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Abstract: This study aims to characterize the osteoconductivity, optimal bioresorbable, biodegradabil-
ity, biocompatibility, and mechanical properties of Poly-ε-caprolactone (PCL)/graphene (G) scaffolds
at concentrations of 0.5, 1, 1.5, 2, 2.5, and 3 wt%, which are used to support bone regeneration through
solvent casting and particulate leaching. The water contact angle measurement revealed a transition
from a hydrophobic to a hydrophilic surface after incorporating various G concentrations. The
scaffolds with 0.5 wt% G had smaller pores compared to those produced using 3 wt% G. Furthermore,
numerous pores were connected, particularly those with larger diameters in the 2 and 3 wt% G
samples. The proportion of water absorption varied between 50% and 350% for 4 months, with large
percentages of scaffolds containing high G concentrations. Raman spectroscopy and X-ray diffraction,
which were used to confirm the presence of nanofiller by increasing the ratios of ID/IG, I2D/IG, and
band 2θ = 26.48◦. The mechanical properties were improved by the addition of G, with a Young’s
modulus of 3 wt% G, four times that of PCL. Measuring cell biocompatibility, adhesion, proliferation,
and differentiation with osteoblast-like (MG-63) cells revealed that PCL/G scaffolds with higher
concentrations were more biocompatible than PCL as well as those with lower concentrations.

Keywords: PCL; graphene; scaffold; biodegradable; biocompatible

1. Introduction

At the beginning of this decade, natural progenitor cells or autologous cells were
considered the best option for regenerating damaged or missing tissue [1]. However, using
autologous cells for regenerative purposes can be challenging due to limited tissue volumes,
contamination, immune reactions, and difficulty controlling growth and regeneration in 2D
cells. To achieve functional integrity, a 3D framework is necessary for complex biological
systems. This has led to the integration of cell biology and materials sciences to create
degradable biomaterials such as 3D scaffolds made from natural or synthetic polymers
which can enhance cell adhesion and proliferation [2].

Several methods and technologies have been developed to produce 3D scaffolds, such
as phase separation, self-assembly, electrospinning, emulsion freeze-drying, gas foaming,
free radical polymerization, and 3D printing. They allow adherent cells and bioactive
molecules to interact with surrounding tissues through the porous structure of the prod-
uct [3]. For example, synthesized polymeric composite material was fabricated from
arabinoxylan (ARX), β-glucan (BG), nano-hydroxyapatite (nHAp), graphene oxide (GO),
and acrylic acid (AAc) through free radical polymerization and porous scaffold using the
freeze-drying technique. The result found that BGH3 has desirable morphological, struc-
tural (with optimum swelling), biodegradation, and mechanical behaviors [4]. Polymeric
nanocomposite material was developed using cellulose and a co-dispersed nanosystem
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(Fe3O4/GO) by free radical polymerization to fabricate porous polymeric scaffolds via
freeze-drying. Antibacterial activities of porous scaffolds were studied against severe
Gram-positive and Gram-negative pathogens and increased Fe3O4 amount in nanosystems
with increased antibacterial activities [5]. The synthesis of nanocomposites based on acrylic
acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2
NPs), and optimum graphene oxide (GO) amounts via the free radical polymerization
method was reported. Increasing the amount of TiO2 in combination with optimized GO
has improved the physicochemical and microstructural properties, mechanical properties
and Young’s modulus, porous properties, and porosity [6]. The combined advantages of
PCL and Zn were fused by fabricating PCL/Zn composite scaffolds with different Zn pow-
der contents (1 wt%, 2 wt%, 3 wt%) through deposition modeling. Finally, Zn2+ revealed
that regulated osteogenesis and osteoclastogenesis by activation of the Wnt/β-catenin and
NF-κB signaling pathways, respectively [7]. The polymeric nanocomposite was prepared
by free-radical polymerization from sodium alginate, hydroxyapatite, and silica with differ-
ent GO amounts. The increased GO amount provides different multifunctional materials
with different characteristics [8].

This study used a solvent-casting and particulate-leaching method to construct 3D
scaffolds which were economical but still showed promising potential to produce porous
bone-growth-promoting materials [9,10]. The scaffolds are designed to be biocompatible,
biodegradable, and have properties that encourage cell attachment, proliferation, and
integration into host tissues for regeneration. These scaffolds also mimic the extracellular
matrix (ECM) in a defect area [11,12].

The use of synthetic poly (ε-caprolactone) (PCL), an aliphatic polyester that is biocom-
patible and biodegradable, has received a lot of attention in bone tissue engineering [2].
However, the lack of mechanical properties of polycaprolactone (PCL) scaffolds restricts
their applicability because human cortical and cancellous bones need a higher Young’s
modulus. It is, therefore, necessary to combine it with another material, such as graphene
(G). Graphene, a two-dimensional (2D) carbon nanofiller with sp2-bonded atoms, can be
used to improve polymeric materials’ solubility, processing ability, and conductivity. It
has a high specific surface area, a poly-aromatic structure, functionalization, and excel-
lent protein adhesion properties [13,14]. Several studies revealed that its concentration
affects chemical functionalization through increased hydrophilicity. It also modified the
extracellular environment, enhanced osteoblast adhesion and proliferation, and also facili-
tated differentiation [15].

