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Abstract: The potential application of using a wearable force myography (FMG) band for monitoring
the occupational safety of a human participant working in collaboration with an industrial robot was
studied. Regular physical human–robot interactions were considered as activities of daily life in pHRI
(pHRI-ADL) to recognize human-intended motions during such interactions. The force myography
technique was used to read volumetric changes in muscle movements while a human participant
interacted with a robot. Data-driven models were used to observe human activities for useful insights.
Using three unsupervised learning algorithms, isolation forest, one-class SVM, and Mahalanobis
distance, models were trained to determine pHRI-ADL/regular, preset activities by learning the latent
features’ distributions. The trained models were evaluated separately to recognize any unwanted
interactions that differed from the normal activities, i.e., anomalies that were novel, inliers, or outliers
to the normal distributions. The models were able to detect unusual, novel movements during a
certain scenario that was considered an unsafe interaction. Once a safety hazard was detected, the
control system generated a warning signal within seconds of the event. Hence, this study showed
the viability of using FMG biofeedback to indicate risky interactions to prevent injuries, improve
occupational health, and monitor safety in workplaces that require human participation.

Keywords: force myography technique; physical human–robot interactions; activities of daily life;
pHRI-ADL; inlier and novel data detection; anomaly score; occupational safety monitoring

1. Introduction

The use of industrial robots in manufacturing environments has relieved human
workers from performing difficult and dangerous work. In recent years, robots working in
collaboration with human workers in assembly lines have boosted productivity [1–3]. The
assembly line robots are usually rigid-body and locally controlled with preset programs
lacking advanced monitoring sensors. Hence, there are possible threats of injury for
human workers while interacting with these heavy robots [4,5]. As a result, safety in
human–robot interaction (HRI) is a growing concern in these environments. Though
fatal accidents are rare in industrial plants, hand and wrist injuries are common in the
production line. Observations reveal that common injuries for human workers occur in the
wrists or hands (38%) due to exposure to immense mechanical forces from the robots [6–8].
Improper safety measures can lead to injuries during HRI. Therefore, safety measures
and regulations are a priority in shared workspaces for surveillance and monitoring. A
variety of safety measures, such as vision systems (cameras, image/depth sensors, tracking
systems), ultrasonic/wideband/RF transceivers, capacitive sensors, or magnetic sensors for
proximity detection, are implemented in the industrial environment [9–12]. Ensuring safety
with these tools is still challenging due to their limited signal ranges and the difficulties of
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installation within a robot’s workspace, causing obstructions to signal among the robot,
operator, and tools.

Usually, a worker’s safety in industrial workspaces refers to a physical safety risk
that mostly arises from collisions with robots. Hence, in most cases, maintaining a safe
distance with robots would be appropriate. Recent research was conducted using a practical
vision-based human safety system via mixed reality (MR) for establishing a minimum safe
distance [13]. Ensuring the safety and optimizing the performance of the HRI task was
investigated as a stochastic optimal control problem (OCP) that included sensory data
on human motions. For collaborative tasks, adapting human behavior using a camera
and optical tracker was taken into consideration for collision-free trajectory planning [14].
Real-time point-to-point motion planning in a shared workspace via a non-linear predictive
model was studied in [15]. The authors in [16] investigated the recognition of human pose
via sensors for context-awareness-based collision-free human–robot collaboration (HRC).
Recent approaches used a supervisory control scheme often known as ‘shielding’ for safe
robot operation in uncertain environments. The authors in [17] relied on predicting future
shielding events that could override the robot’s nominal plan with a safety fallback strategy
in critical situations. In this Industry 4.0 era, many of these studies used several monitoring
devices and relied on deep learning approaches, IoT, cloud computing, and mixed reality for
real-time control and safety. However, these studies focused on maintaining safe distances
rather than direct contact between a human worker and a robot.

In industrial workplaces, unknown, abnormal human behavior or activities can create
potential hazards around the sizable robots. To enhance the safety of human–machine
interactions, an input signal from the human worker could provide insights about human
intentions during physical human–robot interactions (pHRI). Monitoring human biosignals
or biofeedback can enhance overall surveillance and compliance for the occupational health
and safety (OHS) of the worker. Including physiological parameters of the human worker
in the control system can improve safety protocols to avoid possible collisions, damages, or
injuries. In a shared workspace with robots, collaborative tasks with a human worker often
require dynamic changes or adjustments in the predefined tasks with robots. This requires
implementing stable control systems for bidirectional human–robot interfaces [18]. To re-
spond to the need for effective and safe human–robot collaboration, multi-modal symbiotic
communication and control methods have been used in recent years. Methods such as voice
commands, gesture recognition, haptic or tactile interaction, and brainwave perceptions are
interpreted via machine learning and deep learning approaches to create awareness during
interactions [19–23]. Along with the usual surveillances, these multimodal approaches can
improve the efficiency of interaction and safety.

