteosarcoma cells revealed that the composite scaffold allowed the sustained release
of curcumin and BMP-2 over a 28-day period and marked proliferation and osteogenic
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differentiation of MG63 cells. In vivo evaluations of defects in rabbit skulls confirmed the
remarkable synergistic bone healing effects between curcumin and BMP-2 [130].
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5.2. Immunomodulatory Roles of Polymer Scaffolds Utilized in Bone Regeneration Applications

Implantation of scaffolds made of natural or synthetic polymers often results in the
development of an inflammatory response. As a result of this inflammatory response, vari-
ous biochemical signals have been triggered that cause the recruitment of different types of
immune cells at the implantation site. After recruitment at the implantation site, monocytes
differentiate into macrophages under the influence of cytokines synthesized and secreted
by other immune cells. The differentiated macrophages then begin to attach to the surface
of the implant, and the plasticity of the attached macrophages is largely controlled by the
physicochemical properties of the implanted scaffold, which has a significant effect on the
bone regeneration process [55]. It has been reported that the triggered immune response to
the implanted biomaterial-based scaffolds is mainly due to the interactions between various
proteins and the implanted scaffold. The surface properties of the implanted scaffold may
alter the amount, type, and manner of protein adsorption and even lead to changes in
protein conformation [131]. All of the aforementioned parameters may ultimately lead to
the regulation of immune cell activities.

Macrophage-mediated regulation of bone formation in healthy and weakened immune
systems has been demonstrated [132]. Macrophages exert their immunomodulatory effects
via secreted cytokines and extracellular vesicles (EVs). EVs contain microRNAs (miRNAs)
and have been shown to be central to the osteoblastic differentiation of MSCs [133]. It
has been suggested that the functionality of EVs could be altered by genetic modification
of parental cells to induce osteoinduction and bone regeneration [134]. EVs from M1
macrophages have a different miRNA cargo compared to M2 macrophages. M2 EVs can
promote bone repair/regeneration, whereas M1 EVs can inhibit bone repair by negatively
regulating the BMP pathway [135]. Cytokines secreted via the phenotypes of M1 and M2
macrophages have a great influence on osteogenesis. M1 macrophages produce several
proinflammatory cytokines, including IL-6, IL-1β, TNF-α, and INF-γ [136,137]. INF-γ is
known to inhibit collagen synthesis by osteoblasts [138]. TNF-α and IL-1β are responsible
for inhibiting the production of alkaline phosphatase (ALP), which negatively affects ECM
synthesis and mineralization [139]. On the other hand, M2 macrophages are responsible for
the synthesis of anti-inflammatory cytokines, including IL-1RA, IL-10, and TGF-β [136,137].
IL-10 has been shown to stimulate osteogenic differentiation [140]. TGF-β has been shown
to upregulate signaling through bone morphogenetic protein (BMP), which is required for
osteoblast differentiation [136].

The immunomodulatory properties of MSC in bone repair are well documented. The
paracrine effects of MSCs in immunomodulation are due in part to their secreted EVs. When
MSCs migrate into the scaffold bed, they are exposed to a variety of inflammatory signals
that influence the immunomodulatory function of MSC EV in tissue repair [141]. It is
known that the immunomodulatory effect of MSCs is exerted by the secretion of regulatory
cytokines or by direct cell–cell contact [142]. During the bone regeneration process, the
secretion of cytokines by MSCs can vary significantly depending on the healing phase,
resulting in the regulation of proliferation, activation, and migration of other immune
cells [143]. Based on the levels of anti-inflammatory and proinflammatory cytokines found
in the microenvironment in which they reside, MSCs synthesize and secrete cytokines,
including TGF-β, which causes stimulation of regulatory T cells (Tregs) [144]. In addition,
MSCs have been shown to secrete anti-inflammatory TNF-stimulated gene protein 6 (TSG-
6), which prevents neutrophil migration by inhibiting the binding of C-X-C motif chemokine
ligand 8 (CXCL8) with heparin [145].

5.2.1. Factors Affecting Polymer Scaffolds-Based Immunomodulation
for Bone Regeneration

Most previous studies performed in this manner focused on the control of osteoblast
differentiation without considering the provoked immune response. However, more recent
studies have focused on controlling the bone regeneration process by focusing on the roles
of MSCs, neutrophils, and macrophages via manipulating the chemical and physical prop-
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erties of implanted scaffolds or loading the scaffolds with cytokines or biomolecules [146].
This promotes osteogenesis through immune modulation. When developing polymer
scaffolds, some factors must be considered to successfully promote osteogenesis while
alleviating the accompanied inflammatory response, such as:

(1) Scaffold stiffness: the control of scaffold stiffness is critical in the development of
polymeric bone regeneration scaffolds because it affects proliferation [147], migration [148],
differentiation [147], contractility [149], and the fate of osteoprogenitor cells during the bone
regeneration process. In addition, the rigidity of the scaffold may also influence the inflam-
matory response of the host to the implant. Since macrophage polarity is directly linked to
their function, scaffold stiffness can control their phenotype by regulating their cytokine
secretion, spread, and cytoskeleton, causing macrophages to promote either inflammation
or tissue regeneration [150]. In a study by Friedemann et al. [151], the effect of scaffold
stiffness on human macrophages was investigated using 3D collagen/glycosaminoglycans
(GAGs) scaffolds with different stiffnesses. It was found that macrophages differentiated
into a non-inflammatory M2 phenotype by expressing fewer inflammatory cytokines such
as IL-12 and TNF-α and more anti-inflammatory cytokines such as IL-10, suggesting that
macrophages can sense the stiffness of implanted polymer scaffolds.

(2) Surface roughness: it has been shown that differentiation of macrophages into
the M2 phenotype is favored on rough surfaces and that neutrophils are more likely to
attach to rough surfaces than to smoother surfaces, suggesting that differentiation of both
macrophages and neutrophils is influenced by the nano- and microstructures on the scaffold
surface [152,153]. In a study conducted by Chen et al. [154], the effect of nano- and micro-
scaffolds attached to various polymers commonly used in tissue engineering applications
was tested on human macrophages. It was found that parallel imprinted gratings with a
diameter of 250 nm to 2 µm triggered the expression of anti-inflammatory cytokines.