The combination of PCL and G has been studied as a potential solution to improve the
mechanical properties of PCL scaffolds used in bone tissue engineering. Graphene is known
to have high mechanical strength and stiffness, which can enhance the Young’s modulus of
PCL composites, making them more suitable for use in bones. Therefore, further research
is needed to determine the optimal concentration and method of incorporating graphene
into PCL to achieve the best mechanical properties [13].

Furthermore, there are concerns about the product’s medical toxicity because it remains
in the human body for an extended period as an implantable material. Malhotra et al. [16] have
shown that G promoted attachment and proliferation of human neurons, cardiomyocytes, and
several types of stem cells without any harmful effects on cell and mitochondrial membranes.
Another study by Chang et al. [17] also showed that G promoted bone formation without
causing any bone destruction.

Osteoblast-like (MG-63) cells play a crucial role in bone remodeling and bone formation
by secreting various proteins such as ECM proteins, cytokines, collagen, and growth
factors [18,19]. These cells differentiate into osteocytes for complete bone synthesis and
integrate into the bone matrix. The surface properties and toxicity of scaffolds are crucial in
promoting osteoblast proliferation at the fracture site, and limited research has been done
in this area, especially in relation to waste G and its influence on osteoblast growth [20].

This study focuses on analyzing the impact of different weight percentages of G (0.5, 1,
1.5, 2, 2.5, and 3 wt% G) on the physicochemistry, morphology, mechanics, biodegradation,
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and biocompatibility of PCL scaffolds. The goal is to identify the scaffolds with the best
combination of osteoconductivity, biodegradability, biocompatibility, and physicochemical
and mechanical properties to support bone regeneration.

2. Materials and Methods
2.1. Fabrication of the Scaffolds

A solvent casting and particle leaching method was used to fabricate PCL and PCL/G
scaffolds [10]. PCL (Sigma-Aldrich, Merck, Darmstadt, Germany) was dissolved in chloro-
form (Honeywell, Charlotte, NC, USA) at room temperature for 12 h. This combination was
then mixed with various concentrations of G and NaCl for 2 h. G was previously produced
by transferring a graphite intercalation compound into a preheated crucible at 700 ◦C in a
common furnace positioned in the front of a fume cupboard to prevent inhalation of the
nanoparticles, and it was left there for 60 s. These layers expanded upon ultrasonication
and caused the G to disperse in the solvent. After fabrication, the blend was placed into a
cast and cured overnight at room temperature. Chloroform was then evaporated for 24 h at
37 ◦C in a drying vacuum oven (Deng Yng, Taipei, Taiwan). Deionized (DI) water and a
water bath (BH-130D, Taipei, Taiwan) were used to remove porogen from the scaffold. In
addition, the DI water was changed every 2 h and then dried in the oven at 50 ◦C for 12 h.
Scaffold fabrication is illustrated in Figure 1.
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Figure 1. A solvent casting and particulate leaching method for PCL/G scaffold fabrication.

2.2. Characterizations of the Scaffolds
2.2.1. Water Contact Angle (WCA)

The surface property of the PCL/G scaffolds was characterized with a WCA measuring
system, which was developed in our laboratory using a sessile drop method. The samples
were cut to 10 × 10 mm2, and 0.2 µL of a DI water droplets was dropped onto the surface
of the scaffold via a motorized syringe at a rate of 1 µL/s. An image was taken at 1 sec, and
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at least five locations of each PCL/G scaffold were tested, followed by the determination of
the average value [2,10].

2.2.2. Water Absorption Rate

Water absorption by the scaffold was evaluated using 1× phosphate-buffered saline
(PBS; Gibco-Invitrogen, USA). The samples were immersed in 1× PBS, and their weights
were evaluated. Water absorption was calculated using the following equation, where W1
represents the wet weight and W2 is the dried weight [21]:

Absorption rate (%) =

(
W1 − W2

W2

)
× 100% (1)

2.2.3. Porosity

The porosity of the scaffolds was evaluated by measuring the displacement of ethyl
alcohol (EtOH). The initial volume of EtOH was V1. The total volume of EtOH (Nihon-
Shiyaku, Japan) after the scaffold was immersed was V2. The residual EtOH volume after
the scaffold was removed was V3. The porosity was then calculated using the follow-
ing equation [13]:

Porosity (%) =
(V1 − V3)

(V2 − V3)
× 100% (2)

2.2.4. Pore Sizes

The scaffold morphology and pore sizes were evaluated using scanning electron
microscopy (SEM; Hitachi, Japan) at an accelerating voltage of 15 kV. In SEM images, the
pores were evaluated using Image-J software. Scale bars that described a known distance
were set within the SEM image to measure pore sizes. A pore’s contour was then delineated
and calculated (µm). Different cross-sections were passed from the scaffolds [13].