Among the variety of biosignals, electroencephalogram (EEG), electrocardiogram
(ECG), electromyogram (EMG), and electrooculogram (EOG) are well-known examples.
Among these, the non-invasive surface electromyography (sEMG) signal has been in prac-
tice for decades. This technique relies on detecting the electrical current of the underlying
muscle bundles in action [24]. The sEMG technique has been studied extensively for un-
derstanding human intentions in collaborative interactions during pHRI [25–41]. These
studies used various machine learning techniques (such as artificial neural network (ANN),
3D convolutional neural network (CNN), support vector regression (SVR), linear discrim-
inant analysis (LDA), and K-nearest neighbor (KNN)) for estimating motion intentions.
Recognizing human arm or hand gestures via inertial measurement unit (IMU) sensors
and sEMG signals with audio and visual feedback was found to be effective in interactions
with a collaborative robot (cobot) [42]. Cobots are becoming increasingly popular in shared
workspaces, such as helping human workers in object transportation, helping nurses to
lift objects, or helping doctors as intelligent diagnosis systems. These collaborative robots
are designed to work with humans and can be programmed for safe interactions, made
possible due to their built-in torque sensors in every joint. However, industrial robots differ
from cobots as they do not have any built-in sensors to work safely around humans. They
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are essential in assembly and production lines, expensive, and not easily replaceable. Thus,
ensuring human workers’ safety in such industrial environments is important.

In recent years, a contemporary force myography (FMG) technique has gained research
interest, like the sEMG technique. FMG is a non-invasive, wearable technology that usually
employs force sensing resistors (FSRs) to detect resistance changes when the pressure
changes during muscle contractions [43]. As a promising biotechnology, the FMG technique
was studied in human–machine interaction (HMI) and human–robot interaction (HRI) [44–47].
Common industrial tasks such as object transportation or handover may require the worker
to apply hand forces during interactions with the robot. Estimating the applied hand force
to interact with a robot in dynamic motions using FMG signals was found favorable in
physical interactions [48–53]. These studies implemented compliant collaboration, where a
robot’s trajectory was dictated by the applied hand force of a human worker. Admittance
control was established for the compliant collaboration, where the robot followed the same
path as the human’s applied force and direction. Supposedly, the use of FMG biosignals
could help to ensure safe interaction during collaborative tasks by signaling the robot to
push away if it approached the human worker in an unsafe manner. However, when a
robot approaches a human worker at a faster speed, it might become difficult to signal the
robot to stop. Therefore, establishing additional safety mechanisms via FMG signals will
be more practical.

In this study, our objective was to identify avoidable potential safety threats that could
cause plausible injuries during direct, physical interactions between a human worker and
a robot. The proposed safety mechanism was investigated as an additional protection
layer with an underlying compliant collaboration control layer (admittance control) using
FMG biosignals. In the industrial workplace, interactive tasks between human workers
and robots are preset and are repeated daily. We defined such regular interactive tasks
as ‘pHRI-ADL’ (activities of daily life in pHRI) and use this term hereinafter in the rest
of this article. Any unwanted interaction outside the scope of pHRI-ADL activities was
considered an unsafe situation. Considering this, a few daily interactive tasks between
a human participant and a robot (a serial manipulator in this case) were considered as
normal activities, and data were collected using a wearable FMG forearm band. Using
unsupervised classification techniques, a model was trained with regular pHRI-ADL data to
learn the latent feature distributions. Three separate unsupervised data-driven approaches,
namely the isolation forest (iForest), one-class support vector machine (OCSVM), and
Mahalanobis distance (MD) algorithms, were implemented in this study. These trained
models were evaluated separately for identifying unwanted interactions where the pHRI
activity was different than usual. The unsupervised trained models detected inliers or
novel data compared to the normal data, i.e., they detected unsafe, unwanted interactions
quickly and generated alerts to warn about the hazardous situation. Figure 1 shows the
proposed occupational health and safety monitoring system using the FMG techniques.
The main contributions of this study were as follows:

− proposing an extra layer of occupational safety feature for human–robot workplaces
in addition to the compliant collaboration control layer;

− introducing single-mode biosensory FMG data for both control and safety;
− defining normal, daily interactions between a human worker and a robot that were

preset and carried out regularly as ‘pHRI-ADL’ activities via FMG-based compliant
collaboration;

− implementing unsupervised learning techniques to understand the daily human–
robot interactive tasks via iForest, OCSVM, and MD algorithms by training models
with the normal pHRI-ADL distributions;

− evaluating the trained models in detecting unsafe interactions that were novel, inlier,
or outlier to the normal distribution;

− generating warnings when unsafe or hazardous interactions were detected;
− the feasibility of the proposed system to react quickly in generating alerts for manual

or automated system override to prevent injuries.
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Figure 1. The proposed FMG-based occupational health and safety monitoring system.