(3) Porosity and pore size: osteogenesis was proved to be highly dependent on scaffold
pore size and porosity [155], these results were observed both in vivo and in vitro as
scaffolds with an average pore size of 200 to 350 µm and a porosity of 80 to 88% was
considered ideal for bone formation [156]. It has been demonstrated that increasing the
pore size of the polymer scaffold led to a decrease in the provoked immune response
and thus to better healing of bone tissue. In a study conducted by Garg et al. [157],
it was demonstrated that pore size plays an important role in the polarization of bone
marrow-derived macrophages when tested for polydioxanone nanofibers. The expression
of markers of the anti-inflammatory M2 phenotype increased and the expression of markers
of the inflammatory M1 phenotype decreased when the mean pore size of the electrospun
nanofibers was increased. Furthermore, porosity and pore size control oxygen delivery
within the implanted polymer scaffold, and low oxygen delivery promotes inflammation at
the implantation site [158].

(4) Surface charges: controlling the surface charges of polymer scaffolds is critical
because surface charges have been found to influence protein adhesion, which ultimately
affects the host’s immune response to the implanted scaffold [159]. Scaffold surfaces
with hydrophilic anionic or neutral nature, when exposed to macrophages, were found to
stimulate the production of IL-8, IL-6, IL-1β, and TNF-α, leading to classical macrophage
activation, whereas hydrophilic cationic scaffold surfaces lead to alternative macrophage
activation [160].

5.2.2. Approaches for Enhancing Immunomodulatory Effects of Polymer Scaffolds Utilized
in Bone Regeneration Applications

There are several approaches to enhance the immunomodulatory effects of polymer
scaffolds used in bone regeneration, such as:

(1) Incorporation of ECM-derived biomaterials: the use of biomaterials derived from
native ECM has been shown to activate the polarization of macrophages toward the M2
phenotype, resulting in enhanced bone remodeling [161]. Various ECM-derived biomate-
rials can be incorporated into polymeric scaffolds to enhance their immunomodulatory
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effects, such as a demineralized bone matrix [162], collagen [161], and fibrinogen [163].
In a study conducted by Taraballi et al. [161], the immunomodulatory effect of collagen
scaffolds functionalized with chondroitin sulfate was investigated both in vitro in bone
marrow-derived macrophages and in vivo in the adult Lewis rat model. According to the
results of Traballi’s in vitro studies, macrophages cultured on the scaffolds showed upregu-
lation of anti-inflammatory M2 genes and downregulation of proinflammatory genes. The
results of the in vivo studies showed significant downregulation in proinflammatory genes
3 days after implantation.

(2) Incorporation of bioactive metal ions: it has been reported that bioactive metal
ions can alleviate undesirable inflammatory reactions after the implantation of polymer
scaffolds. Such metal ions include Mg2+, Ca2+, and Sr2+ [164]. It has been reported that these
bioactive metal ions can modulate the inflammatory microenvironment of the scaffold. This
can be attributed to the released metal ions in vivo, which can interact with the immune
system through Toll-like receptors (TLRs) [165]. This regulates the induced inflammatory
response and cellular activation. To investigate the immunomodulatory effect of Mg2+

ions, Cifuentes et al. [166] prepared a poly-D-L-lactic acid (PDLLA) matrix loaded with
Mg2+ and tested the behavior of macrophages, osteoblasts, and MSCs seeded on them.
The Mg2+-loaded PDLLA matrix was reported to downregulate ALP activity, VEGF and
fibronectin synthesis, and expression of inflammatory chemokines such as macrophage
inflammatory protein-1 (MCP-1) compared with the PDLLA matrix, which resulted in
increased expression of this inflammatory chemokine.

(3) Incorporation of bioactive molecules: to reduce the intensity of the inflammatory
response associated with scaffold implantation, some bioactive molecules can be introduced
into the scaffolds, such as IL-4 [167], IL-10 [168], CD200 [169], and some anti-inflammatory
drugs such as dexamethasone [170], indomethacin [171], and Resolvin D1 [172]. In a study
by Zhang et al. [162], gellan gum (GG) bead scaffolds were prepared and loaded with
different concentrations of IL-4 (100, 200, and 300 ng/mL). In vitro studies using transwell
cocultures performed with bone mesenchymal stem cells (BMSCs) and human macrophage
RAW 264.7 cell lines showed that the expression of TGF-β1R was significantly higher in GG-
IL-4 groups compared with other groups. In addition, staining with Alka-line phosphatase
(ALP) and Alizarin Red S (ARS) revealed that GG-IL-4 groups had significantly higher
activity of ALP and a higher level of calcium deposition compared with other groups.
Immunohistochemical studies performed in vivo on male Sprague Dawley rats showed
decreased expression of the proinflammatory cytokine M1 TNF-α. In addition, micro-
scans (CT) revealed that rats treated with GG-IL-4 scaffolds had the highest percentage of
defect filling among all experimental groups. In conclusion, loading with IL-4 significantly
improved the bone regeneration capacity of scaffolds by polarizing macrophages toward
the M2 anti-inflammatory phenotype.

6. Novel Designs of Polymer Scaffolds for Bone Tissue Engineering

Scaffolds used for BTE applications can be classified based on their geometry into
(i) porous scaffolds (also known as sponge or foam scaffolds) [173], (ii) hydrogels [174],
(iii) fibrous scaffolds [175], and (iv) microsphere-based scaffolds [176]. Furthermore, based
on their composition, BTE scaffolds can be divided into (i) polymeric scaffolds [177], (ii)
ceramic-based bioactive scaffolds [178], and (iii) composites [179]. The classification of BTE
scaffolds is shown in Figure 8.
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6.1. Porous (Sponge or Foam) Scaffolds

Three-dimensional porous polymer-based scaffolds are characterized by a high degree
of porous interconnectivity and are extremely beneficial in the TE field. These scaffolds
can support ECM formation, leading to enhanced biomimicry. Porous scaffolds exhibit
several benefits related to cell proliferation, including (i) enhanced nutrient, waste, and
oxygen diffusion through their interconnected pores; (ii) they assist cells in synthesizing
their ECM; (iii) they only allow cell proliferation as a monolayer; (iv) their defined pore
dimensions limit the formation of cell clusters to a certain size, thus preventing tumor
development [173]. Various methods have reportedly been used to fabricate sponge scaf-
folds with macroscopic interconnected pores, including freeze-drying, salt leaching, laser
sintering, and rapid prototyping (RP) techniques [180]. Reportedly, a combination of
freeze-drying and particle leaching has been used to fabricate sponge scaffolds. In this
hybrid technique, the pore size can be adjusted by varying the temperature, viscosity of
the polymer solution, and salt concentration [181]. Both pore size and morphology appear
to be critical factors affecting the proliferation and osteogenic differentiation of cells on
the surface and within the pores of sponge scaffolds. Although pores are 10–50 µm in
size [182], osteoblasts have been found to prefer a pore size of 100–200 µm to synthesize
mineralized bone tissue that allows phagocytic clearance of harmful bacteria at the fracture
site and promotes cellular colonization and neovascularization [182]. In contrast, pore sizes
less than 100 µm have been associated with the formation of non-mineralized tissue [183].
Regarding pore morphology, Van Bael et al. [184] found that scaffolds with hexagonal
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pores promoted the most cellular proliferation, followed by scaffolds with rectangular
pores, and the least cellular proliferation was shown by scaffolds with triangular pores.
These differences can be attributed to the higher number of corners and the small distance
between arcs in hexagonal pores compared to other morphologies. However, the authors
reported that ALP activity was highest in scaffolds with triangular pores.