2.2.5. Tensile Test

The tensile strength of the PCL/G scaffolds was determined using a universal testing
machine (Shidmazu, Japan) equipped with a 250-N load cell. Experiments were performed
at room temperature and a crosshead speed of 3 mm/min. The samples were prepared by
cutting a scaffold with a dimension of 40 × 20 × 10 mm3. The stress vs. strain graphs for
each was used to calculate the Young’s modulus, ultimate tensile strength, and elongation-
at-break using the linear region (elastic region) of the graphs. The ultimate tensile strength
(σmax) was calculated using the following equation [22]:

σmax = P/a (3)

where P represents the tensile force and a is the cross-sectional area.
Young’s modulus (E) was determined using the equation [22]:

E = σ/ε (4)

where σ represents stress and ε represents strain.
Elongation-at-break (εb) was calculated using the equation [22]:

εb (%) = ∆L/L × 100% (5)

where ∆L represents elongation at rupture and L represents initial gauge length.

2.2.6. Raman Spectroscopy

PCL/G scaffolds were analyzed using Raman spectroscopy (UniDRON, CL Tech,
Taiwan). The samples were folded and mounted on glass slides for measurement with a
laser at 457 nm, 50 mW, 1% neutral density filter, 50× objective lens, 1 s exposure length,
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60 s average time, and a signal normalization at a peak of 2918 cm−1 for processing. Origin
Pro 2022 software was used to analyze the data, which ranged from 500 to 3300 cm−1 [23].

2.2.7. X-ray Diffractometer (XRD)

The XRD spectra for PCL/G scaffolds were produced on a high-power (18 kW) XRD
(Rigaku, TTRAX3, Japan). The determinations were carried out using radiation of λ = 1.54 Å
in a range of 2θ = 10~50◦ at a scan rate of 4◦/min. They were then analyzed by fitting a
Lorentzian curve for height (intensity) using Origin Pro 2022 software [23].

2.3. Biodegradation Time Test

Biodegradation of the PCL/G scaffolds with a dimension of 10 × 10 × 2 mm3 was
determined by placing them in a tube containing 5 mL of 1× PBS (Gibco-Invitrogen). The
samples were then sealed with parafilm and placed in a water bath at 37 ◦C for 4 months
without refreshing the 1× PBS. Every month, the scaffolds were removed from the water
bath, rinsed five times with DI water, and dried for at least 24 h in a vacuum dryer. Raman
spectroscopy and XRD were used to examine the samples [10].

2.4. In Vitro Cell Culture
2.4.1. Scaffold Preparation and Cell Seeding

Scaffolds used for cell culture had a dimension of 10 × 10 × 2 mm3 and contained
various G weight ratios. They were sterilized in a 95% ethanol solution for 24 h, followed
by washing in a 1× PBS solution three times to eliminate residual ethanol. Before cell
seeding, scaffolds were incubated for 3 h in Dulbecco’s modified Eagle medium (DMEM;
Gibco-Invitrogen).

Osteoblast-like (MG-63) cells at passage 5 (kindly provided by 3D Global Biotech
Inc, Taipei, Taiwan) were cultured in culture plates with DMEM containing 10% fetal
bovine serum (FBS) and 1% penicillin in an incubator at 37 ◦C with 5% CO2. The medium
was replaced every 2–3 days, and they were digested and subcultured using 0.25% of
trypsin-EDTA (Gibco, USA) for detachment after 80% confluence was achieved [13,21].

2.4.2. MTT Assay (3-(4,5-Dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide)

MTT (a tetrazole) assay was used to examine the biocompatibility and proliferation of
osteoblast-like (MG-63) cells [8].

Biocompatibility

The surface area of each scaffold was measured with following formula [24]:

Total Sur f ace Area = 2πrh × 2π (6)

where π is 3.14, r is the radius, and h is the height.
Subsequently, DMEM supplemented with 10% FBS and 1% of penicillin/streptomycin

was added with the formula:

Total medium (mL) = (Total Sur f ace Area)/6 (7)

The scaffold and DMEM were placed in a 50 mL conical centrifuge tube and shaken
in a shaking water bath at 37 ◦C and 100 rpm for 24 h. The extracts were filtered with a
Millipore filter unit (Sartorius, France) with a pore size of 0.22 µm and a polyethersulfone
(PES) membrane.

Osteoblast-like (MG-63) cells were detached using 1% trypsin-EDTA, and 100 µL
of a cell suspension at a concentration of 105 cells/mL was seeded into a 96-well plate.
Furthermore, the plates were placed in an incubator at 37 ◦C with 5% CO2 for 24 h. The
medium was then removed and replaced with extracted samples, which were incubated
for another 24 h. An MTT-labeling agent reagent of 50 µL was added to each well and
then placed in an incubator at 37 ◦C with 5% CO2 for 3–4 h. The reagent was then
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removed and solubilization buffer was added to each well to dissolve the purple formazan
crystals. Optical density was measured at 570 nm using an enzyme-linked immunosorbent
assay (ELISA) reader. The optical density of cells was obtained to determine the cell
biocompatibility using the following equation [13,24]:

Cell biocompatibility (%) =
OD sample
OD control

× 100% (8)

Proliferation

Cells were detached using 0.25% trypsin-EDTA (Gibco-Invitrogen), and each sample
was seeded with 0.5 mL at a concentration of 104 cells/mL in 24-well plates, which were
placed in an incubator for 21 days. The medium was renewed every 2–3 days during this
period. Furthermore, the cells were removed from the culture incubator to evaluate the
results on days 1, 4, 7, 14, and 21. A total of 50 µL of MTT-labeling reagent was then added
to each well. After 4 h of incubation at 37 ◦C, the reagent was removed, followed by the
addition of a solubilization buffer. The absorbance at 570 nm was determined to establish
cell proliferation [2,13].