In this Industry 4.0 era, automobile industries are swiftly embracing technologies such
as IoT, cloud computing, artificial intelligence, and big data analytics to achieve increasing
productivity. For collaborative tasks, the FMG technique can support controlled interactions,
i.e., compliant collaboration via data-driven approaches. In addition to this, this study
investigated the viability of FMG biofeedback to support the occupational health and safety
compliance of a human worker in a robot’s workspace via Industry 4.0 technologies.

The rest of the article is organized in several sections. Section 2 describes the materials
and methods, while Section 5 describes the obtained results and performance evaluations
of the proposed framework. Section 6 discusses limitations, related studies, and future
work, while Section 7 concludes this article.

2. Materials and Methods
2.1. UnSafe pHRI Detection: Anomoaly or Novelty?

Safety detection in human–robot interaction has become crucial due to the increasing
human–robot collaboration in industrial workplaces. Physical human–robot interactions
are unpredictable and dynamic in nature, and there are infinite ways in which a human
might act abnormally. Datasets derived from normal and abnormal pHRI activities will dif-
fer from each other, providing a basis for determining unsafe or unwanted pHRI activities
that happen suddenly and are different from usual daily pHRI activities. Unsafe/unwanted
activities are usually an unsupervised learning task problem that attempts to detect anoma-
lies or novelties in comparison to the normal data instances. However, anomalies and
novelties are both closely related to outliers and can be used as a safety indicator for mon-
itoring abnormal behavior. Both anomaly and novelty detection rely on defining what
comprises a “likely or normal” profile. An anomaly can be seen as an unexpected, sudden
change that deviates from the normal profile. Thus, we consider anomalies as unusual or
unexpected data instances within a dataset. Likewise, novelties are also anomalies in data,
meaning unusual data that are new and do not occur regularly or are simply different from
the others. Therefore, we can employ novelty detection for rare events, of which we have
very few samples, because these data exist only in new instances and do not exist in the
normal dataset. Thus, outlier detection focuses on detecting anomalies in training data,
whereas novelty detection helps in detecting anomalies in new data with uncontaminated
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training data. The novelty detection method helps in determining if these new data are
within the norm (inlier) or outside of it (outlier). Our focus is novelty detection because
unexpected pHRI interactions do not happen regularly; these data are completely new or
unknown and may overlap with inliers within the normal distributions. Therefore, in this
study, we considered usual pHRI activities of daily life (pHRI-ADL) as the normal dataset,
while novelties were defined as unsafe data from unwanted pHRI activities.

2.2. Unsupervised Learning Algorithms

Unsupervised learning is designed to characterize training data that have no true
labels associated with them. This type of algorithm uses data points (covariates or the
features) to discover useful patterns. On the other hand, supervised learning algorithms
rely on labeled training data points for training the models. In many real-life situations,
most of the time, it is difficult to obtain labels, or sometimes incomplete or partial labels
are collected. For a large dataset, it becomes time-consuming or difficult to annotate labels.
Instead of specifying labels, learning the latent patterns can provide us with intuitive
knowledge through unsupervised learning algorithms. Finding anomalies or novelties in
the data is an important aspect in monitoring fault identification or malicious or unwanted
activity and can be used to determine occupational safety hazards to avoid fatal injuries in
the workplace.

To detect unwanted or unsafe pHRI activities, in this study, we relied on three unsu-
pervised algorithms, namely isolation forest (iForest), one-class support vector machine
(OCSVM), and Mahalanobis distance (MD). The unlabeled FMG signals of several, distinct
pHRI-ADL data instances were used as a normal dataset to train a corresponding model.
The model was then evaluated for detecting unknown situations deemed as an unsafe
interaction. These algorithms are described in brief below.

(a) iForest algorithm
The isolation forest algorithm calculates the distance of a data point from the rest of

the data points and isolates it. It works well for anomaly detection in big data with linear
time complexity and low memory requirements. In this algorithm, every single isolation
tree is trained for a subset of training observations, sampled without replacements. An
isolation tree is grown by selecting a split variable and split position randomly for a subset
until each observation is set in a separate leaf node [54]. Since anomalies are few, these
samples land in separate leaf nodes with shorter distances from the root node than the
normal points.

(b) One-class learning or unsupervised SVM (OCSVM) algorithm
One-class support vector machine (OCSVM) is an unsupervised machine learning

method using a Gaussian kernel function. It learns from one class of data and then classifies
any new data by separating the new data from the original data [55]. This algorithm
standardizes the input data and selects an appropriate kernel scale parameter using a
heuristic procedure.