The scaffold’s porosity affects some parameters of the framework, including (1) me-
chanical strength: it has been shown that an increase in the porosity of the framework
leads to an exponential decrease in the mechanical strength of the framework [185]. In
addition, it has been reported that the molecular weight of the polymer contributes greatly
to the porosity and pore size of the scaffold, thus affecting the mechanical strength [186].
Other parameters such as pore morphology, pore size distribution, and pore homogeneity
also affect the mechanical strength of the scaffold [187]. In a study conducted by Serra
et al. [188], it was reported that PLA/PEG/Cap glass composite scaffolds with orthogonal
pore structures have higher compressive strength than PLA/PEG/Cap glass composite
scaffolds with displaced double-layer patterns. (2) Scaffold degradation rate: to investigate
the effect of pore geometry and porosity on the degradation rate of polymer scaffolds,
Khajehmohammadi et al. [189] prepared gelatin-coated 3D-printed PCL scaffolds with
different porosities (40, 50, and 60%) and different pore geometries (square, star, and gy-
roid). When comparing the different porosities, it was found that scaffolds with star-shaped
geometry showed the highest weight loss compared to gyroid and square pore geometries.
In addition, scaffolds with a porosity of 40% were found to have significantly higher weight
loss compared to scaffolds with porosities of 50% and 60%.

6.2. Hydrogel-Based Polymer Scaffolds

Hydrogels are polymer-based scaffolds consisting of a three-dimensional network
of polymer chains that are either covalently or non-covalently linked. Hydrogels are of
great advantage in TE because they provide a microenvironment that can support cell
proliferation and subsequently rapid tissue formation. In addition, hydrogels can serve
as encapsulating agents for various drugs, cells, and biomolecules to achieve sustained
release of the desired drug or biomolecules, or even to transport cells to the defective
site [174,190]. Hydrogels have been shown to have good bioabsorption capacity and to fuse
with the surrounding host tissue to a high degree, thus not requiring additional surgical
procedures to remove the implant and not causing inflammation [191]. Both natural
and synthetic polymers can be processed into hydrogels. Hydrogels based on natural
polymers are very advantageous when used in TE because of their close resemblance to the
ECM, biodegradability, non-cytotoxicity, non-immunogenicity, and ability to promote cell
adhesion and proliferation and induce new tissue formation. Hydrogels can be prepared by
chemical, physical, or radical crosslinking of polymers [192]. Lindsey et al. [193] prepared
an injected collagen-based hydrogel for the reconstruction of dorsal nasal bone defects in
rats. Six weeks after implantation, a superficial layer of thin bone tissue formed around the
defect site, whereas only less than 7% of the healing area was observed in the same control.
Several synthetic biodegradable polymers have been processed into hydrogels, including
polyvinyl alcohol (PVA), poly(lactic acid) and its copolymers, polyacrylamide (PAM), and
polyethylene glycol (PEG) [194]. Compared to natural polymers, the porosity, mechanical
properties, and degradation rate of synthetic polymers can be better controlled, allowing
them to be tailored for specific applications. Hydrogels based on synthetic polymers
serve as promising carriers for bioactive molecules and drugs when used in BTEs. Lee
et al. [195] constructed a novel hydrogel of poly aldehyde guluronate (PAG) and adipic acid
dihydrazide that served as a carrier for primary rat cranial osteoblasts to reconstruct spinal
defects in rats. Nine weeks after surgery, noticeable bony mineral-deposited tissue formed.

6.3. Fibrous-Based Polymer Scaffolds

Nanofiber scaffolds have recently attracted much attention in the field of TE due to
their high biomimicry. Three main techniques are used to process polymer into nanofibers:



Bioengineering 2023, 10, 204 20 of 43

electrospinning, phase separation, and self-assembly. The most commonly used technique
is electrospinning [196]. The potential of nanofibers produced by self-assembly and phase
separation has not been thoroughly investigated in comparison with nanofibers produced
by electrospinning in TE. The reasons why nanofibers are promising candidates for TE
are their impressive surface-to-volume ratios and their interconnected pores that support
cell attachment, infiltration, differentiation, and proliferation [197]. For these reasons,
nanofibers have been used in various applications, such as bone, cartilage, and ligament
reconstruction, wound healing, neuronal TE, and as a carrier material for the sustained
release of various biomolecules and drugs [198–201]. Reportedly, a variety of natural
and synthetic polymers have been processed into nanofibers. Natural polymers are used
in BTE applications because they are highly biocompatible and exhibit a high degree of
biomimicry [202,203]. The mechanical properties of natural polymers can be improved
by crosslinking [204]. For example, collagen-based nanofiber scaffolds can be crosslinked
during or before electrospinning in various ways, such as ultraviolet (UV) irradiation
or stabilization with epoxy compounds, methanal, and glutaraldehyde vapors [205–207].
Zhou et al. [208] fabricated a collagen-based electrospun nanofiber scaffold crosslinked
with glutaraldehyde vapor. The resulting nanofibers exhibited a mechanical strength
of 6.72 ± 0.44 MPa, which enabled their use as skin graft substitutes. Several synthetic
polymers have reportedly been processed into nanofibers, including PCL, PLA, PGA, PEO,
and PVA. The main advantages of electrospun fibers from synthetic polymers over fibers
from natural polymers are their better mechanical properties, spinnability, and the fact that
they are cheaper and more readily available [209]. Due to its exceptional biodegradability,
biocompatibility, and mechanical properties, PCL is widely used in applications where
mechanical stiffness is a must. PCL-based nanofiber scaffolds were fabricated by Gomes
et al. [210]. These nanofibers have a diameter of 1833 ± 369 nm, extensibility of 587 ± 162%,
and elasticity of 6.7 ± 0.4 MPa, making them ideal for TE.