2.4.3. Alkaline Phosphatase (ALP) Assay (Differentiation Assay)

A commercial ALP test kit was used to detect ALP activity (AnaSpec, Fremont, CA,
USA). An ALP dilution buffer was prepared by diluting 10× to 1× assay buffer using DI
water. The alkaline phosphatase standard of 10 µg/mL was then diluted to 0.2 µg/mL
using the dilution buffer. The ALP standard solution was serially diluted by two-fold
to yield concentrations of 0, 3.1, 6.2, 12.5, 25, 50, and 100 ng/mL. The wells were filled
with 50 µL of solutions ranging 0–200 ng/mL. The samples were cultivated for 21 days,
and they were removed from incubator to evaluate on days 1, 4, 7, and 21. Samples were
washed twice with 1× assay buffer upon removal from the incubator. The extract buffer
(200 µL; 10 mL 1× assay buffer plus 20 µL Triton X-100) was then added to each well for cell
extraction. The samples were held at 4 ◦C for 10 min under agitation. Cell suspensions were
then transferred to 1.5 mL tubes and centrifuged for 10 min at 4 ◦C and 2500× g. A total of
50 µL of supernatant was transferred to a 96-well plate for each sample. Subsequently, 50 µL
of a pNPP substrate solution as well as ALP standard were added to each well, followed
by incubation for 30 min at the desired temperature. The 96-well plate was shielded from
light throughout this process, and the reaction was stopped by the addition of 50 µL of stop
solution. The absorbance at 405 nm was then determined using an ELISA reader [12,21].

2.4.4. Cell Morphology and Adhesion

Cell adhesion at the surface of the scaffold was evaluated by scanning electron mi-
croscopy (SEM). The samples were washed with PBS after the medium was removed,
followed by fixation with 0.6 mL of 2.5% glutaraldehyde in a PBS solution for 30 min at
4 ◦C. After being washed twice with PBS, the scaffolds were dehydrated in ethanol of 30%,
50%, 70%, 90%, and 100% and then dried in HMDS. Subsequently, they were gold-coated
using a sputter coater and viewed with SEM at an accelerating voltage of 5 kV [13,21].

2.5. Statistical Analysis

All experimental data are presented as the mean ± standard error (SE) for each group
of samples. All experiments had at least three scientific replicates. The data obtained were
analyzed using SAS software. A one-way analysis of variance (ANOVA) and Tukey’s post
hoc test were used to determine relevant differences in data. However, if the distribution
was not normal and homogeneous, it was analyzed using the Kruskal–Wallis’s test and
Mann–Whitney significant difference post hoc test to assess the differences between groups.
Significance levels were set at * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 [19,21].
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3. Results and Discussion

Several studies revealed that the surface properties of a scaffold are some of the
most important qualities which determine cell adherence. On hydrophobic surfaces, a
dense layer of non-specific proteins can displace water from the surface and instantly
aggregate on the materials. Meanwhile, a hydrophilic surface allows the attachment of
chemicals that improve adhesion. These properties are influenced by low-stiffness and
high-stiffness scaffolds [25].

WCA was examined on the solid surfaces of PCL and PCL/G scaffolds with various
G concentrations to determine the effects of different concentrations on the wettability
of the samples. When a liquid drop makes contact with a solid surface, it either retains
its drop-like shape or spreads out on the solid surface, and this property is characterized
by using water contact angle (WCA) measurements [26]. The liquid droplet tends to
form an angle with the solid surface when it is placed in contact with it as shown in
Figure 2a,b. The results showed that the WCA decreased as the proportion of G increased
from 106.5◦ ± 2.1 in PCL to 71.9◦ ± 1.9 at 3 wt% G (p < 0.0001). This indicated that the
hydrophobicity of PCL/G scaffolds was marginally reduced due to its addition. The
reduced hydrophobicity is attributed to the wrinkled surface of graphene, which has a
hydrophilic chemical composition [27].
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The studies by Al-Azzam et al. [28] and Zhang et al. [29] reported that mostly mam-
malian cells adhere best to moderately hydrophilic surfaces with a WCA between 40 and
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75◦. An increase in hydrophilicity leads to an increase in protein adsorption and reduces
scaffold toxicity, which plays a crucial role in cell attachment. The interaction between
cells and components of the extracellular matrix (ECM) such as fibronectin, vitronectin,
collagen, and laminin can impact cell attachment and migration, as shown in Figure 2b.
This study revealed that the addition of 3 wt% G to scaffolds also continuously improved
cell proliferation compared to PCL due to its hydrophilic surface.