(c) Mahalanobis distance (MD) algorithm
For multivariate data analysis, Mahalanobis distance is used to determine the distance

between two different distributions (training and test data). As the squared MD follows
a chi-square (χ2) distribution from samples to distribution, this distance can be used to
identify amnomalies based on the critical values of the χ2 distribution. It is used instead of
the Euclidean distance to handle skewed data by considering the covariances of the distri-
butions. It converts the distributions to standard normal distributions with uncorrelated
variables by changing variances into unit variances and then measures distance as in the
Euclidean distance [56].

2.3. Physical Human–Robot Interaction Platform

For anomaly or novelty detection, interactions between a human participant and
a Kuka robotic arm (KUKA LBR IIWA 14 R820, KUKA Robotics, Augsburg, Germany)
were observed. The study protocol was approved by the Office of Research Ethics at
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Simon Fraser University, Canada (approval code: 20200226) and the participant gave his
informed written consent. A 16-channel FMG forearm band was custom-made using 16
force sensing resistors (FSRs) whose resistances changed when pressure was applied on
their surfaces, as shown in Figure 2a. The forearm FMG band had 16 FSRs (TPE 502C,
Tangio Printed Electronics, Vancouver, BC, Canada), and it was roughly 30 cm long and
connected to an external PC (Intel Core i7 processor and Nvidia GTX-1080 GPU) via a data
acquisition device (NI USB 6341, National Instruments, Austin, TX, USA) to collect data at
~50 Hz. The band was worn on the participant’s dominant right arm, covering the forearm
muscle belly, to collect muscle contraction readings during intended interactions. The
captured instantaneous FMG signals were mapped to applied forces in dynamic motion
via a data-driven approach.
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The target environment of our work was the industrial manufacturing assembly line,
where huge mechanical robots were engaged. These robots had no torque sensors in
their joints to recognize externally applied forces by human workers during interactions.
Replacing these robots or including joint torque sensors for safe human–robot collaboration
was neither cost-effective nor feasible. As we needed to investigate improved safety and
surveillance techniques for such a workspace, we monitored human interactions with a
Kuka robot in this research. The manipulator had an 820 mm reach with a 14 kg payload
and had built-in torque sensors in all joints except the end-effector. However, we did
not utilize these torque sensors, so that we could replicate similar functionalities of the
industrial robots. It came with its own Kuka Sunrise Controller and safety measures, such
as an emergency stop button. At the flange, a customized cylindrical shape gripper as the
end-effector (EEF) was attached for grasping and ease of interaction. Externally applied
hand force was recognized by an external 6-axis FT sensor (loadcell) connected between
the flange and the gripper. Figure 2b shows the Kuka robotic arm with the customized
EEF oriented at a fixed angle {0, pi, 0}. The Sunrise toolbox and V-Rep robot simulator
from Coppelia Robotics were used to establish data communication and control between
an external PC (Intel Core i7 processor and Nvidia GTX-1080 GPU) and the Kuka Sunrise
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controller. Admittance control was established for compliant collaboration and codes were
written in MATLAB. For ease of interaction, motion trajectories were confined in flexible
6-axis rectangular areas rather than fixed paths. For admittance control, the 6-axis FT
sensor was attached externally to the robot as a true force label generator for training a
convolutional neural network (CNN) model to predict the applied hand force from the
instantaneous FMG signals. The desired joint angles were read from the V-Rep simulator
using inverse kinematics (IK) and was sent to the Kuka Sunrise Controller. Then, the current
position and orientations of the EEF were collected from the Kuka Sunrise Controller, and
the desired EEF position was generated from the predicted applied hand force on the EEF
and its current position. This control mechanism could be implemented to control and
monitor large industrial assembly line robots that do not have any joint torque sensors
to recognize the external environment. Further description of this pHRI platform can be
found in [51].

2.4. pHRI Data Collection

The pHRI datasets were collected during dynamic interactions between a participant
and the Kuka robot in 1D, 2D, and 3D space. The participant grasped the cylindrical gripper
in a standing position in front of the robot and applied forces in dynamic motions wearing
a 16-channel FMG forearm band on his dominant right arm, as shown in Figure 2c. Data
for several interactions were collected in the 1D, 2D, and 3D planes. For all interactions, 5
repetitions of sample data (applied human forces in dynamic motions during interactions
with the robot) were collected. All data were balanced, and no missing values were present
in the datasets. Thus, preprocessing was not required to reduce memory consumption and
speed up training. Raw FMG signals were used as the predictor data, organized as CSV
files. Each row corresponded to one observation, while each column corresponded to one
predictor variable. Hence, for the 16-channel FMG band, 16 features or predictor variables
were present. Each interaction continued for around 60–90 s, termed as one ‘repetition’, and
contributed approximately 600–900 × 16 samples at a ~10–12 Hz sampling rate. A detailed
description of this dataset can be found in [53]. Table 1 shows the normal and abnormal
datasets that were used in this study for anomaly detection in human–robot interactions.