6.4. Microsphere-Based Polymer Scaffolds

Due to their growing reputation as good carriers for biomolecules and drugs, 3D
microsphere-based scaffolds are widely used for TE applications to deliver drugs and
biomolecules to defective tissues and promote cell growth [83,211]. The most widely used
method for fabricating microsphere-based scaffolds is sintering, which results in so-called
sintered microsphere scaffolds (SMSs). The sintering technique can be either heat-induced
or solvent-based. In heat-induced sintering, the polymeric microspheres prepared by sin-
gle/double emulsification are placed in a Teflon reactor line, which is then heated to a
temperature above the glass transition temperature (Tg) of the polymer for several hours,
and then the mold is removed. The solvent-based approach uses a solvent-induced fusion of
microspheres to obtain 3D scaffolds. Acetone and methylene chloride are used as solvents
in this process. The main advantage of solvent-based sintering over heat-induced is that the
solvent-based approach is more suitable for fabricating scaffolds loaded with heat-sensitive
biomolecules [212]. In order to design SMSs suitable for BTE applications, a number of cru-
cial issues need to be considered, such as the Tg of the polymer, crystallinity, surface tension,
and molecular weight, as well as heating temperature (in the case of heat-induced sintering)
and solvent concentration (in the case of solvent-based sintering). For example, higher
heating temperatures and times result in microspheres with lower porosity and average
pore size, which may limit cell migration and neovascularization [94]. The most commonly
used polymer for the fabrication of SMS is PLGA because it is exceptionally biodegradable
and biocompatible and has tremendous drug-loading capacity. Other polymers used for the
preparation of SMS include polycaprolactone (PCL), polyphosphazenes, and chitosan due
to their structural similarity to PLGA [212–215]. Kofron et al. [216] developed PLGA-SMS
using semi-crystalline and amorphous PLGA for the reconstruction of induced bone defects
in rabbits. Both scaffolds showed high similarity to the natural bone in terms of porosity
and average pore size. However, the authors reported that after six months of implantation,
scaffolds made of amorphous PLGA promoted greater bone tissue formation compared
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to scaffolds made of semi-crystalline PLGA, suggesting that amorphous PLGA is more
suitable for BTE applications.

6.5. Bioactive-Composite-Based Scaffolds

Composites are resulted from combining two or more different materials. Composites
can be (1) polymer–polymer composites, (2) polymer–ceramic composites, or (3) polymer–
bioactive material composites. Poly(lactic-co-glycolic acid) (PLGA) is a copolymer of lactic
acid and glycolic acid and is commonly utilized in BTE applications [179]. However, the
acidic byproducts resulting from its degradation have a toxic effect on the surrounding
native tissue when implanted in vivo. PLGA–polyphosphazene composites were devel-
oped which gave almost neutral degradation byproducts. Polymer–ceramic composites
are frequently used in BTE applications due to their high resemblance to natural bony
tissue. Collagen–HAp composites showed a superior bone regenerating effect when com-
pared to collagen and HAp alone. Additionally, the mechanical properties of the scaffolds
were greatly enhanced upon the incorporation of bioactive ceramics while reducing their
elasticity [217].

7. Bioscaffold Fabrication Techniques

Three-dimensional scaffold fabrication technologies are classified into conventional
and rapid prototyping (RP) techniques [13]. Conventional techniques, also known as sub-
tractive manufacturing, rely on removing parts of the main structure until the desired shape
is attained. However, some drawbacks are linked to conventional techniques including not
being able to fully control the shape and dimensions of the resulting scaffolds, lacking the
ability to design tailored internal structures such as vessels [218], and the cytotoxic effects
of the organic solvents utilized in these processes [13]. Conventional scaffold fabrication
techniques and the parameters that affect the resulting scaffolds are listed in Figure 9. RP
techniques have emerged recently as promising approaches to compensate for the draw-
backs linked to conventional means. RP technologies are known as additive manufacturing
as they rely on the layer-by-layer addition of fabricating material to obtain the desired 3D
scaffold [219]. RP techniques are advantageous over conventional techniques because the
shape, dimensions, and mechanical properties of the resulting 3D scaffold can be fully con-
trolled, enabling the creation of 3D scaffolds with a high degree of biomimicry. In addition,
RP technologies allow the use of two or more materials on the surface, interface, or entire
scaffold [19]. Operating RP techniques is done via computer-aided design/computer-aided
manufacturing setups (CAD/CAM), consisting of three parts: a scanning device that con-
verts the architecture of the scaffold into digital data that can be processed by a computer,
integrated software that converts these digital data into commands for the fabrication
machinery, and finally fabrication machinery that converts these sets of commands into the
desired 3D scaffold [220].
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7.1. Solvent Casting and Particulate Leaching

Solvent casting and particulate leaching yields highly porous frameworks with con-
trollable pore sizes. Briefly, a polymeric material is dissolved in a suitable solvent along
with salt particles of a known size, then the solvent is evaporated, leaving the salt particles
in the polymer matrix. The salt particles are then leached out by immersing the polymer
matrix in distilled water, resulting in a highly porous scaffold whose pores have the same
dimensions as the salt particles. This technique has the advantage of being easy to perform
and does not require sophisticated equipment. In addition, the malleability of the pore size
makes it easy to produce structures that resemble natural bone tissue, which increases the
biomimicry of the obtained scaffold [13,218]. Cao et al. [98] reported that they fabricated
three-dimensional PGA/β-TCP composite scaffolds by solvent casting and particle leaching
techniques. The fabricated scaffolds exhibited high porosity and interconnectivity of pores.
In in vivo tests to evaluate their ability to reconstruct severe bone damage to the medial
epicondyles of the femur of rats, imaging, and histological studies showed that new bone
tissue began to form 14 days after implantation and bone formation was complete after 30
days. By day 90, the bone replacement was complete. However, this technique has several
disadvantages, including the inability to construct more complex geometries, and the
remaining solvent may have cytotoxic effects on cells, reducing the overall biocompatibility
of the scaffold [98,221]. The solvent casting and particulate leaching technique along with
its processing parameters are illustrated in Figure 9.