However, superhydrophilic (WCA < 5◦) and superhydrophobic (WCA > 150◦) surfaces
can hinder cellular attachment and spread due to weak binding of cell-adhesion-mediating
molecules. This weak binding causes cells to dissociate when multiple cells interact with the
surface simultaneously, leading to limited or prevented cellular adherence and spread. [28,30].

Another physical characteristic that must be determined is the water absorption
rate, which is essential for evaluating a composite material’s suitability for bone tissue
regeneration. This is because it represents the effectiveness of body fluid absorption and
nutrient transfer [18,31]. Figure 2c shows the water absorption rates of the PCL and the PCL
with G (a hydrophilic material) over a 4-month period in PBS solution. The results showed
that samples containing G had higher water absorption than PCL due to the hydrophilic
properties of G. The percentage of water absorption varied from 50% to 350% during the
4 months, with the highest values observed in samples containing 2, 2.5, 1.5, and 3 wt% G
in the first month, but only 2 and 3 wt% G maintained a high volume of PBS throughout the
second month. By the third month, every scaffold’s capacity had been reduced, although
the capacities of 1, 2, 2.5, and 3 wt% G increased yet again in the fourth month. The
results suggest that the water absorption capacity can be improved by controlling the WCA,
porosity, and pore size of the scaffold [31,32].

Apart from the WCA and water absorption rate ability, other physical properties
support the production of a suitable scaffold. The porosity and pore size on the surface and
the interior are required for cell distribution and placement. They are also needed for the
exchange of nutrients, gases, and metabolic by-products between the exterior environment
and the interior of the scaffold [29,31]. In this study, there was no statistically significant
difference (p > 0.05) in the porosity of PCL compared to PCL/G at various concentrations.
The values obtained ranged from 85.8 ± 1.85% to 88.8 ± 1.4%, as shown in Figure 2d. This
showed that the porosity of the scaffold was more comparable to that of trabecular bone
(50–90%) compared to cortical bone (5–15%) [32].

Porosity needs to be increased in the scaffold’s surface and within its area, which can
enhance the rate of water uptake. This condition can alter the level of fluid shear on cells,
thereby causing adherence and proliferation on the scaffold. However, there is restriction of
cellular movement as well as interchange of nutrients and metabolic waste if the pores are
not interconnected. The solvent casting and particulate leaching were promising methods
according to Lutzweiler et al. [33]. The size and interconnection of pores could be controlled
based on the size of the salt as a porogen. Additionally, the high porosity of the scaffold
(>85%) could also control the interconnected pores [34].

The study showed that the 3 wt% G sample has a greater number of pores with
diameters of <100 µm (616), >101 µm (548), and >501 µm (124) compared to the others,
as shown in Figure 3a–g. The 0.5 wt% G had three times more macropores with a size of
<100 µm compared to >101 µm, while PCL had 2.5 times more macropores of size <100 µm,
as shown in Figure 3b,c.

As osteoblasts ranged from 10 to 50 µm and fibroblasts ranged from 10 to 15 µm,
the pore size of the scaffold must be <100 µm for fibroblast ingrowth, while >100 µm is
suitable for osteoblast proliferation. This indicates that a PCL/G scaffold with a high
concentration (2, 2.5, and 3 wt%) of G is appropriate for osteoblast ingrowth, as shown
in Figure 3f–h. Several studies revealed that micropores of 10 µm were important for
enhancing osteoinduction. This was because they were related to the formation of non-
mineralized osteoid or fibrous tissues, which can increase the number of cytokines produced
by fibroblasts. Furthermore, fibroblasts can increase osteoclast multiplication, inhibit
osteoblast functions, and induce local inflammation [35,36].
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Vascularization is another component that influences osteogenesis. Wang et al. [37]
showed that the use of scaffolds with pore sizes of 525 µm increased osteogenesis and
vascularization due to newly formed arteries providing appropriate oxygen and nutrients
for osteoblastic activity within the larger pores of the scaffolds. This led to osteopontin
(OPN) upregulation, chondrogenesis (collagen type I), and bone mass production. Addi-
tionally, graphene materials have excellent angiogenesis properties, which is important for
osteogenesis [38] because poor vascularity can hinder the regeneration of complex tissues
such as bone [37,39].

The mechanical properties of 3D scaffolds are an important design factor because
of their impact on biostability. PCL has strong covalent bonds but weak van der Waals
bonds, resulting in lower strength. However, incorporating graphene into PCL can increase
strength due to the alignment of large molecules and decrease the influence of weak van
der Waals bonding. This is why PCL/G composites with high graphene content have
good strength and stiffness (Young’s modulus) despite having larger pore sizes than PCL,
as shown in Figure 4a,b (p < 0.001) [40,41]. Furthermore, the mechanical properties of
the scaffold, such as its ultimate tensile strength and Young’s modulus, play a role in
regulating osteoblast behavior by affecting cell–ECM interactions. This interaction between
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the scaffold, ECM, and cells creates a complex microenvironment that influences cell
behavior through mechanosensing. It enhances the ability of the cells to generate traction
forces and enter the cell cycle, resulting in increased spreading and proliferation [40,42].
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The addition of G to polymer materials increases the ultimate tensile strength of the
material but reduces its ductility. This is shown in this study, where the addition of G to
PCL in a sample with 3 wt% G resulted in an increase in ultimate tensile strength (p < 0.001)
but a reduction in elongation-at-break (εb) (p < 0.0001), which is related to the strain of the
substrate as shown in Figure 4b,c. Moreover, the tensile strain of the substrate promoted
osteoblast ECM formation by increasing integrin density on the surface of the ECM, such
as integrin1 mediating osteoblast differentiation [43,44].