Table 1. pHRI data.

pHRI Data Interactions Sample Size

Normal activities:
pHRI activities of daily life (pHRI-ADL)

1D-X, Y, Z 60,743 × 16 samples
2D-XY, YZ
3D-XYZ

Abnormal activities:
Anomaly or novelty detection 2D-XZ 686–956 × 16 samples

� Normal Scenario: pHRI-ADL Training Dataset

The preplanned human–robot interactions that happened between the human partici-
pant and the Kuka robot as regular tasks were termed as the activities of daily life in pHRI
(pHRI-ADL). These activities included interactions between the participant and the Kuka
robot in 1D (X, Y, and Z directions), 2D (XY and YZ planes), and 3D (XYZ plane). In each
task (such as interactions in 1D-X), the human applied an external force in a distinguished
direction, and the robot’s trajectory became different from other interactions or tasks. Five
(5) repetitions of similar FMG data were collected for one task or interaction. Hence, a total
of 60,743 × 16 FMG samples from 30 repetitions (1D plane: 15 reps, 2D plane: 10 reps, 3D
plane: 5 reps) were collected. The variety of FMG data formed a normal training dataset to
train a few selected unsupervised models.

� Unsafe Scenario: Target Dataset

For novelty detection, interaction in the 2D-XZ plane was considered as anomalous
data, meaning that this interaction was unwanted and unsafe. Five repetitions of data,
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approximately of ~680:950 × 16 samples, were collected for cross-trial evaluation. These
test data were collected when unwanted interactions between the participant and the robot
occurred as an unplanned task. Each repetition was around one minute, and, for research
purposes, the participant repeated the same interactions several times. Thus, the suspicious
activities happened cyclically.

Interactions between the participant and the Kuka robot in the 2D-XZ plane were con-
sidered as anomalous data. During this unsafe and unwanted interaction, the participant,
standing in front of the Kuka robot, grasped the cylindrical gripper and applied forces in
the 2D- ‘XZ’ plane. In Figure 3a, the purple shaded box from the V-Rep simulator shows
the area where interactions took place. Figure 3b shows the pHRI interaction, where the
participant first pushed the robot inwards in the X direction, pushed up in the Z direction,
and then pulled outwards in the X direction and finally pulled down in the Z direction. For
ease of interaction, the motion path was confined to a 6-axis rectangular area. This 2D-XZ
pHRI activity was never performed as a regular activity; however, it had similar interactions
to the 1D-X and 1D-Z embedded in the data—for example, when the participant pushed
the Kuka robot inwards in 1D-X by approximately 200 mm, or pulled outward in 1D-X by
approximately 200 mm.
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not possible to know the exact interaction category of the plotted training FMG signals. 
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Figure 3. (a) Unwanted pHRI activities between a human participant and the Kuka robotic arm
captured via V-Rep simulator, reproduced from [51], and (b) Cartesian representation of the 2D-XZ
interactions in the 3D plane.

Figure 4 shows the FMG samples of pHRI training and test data used in this study.
The training data had a variety of interactions in the 1D, 2D, and 3D planes. Hence, it was
not possible to know the exact interaction category of the plotted training FMG signals.
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3. Implementing Novelty Detection via Unsupervised ML Algorithms

To detect anomalies during unsafe pHRI activities in the abnormal scenario, several
unsupervised models were trained with uncontaminated (without outliers) training data
(pHRI-ADL dataset) and evaluated separately. These scripts were written in MATLAB.

� iForest algorithm

In this algorithm, isolation forest was created with regular training data (pHRI-ADL)
that had no contamination or outliers. It treated all training observations as normal
observations by default. To detect anomalies in the new, abnormal data (test data), the
average path length to reach a leaf node from the root node in the trained isolation forest
was calculated for each observation, and an anomaly indicator and a score were returned.
During evaluations, the algorithm identified observations with anomaly scores above a
score threshold (was set during training) as anomalies. Anomaly scores were computed for
each row of an observation. A value of logical 1 (true) indicated that the corresponding
row of the input data was an anomaly.

� OCSVM algorithm

The OCSVM algorithm treated all training observations as normal. Input data were
standardized, a radial basis function (RBF) kernel was used, and an appropriate kernel
scale parameter was selected using a heuristic procedure. A model was trained with
uncontaminated training data of pHRI-ADL (data with no outliers) and was evaluated in
detecting anomalies in new, abnormal test data by returning anomaly indicators and scores
for the new data. By default, it identified observations with scores above a threshold value
as anomalies.

� Mahalanobis Distance

In this multivariate data analysis, we used Mahalanobis distance to determine the
distance between the two different distributions, pHRI-ADL data and abnormal data. By
default, the algorithm assumed a multivariate normal distribution with no outliers in the
training data based on the critical values of the chi-square distribution. First, Mahalanobis
distances were computed along with the mean (µ) and covariance matrix (∑) for the training
(pHRI-ADL) data. Then, the estimated µ and ∑ were used to compute distances for the
test data.