7.2. Freeze-Drying

Freeze-drying involves freezing a polymeric solution via liquid nitrogen until the
solvent completely evaporates. This technique is very advantageous when heat-sensitive
biomolecules are incorporated into the scaffold, as high temperatures can lead to a reduction
or total loss of their biological activity. In addition, this technique makes it relatively easy to
control the pore size by manipulating the freezing conditions [19]. Xu et al. [222] reported
the preparation of a bioglass–collagen–phosphatidylserine composite scaffold by freeze-
drying. As reported by the authors, the scaffold had an average pore size of 300 µm with
relatively high interconnectivity. Phosphatidylserine is able to form stable complexes with
both calcium and phosphate, leading to the formation of HAp nuclei, a property unique
to most phospholipids. This ability to form HAp nuclei is a major contributor to its use
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in bone regeneration. In in vitro tests with rat MSCs, after 21 days of cultivation on the
scaffold, the cells began to proliferate and showed osteogenic behavior. In vivo evaluations
on rats’ femurs showed that the scaffold was both biocompatible and osteoconductive after
six weeks of implantation. However, the use of the freeze-drying technique in BTE has
some shortcomings, such as the use of an organic solvent that may have cytotoxic effects
on cells, the high energy requirement, the extremely time-consuming procedure, and, most
importantly, the formation of miniature pores (in the range of 15 to 35 µm) with irregular
morphology [179]. Changing the freezing conditions could provide a solution to the last
problem, since varying the freezing temperature (−10 ◦C to −70 ◦C) and introducing
an annealing step greatly increases the ice crystal growth rate. As reported by Murphy
et al. [70], the application of these modifications resulted in an increase in the pore size of
collagen–glycosaminoglycan scaffolds to 85–325 µm. The freeze-drying technique along
with its processing parameters and additives are illustrated in Figure 10.
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7.3. Thermally Induced Phase Separation Methods

At extremely low temperatures, a polymeric solution is quenched and segregated into
two separate phases, where the phase with the higher polymer content is solidified while
the phase with the lower polymer content is precipitated, creating a highly porous nanofiber
structure. The superiority of the TIPS technique is evident in the fabrication of scaffolds
loaded with thermolabile biomolecules [19]. Smith et al. [223] reported the fabrication
of PLLA scaffolds loaded with nanoparticles loaded with recombinant human BMP-7.
PLLA scaffolds were fabricated with fibers ranging from 50 to 500 nm in diameter using
the TIPS technique. The porogen leaching approach was then used to load the scaffolds
with NPs that acted as carriers for recombinant human BMP-7. In in vitro assays, the
scaffold-assisted release of BMP-7 resulted in enhanced osteogenic differentiation of cells.
Qui et al. [224] reported the preparation of PLLA/PCL-silica-NP composite scaffolds that
serve as a delivery system for dexamethasone. PLLA/PCL nanofibers were prepared using
the TIPS technique, then prepared aminated mesoporous SiO2 NP (serving as a carrier
for dexamethasone) was deposited on the scaffolds by electrophoresis. In in vitro assays
using bone marrow-derived MSCs, measurements of ALP activity, ECM mineralization,
and osteocalcin gene expression revealed that the composite scaffolds greatly enhanced
the cells’ ability to undergo osteogenic differentiation. In vivo testing on Sprague Dawley
rat calvaria defects showed significant promotion of calvaria defect healing. The TIPS
technique along with its processing parameters and additives are illustrated in Figure 11.
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7.4. Gas Foaming Methods

Gas foaming technology does not utilize toxic organic solvents. Instead, inert gases
such as carbon dioxide and nitrogen are used. The process begins with compressing
biodegradable polymers immersed in water using an inert gas (nitrogen) to a point where
the polymer is completely saturated with gas bubbles, resulting in sponge-like structures
with an average pore size of 30 to 700 µm and a porosity of about 85% [13]. Giannitelli
et al. [16] reported this technique for the fabrication of a functionally graded material
(FGM) composed mainly of polyurethane, which was used for the reconstruction of oral and
maxillary bone tissue damage. The fabricated scaffold consisted of two main regions, a high-
density outer layer that serves as a barrier to gingival tissue growth, and a less dense inner
core with interconnected pores that allow osteogenesis. In vitro tests with bone marrow-
derived MSCs have shown that the scaffolds can support cell viability and attachment.
Although the mechanical properties of the scaffolds do not match the mechanical properties
of natural spongy bone, they can still withstand the stresses applied at the implant site.
The gas foaming technique has some disadvantages, such as the high temperatures applied
when compressing the mold and the lack of porosity at the dense surface of the scaffold.
To increase the porosity of the scaffolds, Harris et al. [225] fabricated a PGLA scaffold by
combining gas foaming and particle leaching, which resulted in scaffolds with increased
porosity of up to 97%. The gas foaming technique along with its processing parameters are
illustrated in Figure 12.
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7.5. Sol–Gel Methods

Sol–gel formation is a technique in which metal alkoxides are polymerized in an
inorganic manner. Briefly, the formation of a solution (sol) is done by adding a surfac-
tant, then the sol is condensed and finally, the condensed product is gelled (gel). Chen
et al. [226] reported the preparation of sodium oxide-containing BG ceramics by a hybrid
sol–gel process, which exhibits enhanced mechanical stiffness without compromising its
biodegradability. The sol–gel formation technique along with its processing parameters
and additives are illustrated in Figure 13.
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7.6. Electrospinning Methods

Electrospinning is a technique in which a polymeric solution loaded into a syringe
is drawn off under the action of high voltages to form nanofibers. These nanofibers are
collected on the surface of a collector, and the resulting nanofibers can support cell growth
and attachment through protein binding sites capable of binding to cell surface receptors. A
typical electrospinning system consists of four main parts: a spinneret with a metal needle,
a syringe pump, a high-voltage power supply, and a collector. The fibers are formed as
follows: once the applied electric field exceeds the surface tension of the polymer droplet
at the tip of the needle, the liquid is continuously ejected under the effect of electrostatic
repulsion and collected at the surface of a collector with the opposite charge, forming
nonwoven fibers. During the electrospinning process, the solvent is evaporated [218,227].