Raman spectroscopy and X-ray diffraction methods are relatively accurate at determining
the chemical structure of various materials. Furthermore, Raman spectroscopy can also detect
changes in vibrational spectral features which are induced by the production of defects,
crystal disorder, edge structures, oxidation, or changes in the number of layers of the high
activity. These changes can occur because of certain factors. On the spectrum, G displayed
all four properties, namely D, G, D’, and 2D bands at 1320–1350 cm−1, 1580–1605 cm−1,
1602–1625 cm−1, and 2640–2680 cm−1, respectively. The presence of disorder in the aromatic
structure or the edge effect of G due to oxidation is associated with the D peak, while the
G peak was caused by the stretching of C-C bonds. The 2D peak is related to the thickness
and can also be used to identify the number of layers as well as the quality of the aromatic
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rings [44,45]. The addition of G caused an increase the peaks of the D, G, and 2D bands, and
this was clearly evident in the 2, 2.5, and 3 wt% G scaffolds, as shown in Figure 5a.
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The intensity ratio of the D to G bands, also known as ID/IG, is a measurement that can
be used to determine the level of disorder or covalent bond. In this study, the ID/IG showed
a slight increase as the concentration of G increased, as shown in Table 1. An increment in
this ratio indicated the successful covalent bonding of G to oxygenous groups [46], which
led to the introduction of a significant number of defects. A covalent bond happened
between free radicals (salt) and C=C bonds of graphene. When salt was heated, a highly
reactive free radical was produced, which attacked the graphene sp2 carbon atoms, forming
a covalent bond, and the degree of a covalent functionalization reaction was shown in the
ratio of ID/IG [47]. Furthermore, defects in the scaffold are responsible for an increased
oxygen content, as shown in Figure 3a–h, which causes a reduction in its toxicity and
increases cell adhesion [48,49]. The higher the number of oxygen-containing functional
groups on the surface of a material, the better its hydrophilic qualities, and this has a
significant effect in enhancing cell viability. The I2D/IG ratio of PCL/G showed a slight
increase in the 2 wt% G to 3 wt% G, which indicated an increasing number of G layers
[Table 1]. Previous studies revealed that the number of layers is an important parameter
due to its ability to increase the surface area and the bending stiffness [49,50].

Table 1. Ratio ID/IG band and I2D/IG of PCL/G scaffold biodegradation over four months.

Scaffold

Ratio ID/IG (COUNTS) Ratio I2D/IG (COUNTS)

Initial
(p < 0.05)

Biodegradation
Initial

(p > 0.05)

Biodegradation

1 Month
(p > 0.05)

2 Months
(p > 0.05)

3 Months
(p > 0.05) 4 Months 1 Month

(p > 0.05)
2 Months
(p> 0.05)

3 Months
(p > 0.05)

4 Months
(p > 0.05)

2 wt% G 0.16 ± 0.02 0.15 ± 0.03 0.11 ± 0.01 0.06 ± 0.03 - 0.42 ± 0.03 0.63 ± 0.12 0.88 ± 0.05 1.20 ± 0.37 2.43 ± 1.44

2.5 wt% G 0.29 ± 0.04 0.19 ± 0.04 0.19 ± 0.05 0.10 ± 0.04 - 0.49 ± 0.08 0.65 ± 0.14 0.81 ± 0.08 1.31 ± 0.34 1.25 ± 0.87

3 wt% G 0.32 ± 0.04 0.25 ± 0.05 0.19 ± 0.02 0.11 ± 0.04 - 0.72 ± 0.26 1.13 ± 0.51 0.76 ± 0.13 1.37 ± 0.29 5.16 ± 4.58

The results of XRD experiment are in line with that of the Raman spectroscopic
analysis. Two major peaks were found at 2θ = 21.36◦ and 23.6◦ in the diffraction pattern of
the semicrystalline PCL. Furthermore, the addition of G did not have a substantial impact
on 2θ = 21.36◦, but there was a slight decrease at 2θ = 23.6◦, as shown in Figure 5f. The
peak at 2θ = 26.48◦ improved as the concentration of G increased. Previous studies showed
that increasing its concentration led to an increment in functionalized oxygen. It also
enhanced the capacity of G to disperse in water or cell culture media, which can increase
cell viability [51,52].