4. Performance Analysis Tools

� Anomaly Score

An anomaly can be defined as the variation between an actual value and a long-term
average value. Any data points outside the range or new within the range of the normal
distribution are marked as anomalies. The anomaly score is a value from 0 to 1, where
values less than 0.5 are considered normal and values above 0.5 are anomalies. It can also
be set as a negative score value with a large magnitude indicating a normal observation,
and a large positive value indicating an anomaly. Anomaly scores have the same length
as the observation, and each element of the scores contains an anomaly score for each
observation, i.e., one score for the corresponding row of data. In this complex multivariate
(16-channel feature distributions) anomaly detection, the outlier/inlier is usually a joint
uncommon score on at least two variables.

For the iForest algorithm [54], outliers were identified using anomaly scores based on
the average path lengths over all isolation trees. The algorithm computed the anomaly
score SiF(x) of an observation x by normalizing the path length l(x):

siF(x) = 2−
E[l(x)]
C(n) (1)

where E[l(x)] was the average path length over all isolation trees, and C(n) was the average
path length of n observations. The score approached 1 when E[l(x)] approached 0. Therefore,
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a score value close to 1 indicated an anomaly. The score approached 0 when E[l(x)]
approached n − 1. Moreover, the score approached 0.5 when E[l(x)] approached c(n).
Therefore, a score value smaller than 0.5 and close to 0 indicated a normal point. A
threshold value was used to identify observations in the new data as anomalies. The
default threshold of the maximum score value was determined when the isolation forest
was trained with the regular pHRI-ADL dataset. By default, the algorithm identified
observations with scores above the threshold as anomalies.

For the OCSVM algorithm [55], a numeric anomaly score in the range (−∞, ∞) for
each observation was returned. A negative score value with a large magnitude indicated
a normal observation, and a large positive value indicated an anomaly. As with iForest,
a threshold value was used to identify observations in the test data as anomalies. The
default threshold of the maximum score value was determined when the OCSVM model
was trained with the pHRI-ADL dataset. By default, the algorithm identified observations
with scores above the threshold as anomalies.

For the Mahalanobis distance algorithm [56], the distance from a vector x to a distribution
with mean M and covariance C was calculated as

Md =
√
(x−M)C−1(x−M)′ (2)

Here, the distance Md represented how far x was from the mean in the number of
standard deviations, x was the vector of the observation (row in a dataset), M was the
vector of mean values of the independent variables (mean of each column), and C−1 was
the inverse covariance matrix of the independent variables. For anomaly detection, MD
between every test data point and center in the n-dimension training data (pHRI-ADL
dataset) was calculated. For novelty data evaluation, the obtained mean and covariance
matrix during training were used in computing the Mahalanobis distance between the
test (abnormal) data and the normal distribution, and outliers were found based on these
distances. The maximum MD score value from the training was used as the threshold value
and observations with scores above the threshold were identified as anomalies.

� Histogram-Based Novelty Score

The performance of the algorithms in detecting patterns or anomalies was plotted
and visualized in histograms. The training distributions and test data points in the plotted
histograms showed quick identification of outliers, patterns, or trends based on the degree
of anomaly calculations. In this multivariate anomaly detection, a single histogram for each
single feature was calculated, scored separately, and combined at the end.

� Laplacian Score

This unsupervised linear feature extraction method computed the Laplacian score for
each feature based on the locality preserving property (data from the same class were often
close to each other). It selected variables with the smallest scores and ranked the features of
the observations using the Laplacian scores. This function selected two important features,
i.e., the prominent FMG signal readings from two FSR sensors that influenced the anomaly
detection most.

5. Results
5.1. Performance of the Three Algorithms

The three unsupervised classifiers were pretrained with the preset, regular activities,
i.e., with the pHRI-ADL data, and the trained models were saved as mat files for future
monitoring. These were separately evaluated on novel pHRI test data that were considered
unsafe for the human worker. Cross-trial evaluations were carried out for all five repetitions
(rep1–rep5) of the test data. The cross-trial tests replicated a real-world situation where
test data were unpredictable or unprecedented, even during repetitions of the same task.
A histogram of the score values s of training data (in blue) and s_test of test/new data (in
brown) was plotted with a vertical line at the score threshold, as shown in Figure 5. These
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histogram plots showed that the test anomaly scores were distinguishable compared to the
training scores. This justified the viability of the proposed system even when the test data
were inliers (overlapping with normal data).
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Figure 5. Detecting anomalies in unsafe pHRI test data in 2D-XZ plane (rep5): Histograms of novelty
scores of (a) iForest, (b) OCSVM, and (c) Mahalanobis distance algorithms.