Electrospinning can be used to process various materials to obtain scaffolds with
desired architecture and porosity, e.g., fibrous scaffolds with fiber diameters in the micro
or nano range [19]. Due to the inferior mechanical properties of pure chitosan scaffolds
and the poor cell adhesion of PCL fibers, Yang et al. [228] fabricated biocomposite scaffolds
from a combination of chitosan and PCL using electrospinning, and reported that they
exhibited suitable mechanical properties and supported the proliferation and attachment
of MC 3R3-E1 cells in in vitro assays. In vitro results also indicated that the biocomposite
scaffolds showed higher ALP activity, ECM mineralization, and increased expression of
OP. Another important feature of electrospinning is the functionalization of nanofiber
scaffolds by introducing bioactive molecules. Li et al. [229] developed an electrospun
nanofiber scaffold loaded with NPs that served as a dual vehicle for dexamethasone and
BMP-2. The activity of BMP-2 was maintained by encapsulating it in bovine serum albumin
(BSA) NPs. In in vitro assays, the fabricated nanofiber scaffolds were able to promote
the osteogenic differentiation of cells. In vivo studies in rats revealed that the nanofiber
scaffolds were able to significantly heal defects on rat calvaria. However, the use of organic
cytotoxic solvents remains one of the most common drawbacks of electrospinning [19]. The
electrospinning technique along with its processing parameters, additives, and nanofiber
types are illustrated in Figure 14.
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7.7. Stereolithographic Methods

Stereolithography (SL) was first introduced by Charles Hull in 1986 and involves
the layer-by-layer deposition of ultraviolet (UV)-curable materials to obtain solidified
structures [230]. The SL technique provided a solution to the drawbacks associated with
conventional approaches, such as wasting large amounts of raw materials by disposing of
unused parts and scratches caused by milling. A typical SL setup consists essentially of
four components: (i) a reservoir of UV-sensitive resin in a liquid state, (ii) a non-stationary
platform, (ii) a dynamic mirror system, and (iv) a UV laser source. Once the resin layer
solidifies, the platform lowers, and another resin layer is deposited on top of the previous
layer until the desired 3D structure is achieved. The excess resin is then removed, and the
entire 3D structure is cured by UV radiation [20]. Adaptations of SL techniques, such as
reducing laser power and improving resolution, have led to the development of new SL
techniques, namely micro-stereolithography (1SL), two-photon polymerization (TPP), and
digital light processing (DLP). These new SL techniques are more energy-efficient and less
time-consuming. The 1SL technique offers extremely high precision because it uses a laser
beam with a width of one photon, reducing the laser spot area. Reportedly, this technique
produced polypropylene fumarate (PPF) scaffolds with mechanical properties comparable
to human cancellous bone [231]. The stereolithography technique along with its processing
parameters and additives are illustrated in Figure 15.
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7.8. Three-Dimensional Printing Methods

Three-dimensional printing generally occurs at room temperature, where a machine
sprays a binder solution onto a layer of powder particles lying horizontally on a platform,
causing the powder particles to bond together. Once the first layer is formed, the platform
is lowered. Then the next layer is applied and so on in a process common to most additive
techniques. A further step is required to remove the remaining powder particles that have
not bonded together. This process can be done either directly by molding the desired struc-
ture or indirectly by molding a mold for the desired structure [23,232]. Since 3D printing is
performed at room temperature, a variety of heat-sensitive biomolecules such as peptides,
plasmids, polysaccharides (e.g., alginate and hyaluronan), proteins (e.g., fibrinogen and
collagen), and cells that may contribute to new bone formation can be incorporated [19].
Because scaffolds need to be able to carry therapeutic molecules, Tarafder and Bose [233]
have reportedly 3D-printed microporous PCL–TCP composite scaffolds to serve as car-
riers for alendronate (a bisphosphonate used to treat skeletal muscle defects because of
its bone resorption inhibitory activity). The scaffolds were used to treat induced distal
femoral defects in Sprague Dawley rats for 6 to 10 weeks. Rats implanted with PCL–TCP
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alendronate-loaded scaffolds showed increased bone formation at 6 weeks compared with
rats implanted with TCP and PCL–TCP scaffolds only. Rats implanted with PCL–TCP
alendronate-loaded scaffolds formed more compact bone at 6 weeks and more compact
bone at 10 weeks. The 3D printing technology allows the fabrication of scaffolds for defect
repair that combine different tissues. Sherwood et al. [234] fabricated a two-phase micro-
porous osteochondral composite. The upper layer is composed of D, L-PLGA/PLA for
cartilage reconstruction, and the lower layer is composed of L-PLGA/TCP for bone repair.
Several parameters can affect the final structure of the resulting framework, such as temper-
ature, printing speed, layer thickness, and filling of the framework. In a study conducted
by Baptista et al. [235], the effects of different processing parameters on 3D-printed PLA
scaffolds were investigated. It was found that changing the processing parameters has
a great impact on the overall morphology of the 3D-printed scaffolds as well as on their
mechanical properties. The 3D printing technique along with its processing parameters
and additives are illustrated in Figure 16.
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Three-dimensional bioprinting (3DBP) is a technique that incorporates cells and bio-
materials to create architectures similar to native tissue. The advantages of this novel
technology include cost efficiency, scalability, and the possibility of high-precision cell
distribution and operation under ambient conditions [24,236]. Hydrogels are primarily uti-
lized for 3DBP [237]. Poldevaart et al. [238] used 3D bioprinting to prepare a biodegradable
and non-cytotoxic gelatin-based hydrogel that served as a vehicle for bone morphogenetic
protein 2 (BMP-2) microparticles adsorbed on the surface and pores of the hydrogel. Mul-
tipotent goat stromal cells and calcium phosphate (CaP) were also incorporated into the
hydrogel. The entire bioprinting process took place in a laminar flow cabinet to ensure
that the hydrogel was completely sterile. The ability of the cells to undergo osteogenic
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differentiation and osteogenesis was evaluated both in vitro and in vivo after subcutaneous
implantation of the scaffold. Clinically, BMP-2 has been used for postoperative healing
of spinal fusions and for healing of tibial defects, but due to the high doses associated
with the non-sustained release of BMP-2, some patients began to develop malignancies
and excessive growth of bone tissue. Therefore, sustained release of BMP-2 is a promising
approach to improve osteogenesis and avoid the complications associated with the use of
high doses.

The use of hydrogels for bone tissue engineering is accompanied by several draw-
backs, including the inability of hydrogels to withstand large mechanical loads in in vivo
studies, insufficient stiffness, a limited critical time of gelation, and low resolution [239].
To compensate for these shortcomings, materials scientists began to focus on the use of
materials other than hydrogels. Sawkins et al. [237] fabricated a three-dimensional structure
from a thermally reactive PLGA-based material. The results of mechanical testing showed
that the structure obtained had mechanical properties similar to cancellous bone, with a
tensile strength of 1.22 MPa and a tensile modulus of 57.3 MPa. In addition, the structure
was provided with microspheres loaded with the protein lysozyme, which was selected
due to its high similarity with BMP-2 in terms of molecular weight and isoelectric point
(IEP). The fabricated structure supported sustained release of the protein for 15 days, and
the highest measured activity was achieved on day 9. The authors also incorporated human
MSCs into the fabricated structure, which showed no cytotoxic effects on the incorporated
cells. The 3D bioprinting technique along with its processing parameters and additives are
illustrated in Figure 17.
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8. Challenges Facing Scaffold-Based Bone Tissue Engineering Therapies

The use of scaffolds in BTE still presents some challenges that need to be addressed.
First, the appropriate framework-based treatment must be determined, in terms of the
choice of material properties, fabrication technique, and whether to use a single-component
or multicomponent protocol. Around this core, there are a number of crucial further steps:
in vivo and in vitro studies conducted before clinical use, obtaining approval/clearance
for clinical trials and conducting those trials, commercializing the scaffold-based therapy
developed, and meeting patient expectations. The players in this complex scene include
biomaterial scientists who develop and design scaffolds, researchers who perform pre-
clinical studies, surgeons who perform the clinical trials, other members of the clinical
practice, companies that turn low-yield laboratory production of scaffolds into large-scale
operations to meet market demand, and finally patients with their expectations [19,240].