The biodegradation of scaffolds is an important factor to consider when analyzing
their biological characteristics. This parameter was explored at a duration of 4 months by
submerging the samples in 1× PBS at 37 ◦C. Biodegradation was then assessed using Raman
spectroscopy and XRD to determine its progression. PCL is a polyester containing ester
groups (C=O-O) and cyclic alkyl groups. The pre- and post-biodegradation PCL spectra
had three significant absorption peaks, which are presented in Figure 5b–e. Absorption
bands located around 2900 and 2800 cm−1 were attributed to asymmetric and symmetric
C-H stretching, those located between 1730 and 1750 cm−1 were assigned to C=O stretching,
and the band located at 1150 cm−1 was linked to the presence of C-O stretching. After
biodegradation, the intensity of PCL in the spectrum decreased, and this confirmed the
occurrence of the process. The highest intensity of the change in asymmetric and symmetric
C-H stretching occurred at 3 months, while those of C=O and C-O stretching were observed
at 4 months. The ability of the scaffolds to absorb water decreased due to the absence of
these peaks, which are capable of forming hydrogen bonds with water molecules [53,54].

ID/IG was analyzed as part of the G biodegradation evaluation. During the initial
phases, the ratio increased due to the addition of G but later decreased. Meanwhile, the
intensity of I2D/IG increased in the G band. This shows that oxidation continued to cause
biodegradation until all D, 2D, and G bands had disappeared, indicating the complete
disintegration of G structure, as shown in Table 1 [54,55].
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The XRD biodegradation process is illustrated in Figure 5g–j and Table 2. At 1 and
2 months, the peak at 2θ = 21.36◦ was similar for all scaffolds. However, at 3 months, the
peak at 2θ = 21.36◦ had decreased for the 0.5, 1, and 1.5 wt% G, while it had increased
for the 2, 2.5, and 3 wt% G. Comparison of the peaks of 0.5, 1, and 1.5 wt% G to those of
2, 2.5, and 3 wt% G at 2θ = 23.6◦ are presented in Figure 5g–j. The peak of 2θ = 23.6◦ in
the two groups revealed that their intensities were reduced between 1 and 2 months. The
values then increased at 3 months for 2, 2.5, and 3 wt% G scaffolds before decreasing again
at 4 months, but the other groups showed the opposite condition. This finding is relatively
similar to that of Raman spectroscopy, which showed that the peak associated with the
mediated biodegradation process had increased [20,56].

Table 2. X-ray diffraction intensity of 2θ = 21.36◦, 2θ = 23.6◦, and 2θ = 26.48◦ of PCL/G scaffold over
4 months.

Scaffold

Intensity of 2θ = 21.36◦

(a.u)
Intensity of 2θ = 23.6◦

(a.u)
Intensity of 2θ = 26.48◦

(a.u)

Initial
Biodegradation (Month) Biodegradation (Month) Biodegradation (Month)

1 2 3 4 Initial 1 2 3 4 Initial 1 2 3 4

PCL 1780 2383.3 1915 1740 2035 690 803.3 675 640 785

0.5 wt% G 1880 1570 2015 2000 1835 675 636.7 633.1 760 645

1 wt% G 1885 1820 1888 1585 2035 650 665 805 665 765

1.5 wt% G 2050 2065 1389 1175 3005 645 790 550 455 1155 110 255

2 wt% G 1433.3 2018 1395 3070 1696 570 876 515 1079.1 610 120 140.5 113.9 265 100.5

2.5 wt% G 1516.7 2050 1794.3 2435.9 1448.2 583.3 715 645.9 850 595 176.7 155.4 137.3 189.9 160

3 wt% G 1535 2015 1495 2866.6 1170 585 709 497.1 1021 415 195 270 165 308.9 135

Based on these results, G, when used as a nanofiller, can have a positive influence on
the biodegradation rate of PCL and other polyesters because the hydrolytic biodegradation
of other aliphatic polyesters was slowed or delayed by non-G materials. It can also have a
positive effect on the hydrophobicity of the polymer, which leads to a rapid biodegradation
of the PCL [16,20].

The next problem is the waste products caused by the biodegradation of the scaffold.
Several studies have reported the ability of G biodegradation product to biodegrade
or biotransform into less-reactive forms as well as to be naturally eliminated from the
body [56,57]. Lasocka et al. [58] stated that scaffolds with the nanofiller generated a
considerable increase in average cell mitochondrial activity, which indicates that they are
harmless and can promote cell proliferation.

Osteoblast-like (MG-63) cells were cultured for biocompatibility for 24 h, followed by
21 days of proliferation and differentiation. The respective MTT assay results are presented
in Figure 6a. An extract containing 2.5 wt% G was shown to have a higher biocompatibility,
followed by 3 wt% G (p < 0.0001). However, the values of PCL and 0.5 wt% G were less than
70%, indicating that they were cytotoxic, while the other samples showed values greater
than 70%. This indicates that all the scaffolds except PCL and 0.5 wt% G were appropriate
for the growth of cells [59].