For cross-trial evaluations of the test data (rep1–rep5) via a selected algorithm, the
pretrained model returned the predicted anomaly scores of the test data. For each observa-
tion of data, a score was generated, i.e., for repetition N of the test data (M X P samples),
M scores between 0 and 1 were obtained. Test anomaly scores higher than 0.45 were
considered as novel data (score was set to 1, indicating abnormal data) while lower scores
were considered as regular data (score was set to 0, indicating normal data). A confusion
matrix was generated for each test repetition, as shown in Table 2. The actual test data were
considered to have scores of 1 (only abnormal data were present, i.e., negative/TN = 0, neg-
ative data/normal were absent). The predicted scores were either 1 or 0 (either abnormal
or normal). The confusion matrix indicated predicted test scores either as abnormal (true
positive/TP) or normal (false negative/FN) data. The set threshold helped us to avoid false
positive (FP = 0) alarms and true negative (TN = 0) because the real test data lacked normal
or negative data.

Table 2. Confusion matrix during evaluation.

Predicted Anomaly Score of Test Data

Real anomaly score
of test data

1 0

1

TP
Test data were

abnormal, and the
model predicted

abnormal/novel data

FN
Test data were

abnormal, but the
model predicted

normal data

0 FP TN

For performance evaluations, accuracy in detecting novelties was calculated to find
the ratio of correctly identified abnormal test data compared to the total test data. We
defined accuracy in detecting novelties using the following equations:

Acc in detecting abnormality = (TP + TN)/(TP + FP + FN + TN) (3)

Acc in detecting normality = 1− Acc in detecting abnormality (4)

The results obtained using Equations (3) and (4) are included in Tables 3–5 under the
columns ‘Novelty Detection’ and ‘Misclassified as Normal’.
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Table 3. iForest algorithm.
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generated, i.e., 830 anomaly scores were predicted, where 92% of the test data were de-
tected as novel and unsafe in a total elapsed time of 1.52 s. Lower elapsed times were 
observed for the other repetitions. In repetition 3, the model was approximately 73% ac-
curate in detecting abnormalities, which was lower than the other repetitions. 

 Detecting Anomalies via the OCSVM algorithm 
The pretrained OCSVM model detected novelties in the test data, i.e., in each inter-

action/repetition of the unwanted pHRI activities, with accuracies in the range of 8–25%. 
The model quickly predicted the abnormality in each sample of the repetitions in less than 
1.9 s. For example, in repetition 1 (830 × 16 samples), 830 anomaly scores were predicted 
with the highest accuracy of 25% in unsafe pHRI detection within a total elapsed time of 
1.2 s. Lower elapsed times were observed for the other repetitions. In repetition 3, this 
model could only detect abnormal data in 9% of the test sample data. 

 Detecting Anomalies via the Mahalanobis Distance algorithm 
The pretrained iForest model was able to detect novelties during unsafe abnormal 

pHRI activities in the 2D-XZ plane in each interaction/repetition with accuracies of 100%. 
In each repetition, the model quickly predicted the abnormality in samples in less than 1.3 
s. For example, for each row of observations in repetition 1 (830 × 16 samples), one score 
was generated, i.e., 830 anomaly scores were predicted with 100% accuracy, where the test 
data were detected as novel and unsafe in a total elapsed time of 1.04 s. 

The Mahalanobis and the iForest models could identify unsafe pHRI activity better 
than the OCSVM model using the same test data by identifying more data as anomalies. 

3.2. Reaction Time for Safety Protocol Initialization 
Once a model could detect abnormal pHRI activity, the next step was to create an 

alert signal to indicate a safety breach for the human worker. This could trigger an emer-
gency safety protocol (either manually or automated) to initiate and prevent any severe 
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� Detecting Anomalies via iForest algorithm

The pretrained iForest model was able to detect novelties during unsafe abnormal
pHRI activities in 2D-XZ in each interaction/repetition with accuracies of 73~96%. In each
repetition, the model quickly predicted the abnormality in samples in less than 2 s. For
example, for each row of observations in repetition 1 (830 × 16 samples), one score was
generated, i.e., 830 anomaly scores were predicted, where 92% of the test data were detected
as novel and unsafe in a total elapsed time of 1.52 s. Lower elapsed times were observed
for the other repetitions. In repetition 3, the model was approximately 73% accurate in
detecting abnormalities, which was lower than the other repetitions.

� Detecting Anomalies via the OCSVM algorithm

The pretrained OCSVM model detected novelties in the test data, i.e., in each interac-
tion/repetition of the unwanted pHRI activities, with accuracies in the range of 8–25%. The
model quickly predicted the abnormality in each sample of the repetitions in less than 1.9 s.
For example, in repetition 1 (830 × 16 samples), 830 anomaly scores were predicted with
the highest accuracy of 25% in unsafe pHRI detection within a total elapsed time of 1.2 s.
Lower elapsed times were observed for the other repetitions. In repetition 3, this model
could only detect abnormal data in 9% of the test sample data.