8.1. Identifying the Appropriate BTE Treatment

When it comes to finding the right BTE therapy, orthopedic surgeons must select the
BTE treatment that perfectly fits the patient’s clinical condition and reduces the disad-
vantages of the normally available treatments [241]. Moreover, it is important to have a
future perspective of the expected outcome and to consider the expected side effects of
this new BTE treatment [240]. A clear understanding of the specificity and severity of the
defect, patient clinical data, expected outcome, and BTE treatment protocol is essential
to determine the features that materials scientists should incorporate into the fabricated
scaffold. When designing a BTE scaffold, materials scientists must closely control the
scaffold at three levels: macro, micro, and nano. Control of the scaffold at the macro level is
critical to its ability to effectively replace the defective/absent tissue, while organization at
the micro level is critical to the scaffold’s osteoconductive and osteoinductive properties,
as well as its ability to induce the formation of new blood and bone tissue. Control of the
nanoscale features of the scaffold determines its ability to induce protein and cell adhesion,
as well as the ability of cells to proliferate and differentiate osteogenically on the surface
and through the pores of the scaffold [10].

8.2. Multi- vs. Single-Component Therapy

The TE triad is a three-component system consisting of scaffolds, cells, and stimulatory
signals (Figure 18) [242]. Several questions revolve around this triad regarding the choice
of individual components and whether to use cell-free scaffolds or scaffolds loaded with
cells and/or stimulating factors. These questions include the choice of cell source, the type
of cells (differentiated, undifferentiated, unexpanded, ex vivo expanded, progenitor, and
genetically modified cells), the number of loaded cells on the scaffold, whether the cells
should be expanded as a monolayer or in a bioreactor, whether the cells need to be seeded
into the scaffold after fabrication or whether they should be directly bioimprinted with the
scaffold, and whether it is better to populate the cells statically or dynamically. To date,
choosing the optimal cell source and population has been a challenge [19]. Choosing the
appropriate growth factor can also be challenging, as options range from growth factors that
induce angiogenesis to osteogenic growth factors to combinations of these two types. There
is also the question of how to deliver the growth factors into the scaffold, how to achieve
sustained release, and what the optimal dosage is. However, the use of growth factors
is associated with several shortcomings, such as the high cost of growth factors, short
half-lives, the unstable nature of growth factors, and undesirable complications [19]. For
example, the use of BMP-2 in spine and trauma surgery has been reported to be associated
with the formation of malignant tumors [243].
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8.3. Preclinical Investigations

Before BTE treatment paves its way into pilot clinical trials, it must first successfully
pass preclinical applications [10]. In vitro investigations are performed either for each
component (cells, scaffold, and growth factors) individually or in combination to investigate
cellular activities, scaffold cytotoxicity, whether or not the material can elicit an immune
response, optimal growth factor dosage and sustained release, and evaluation of cell–
biomaterial interactions. Several approaches have been developed to improve in vitro
cultivation, including the use of cocultures (in which two or more cell populations are
grown with some contact between them) and the use of bioreactors (e.g., perfusion systems,
vascular constructs with rotating walls, and mechanically or electromagnetically stimulated
cell/scaffold composites) [244,245]. However, in vitro studies cannot accurately predict
the response of a living organism to BTE therapy because they are unable to mimic the
complexity of living organs and their complex interactions within the living organism [19].

To compensate for the shortcomings of in vitro models, in vivo studies are performed.
Performing these studies on small vertebrates such as mice, rats, and rabbits has the
advantage that they require less time because of their high bone turnover, the cost of
maintaining these animals is relatively low, and they are usually available. However,
the significant differences between the skeletal systems of humans and small vertebrates
may affect their suitability for in vivo studies. These differences include different loading
patterns of bone, negligible intracortical bone healing, absence of Haversian canal systems,
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open epiphyses at several growth plates (areas of active new bone growth near the bone
ends), and finally, the mass of trabecular bone is relatively small compared to the total
mass of bone [10]. The superiority of performing in vivo studies on larger vertebrates
such as dogs, sheep, pigs, and horses is based on the similarity of their bone properties to
those of human bone in terms of microstructure, physiology, and mechanical properties.
However, there are some drawbacks that can complicate the use of larger vertebrates
for in vivo studies. For example, their slow bone turnover and long lifespan make them
time-consuming, and obtaining ethical approval may take a longer time [19].

8.4. Clinical Studies Approval and Conduction

Once the novel BTE treatment has successfully passed preclinical testing, clinical trials
will begin. However, clinical trials must be conducted on a large number of subjects to
validate their efficacy, and the time-consuming process of documenting and approving
progress, as well as the need for funding, can also hinder clinical trials. An important issue
to consider in clinical trials is the complexity associated with the clinical application of BTE
treatment. As a result, the large-scale application of BTE treatments is not yet known [243].
After successful completion of clinical trials, the BTE scaffold must be approved as a
biomedical device by organizations such as the Food and Drug Administration (FDA)
in the United States and an agency determined by each Member State in Europe. The
entire BTE approval process is very time-consuming and can be extremely costly, as it must
go through research and development (R&D) processes before being approved by these
organizations. To assess the extent to which the proposed BTE treatment is biocompatible,
the International Standards Organization (ISO) has established a sequence of standardized
tests to evaluate the framework-to-body contact, contact duration, and biological effects
exerted [246].