The MTT assay for cell proliferation showed that the concentrations of 1, 1.5, and
3 wt% G increased steadily from day 1 to day 21, but the value for 3 wt% G was greater
compared to the others (p < 0.001). This shows that they were suitable for the growth
of osteoblast-like (MG-63) cells due to their consistent growth over a period of 21 days.
Nevertheless, PCL and 0.5 wt% G increased from day 1 to day 7, decreased on day 14,
and then increased slightly on day 21 (p < 0.001). This current study revealed that scaffold
properties, such as physical (WCA) or mechanical (Young’s modulus) characteristics, have
a correlation. They also increase the phase of cell proliferation by prolonging cell growth
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or inhibiting cellular differentiation, as shown in Figure 6b,c. The MTT result on day 21
increased, while that of the ALP declined [60,61].
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Osteoblast-like (MG-63) cells were cultured for biocompatibility for 24 h, followed 
by 21 days of proliferation and differentiation. The respective MTT assay results are 
presented in Figure 6a. An extract containing 2.5 wt% G was shown to have a higher bi-
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wt% G were less than 70%, indicating that they were cytotoxic, while the other samples 
showed values greater than 70%. This indicates that all the scaffolds except PCL and 0.5 
wt% G were appropriate for the growth of cells [59]. 
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ALP acts as a marker of osteoblast differentiation, and its activity in osteoblast-like
(MG-63) cells was evaluated on days 1, 4, 7, 14, and 21. PCL and 3 wt% G had lower
absorbances than the others on day 1 (p < 0.001), as shown in Figure 6c. On day 4, the
ALP activities of cells were higher compared to the previous days. The values obtained
for 2, 2.5, and 3 wt% G scaffolds were considerably higher than that of PCL and the
other PCL/G scaffolds (p < 0.001). On day 7, the 1, 1.5, and 2.5 wt% G showed a steady
increase which continue to day 14, while 3 wt% G absorbance was constant from day 4
to 14. All the ALP values of the scaffold decreased on day 21, particularly 1 and 1.5 wt%
G. When compared to proliferation result, the 1, 1.5, and 3 wt% G samples increased
greatly compared to the others on day 21, but the absorbance of 3 wt% G slowly decreased
compared to the 1 and 1.5 wt% G, as shown in Figure 6c. Suh et al. [62] stated that the
osteoblast proliferation was retarded, while the production of ALP increased. Osteoblast
growth showed decreased differentiation activities during the period of rapid proliferation.
As the cells slowly proliferated, they began to produce more ALP. The finding showed that
the PCL/G scaffold was suitable for osteoblast growth because high concentration of ALP
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for long duration induced higher frequency of bone fractures (osteomalacia), which led to
enlarged or abnormal bone shape due to decreasing bone mineral density [63].

SEM analysis was also carried out on osteoblast-like (MG-63) cells. On the first
day (Figure 7a), the cells were uniformly distributed and adhered to the scaffolds at
various concentrations. Furthermore, protruding cell membranes were observed on day 4
(Figure 7b) as evidence of their interactions with the surroundings using PCL, 0.5, and
2 wt% G scaffolds. For 1 and 3 wt% G, the cells had a round shape with protruding filaments
indicating that they were entering the mitotic process. On days 7 and 14 (Figure 7c,d),
almost all the cells had a round appearance, except for those on the PCL scaffold, which
retained their flat shape, and the 3 wt% G scaffolds with a triangular appearance on day 7,
14, and 21 (Figure 7c–e). This indicates that the addition of G to the PCL scaffold enhanced
both the proliferation and differentiation of cells [64,65].
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SEM images show the adhesion, proliferation, and differentiation processes. The
next step after cells adhere is proliferation, which is known as a mitotic process and
requires the precise coordination of multiple signaling pathways [66]. It is affected
by cell surface tension, intracellular pressure, and cortical stiffness. In the beginning,
cells lose their capacity to adhere, and changes in intracellular pressure drive mitotic
cells, thereby enabling them to exert a force against their surroundings. In previous
studies, there was a correlation between changes in cortical stiffness and tension, such
as Young’s modulus between the interphase and mitotic stages to resist whole-cell
deformation [31,66]. Variations at different cell cycle stages are dependent on the depoly-
merization of the actin–myosin cortex, a network of filaments and contractile elements.
This occurs through the increase in internal osmotic pressure, while depolymerization of
actin filaments completely depends on the mechanosensing of the scaffold, which was
influenced by mechanical properties. For example, a triangular shape showed on 3 wt%
G (Figure 7c–e), but it was absent in the others [67,68].

4. Conclusions

Scaffolds for bone tissue engineering must have optimal physical, chemical, morpho-
logical, mechanical, biodegradable, and biocompatible properties for bone regeneration.
The PCL/graphene (G) scaffold used in this research has the above characteristics, so it
is an excellent scaffold. Due to the addition of G, PCL changes from hydrophobic (PCL)
to hydrophilic (PCL/G). Compared with low concentrations of PCL/G (0.5, 1, 1.5 wt%)
and PCL, the PCL/G scaffolds with high G concentrations (2, 2.5, and 3 wt%) had greater
porosity. Therefore, the scaffold used in this research is suitable for the adhesion and
growth of osteoblasts, especially because the scaffold’s Young’s modulus of 3 wt% G is
close to that of trabecular bone. In addition, the results of the biocompatibility, proliferation,
and differentiation experiments showed that the PCL/G scaffold was non-toxic, except
for PCL and 0.5 wt% G, because its cell viability was lower than 70% (which is the basic
requirement for human beings). Further future studies need to explore the long-term
toxicity of graphene-based materials as well as the mechanism of mechanotransduction
and mechanosensing to fully understand their effect and application.
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