9. Future Perspectives

Predicting future advances in the field of BTE is not so simple, as these advances are
proceeding rapidly in several directions. Currently, further work and research are needed to
fabricate scaffolds capable of developing hierarchically arranged vascularized systems that
resemble vascularization in vivo (i.e., vascularized scaffolds). Another important future
prospect to consider is the further development of scaffolds with more than one layer for the
dual reconstruction of cartilage and bone, as there is currently no marketable BTE treatment
for this type of bone-cartilage damage. Finally, and critically, we predict remarkable
progress in the production of custom BTE treatments that are specifically tailored to patient
needs and expectations. Next, some current efforts to develop vascularized, multilayered,
and customized scaffolds will be discussed.

In a promising attempt to fabricate a custom BTE scaffold, Staffa et al. [247] have re-
portedly fabricated a three-dimensional custom porous HAp scaffold from bioceramics that
reportedly exhibits a high degree of biocompatibility, osteoconductivity, and biomimicry
to reconstruct patient skull defects. This 3D custom-made framework has been approved
as a biomedical product according to European standards and regulations. To capture the
shape and dimensions of the patients’ defects, a 3D model of the defect was developed
for each patient using scanning technology CT (Figure 19A(a)). The aforementioned 3D
model was used to fabricate a real-size resin-based acrylic model. Then, the implant was
fabricated by stereolithography technique using HAp (Figure 19A(b)). After two years of
regular follow-up, all patients showed perfect cosmetic appearance. The authors reported
only one case of implant rejection in all 51 patients treated.



Bioengineering 2023, 10, 204 33 of 43

Bioengineering 2023, 10, x FOR PEER REVIEW 35 of 46 
 

on top of a collagen-based layer followed by additional collagen layers. To ensure that the 
inner walls of the chamber were completely covered with cells, the chamber was turned 
upside down every 10 to 15 min. To remove the gelatin, the medium was carefully 
pumped into the chamber at a rate of 0.3 mL/min. As reported by the authors, HUVECs 
were able to adhere to the inner walls of the chamber, resulting in a vascularized structure 
with high biomimicry (Figure 19C). 

 
Figure 19. (A): (a) A 3D CT scan of a bone cranial defect. The first step to a customized graft is to 
acquire a patient-specific CT scan image of the defect. (b) Anatomically shaped HA scaffold that 
perfectly fits the defect in a skull model. A prototype acrylic resin model was fabricated by 1:1 
stereolithography, replicating the skull with the defect. A custom HAp prosthesis was then 
fabricated and accurately refined based on the defect that the resin model exhibited [247]. (B): 
Multilayered composite scaffold with three gradients that replicates the entire articular 
osteochondral compartment and can initiate osteochondral regeneration. The nanostructured, 
biomimetic, porous, three-layer gradient composite scaffold mimics (a) the cartilage layer (type I 
collagen), (b) the tidemark (a combination of type I collagen and non-stoichiometric, magnesium-
enriched HA), and (c) the subchondral bone (a mineralized blend of type I collagen and magnesium 
HA) [248]. (C): Method for the preparation of vascular channels using a cell-gelatin mixture. (a) 
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Figure 19. (A): (a) A 3D CT scan of a bone cranial defect. The first step to a customized graft is
to acquire a patient-specific CT scan image of the defect. (b) Anatomically shaped HA scaffold
that perfectly fits the defect in a skull model. A prototype acrylic resin model was fabricated by
1:1 stereolithography, replicating the skull with the defect. A custom HAp prosthesis was then
fabricated and accurately refined based on the defect that the resin model exhibited [247]. (B): Mul-
tilayered composite scaffold with three gradients that replicates the entire articular osteochondral
compartment and can initiate osteochondral regeneration. The nanostructured, biomimetic, porous,
three-layer gradient composite scaffold mimics (a) the cartilage layer (type I collagen), (b) the tide-
mark (a combination of type I collagen and non-stoichiometric, magnesium-enriched HA), and (c) the
subchondral bone (a mineralized blend of type I collagen and magnesium HA) [248]. (C): Method
for the preparation of vascular channels using a cell-gelatin mixture. (a) Schematic description of
the process. (b) Custom-made flow chamber consisting of three transparent polycarbonate parts and
two O-shaped rings for sealing. (c) Image of the flow chamber connected to the perfusion system via
side-mounted needles [249].

The urgent need for BTE-based treatment for complicated osteochondral damage led
to the development of multilayer scaffolds. A multilayer magnesium/HAp composite
scaffold consisting of three different layers was fabricated. The three layers are the cartilage
layer, the tidemark, and a subchondral bone layer (Figure 19B). In vitro studies showed
that the implanted mesenchymal stem cells were able to differentiate into chondrocytes and
bone cells, resulting in two distinct layers of cartilage and bone. Using RP technologies, it
was possible to create in vitro networks of hierarchically arranged vessels similar to those
in vivo [248]. Lee et al. [249] reportedly fabricated an innovative flow chamber by placing
a mixture of human umbilical vein endothelial cells (HUVECs) on top of a collagen-based
layer followed by additional collagen layers. To ensure that the inner walls of the chamber
were completely covered with cells, the chamber was turned upside down every 10 to
15 min. To remove the gelatin, the medium was carefully pumped into the chamber at a rate
of 0.3 mL/min. As reported by the authors, HUVECs were able to adhere to the inner walls
of the chamber, resulting in a vascularized structure with high biomimicry (Figure 19C).
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10. Conclusions

Polymeric materials have proven to be extremely advantageous in the fabrication
of BTE scaffolds. Scaffolds fabricated with natural polymers have been shown to exhibit
exceptional biocompatibility, biodegradability, osteoconductivity, and osteoinductivity.
However, their inferior mechanical properties led them to be combined with synthetic
polymers to improve their mechanical properties. Moreover, polymeric composites blended
with bioactive ceramics and bioactive molecules have been shown to have remarkable os-
teoinductive and osteoconductive effects, leading to an improvement in their bone healing
efficiency as well as improving their immunomodulatory effects, leading to the alleviation
of the inflammatory response accompanied by their implantation. Conventional BTE scaf-
fold fabrication techniques have resulted in BTE limitations and need to be replaced by
newer and less cytotoxic rapid prototyping techniques that compensate for the limitations
associated with conventional techniques. Indeed, the use of polymeric scaffolds in BTE
will contribute significantly to reducing the long waiting lists for bone grafting. However,
the use of scaffold materials in biomedical applications currently faces many challenges.
Among the aforementioned challenges is the selection of the correct and most appropriate
TE treatment for the patient, the time-consuming and costly preclinical and clinical investi-
gations and obtaining approval to conduct clinical trials, and the lengthy and complicated
procedures required to obtain approval of the novel TE treatment as a biomedical product,
and even these procedures and regulations may vary from country to country, hindering
the possibility of worldwide use of the novel BTE treatment.
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