• Detecting Anomalies via the Mahalanobis Distance algorithm

The pretrained iForest model was able to detect novelties during unsafe abnormal
pHRI activities in the 2D-XZ plane in each interaction/repetition with accuracies of 100%.
In each repetition, the model quickly predicted the abnormality in samples in less than
1.3 s. For example, for each row of observations in repetition 1 (830 × 16 samples), one
score was generated, i.e., 830 anomaly scores were predicted with 100% accuracy, where
the test data were detected as novel and unsafe in a total elapsed time of 1.04 s.

The Mahalanobis and the iForest models could identify unsafe pHRI activity better
than the OCSVM model using the same test data by identifying more data as anomalies.

5.2. Reaction Time for Safety Protocol Initialization

Once a model could detect abnormal pHRI activity, the next step was to create an alert
signal to indicate a safety breach for the human worker. This could trigger an emergency
safety protocol (either manually or automated) to initiate and prevent any severe injuries.
To measure the appropriateness of the proposed system, a detailed analysis was carried
out on the reaction time of abnormality detection to alert generation, as shown in Figure 6
and Table 6. To understand the impact, we analyzed the worst-case diagnosis of the
iForest algorithm in evaluating test data (rep 3: 686 × 16 samples). In this repetition of
test data, the iForest model could detect fewer test samples as abnormal data (189 × 16
samples) than other test repetitions. With an average sampling frequency of 10 Hz, each
row of observations was of 0.1 s or 100 ms duration, i.e., one anomaly score was created
in every 100 ms. For 686 × 16 samples of unsafe pHRI interactions (rep 3 duration), the
algorithm took 3.9 s from loading the pretrained model to generating anomaly scores over
the whole observation.
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Figure 6. Anomaly scores of test data (rep 3) via iForest algorithm: (a) anomaly scores generated by the
trained model, (b) scaled scores (scores > 0.45 were considered as novel) detecting unsafe interactions.

Table 6. Abnormality detection and reaction time via iForest algorithm (test data: rep 3).

Abnormal pHRI Test Data Novelty Detection: Elapsed Time

Total test data: 686 × 16 samples Accuracy in classifying anomaly = 72%

Detected as novel: 189 × 16 samples Response time for generating scores = 3.9 s

f = 10 Hz (10 × 16 samples/s)

T = 0.1 s = 100 ms (duration of each
observation)

Classifying anomaly score as novel data and
generating alert signal (elapsed time) = 1.036 s

It was observed that the model detected 189 × 16 samples as anomalies with scores
higher than 0.45. In this case, the elapsed time from detecting the unsafe pHRI activity to
generating an alert signal was approximately 1.036 s. Obviously, the model was faster to
react and respond even when minimal samples were detected as abnormal activities.

5.3. Normal vs. Abnormal or Unsafe pHRI Activity Detection

To understand the performance of the algorithms, first, the training data were observed
to identify if anomalies were present (Figure 7). Then, the training data were contaminated
with the test data, as shown in Table 7. Finally, the contaminated training data were again
evaluated to detect any possible anomalies (Figure 8).

Table 7. Data contamination.

Normal Training Data Contaminated Training Data

Normal dataset: X1

• 1D-X, Y, Z
• 2D-XY, YZ
• 3D-XYZ

Anomaly data: X2

• 2D-XZ (rep 3)

X dataset (X1 contaminated with X2 test data)
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Figure 7 shows the pHRI-ADL training data distributions of the normal points in
the 1D, 2D, and 3D planes. The graphs generated for the three algorithms were almost
similar for the same training dataset. The Laplacian function was used to find the highest-
ranked features among the 16-channel FMG signals. To visualize the detected outliers, data
dimensions were reduced.

In Figure 8, we contaminated pHRI-ADL training data with the unsafe test data from
interactions in the 2D-XZ plane. The graphs in this figure show the presence of novel
data (red points) in the contaminated training dataset. Features 14 and 15 ranked highest
among the 16-channel FMG signals. To visualize the detected outliers, the data dimension
was reduced.

These results support the justification of novelty detection instead of anomaly detec-
tion. As the test data were inliers to the normal pHRI-ADL distributions, these were all
over the normal distributions rather than appearing as outliers, and hence anomaly detec-
tion could not find these inliers. The fractions of detected anomalies in the contaminated
training data by the three unsupervised algorithms were 0.0506 (iForest), 0.0507 (OCSVM),
and 0.0507 (MD). The novelties identified by these methods were located near each other
in the reduced dimension. The computed fraction of data for which the three methods
returned the same identifiers was 0.0241. This showed that identifying sudden unwanted
interactions occurring during the normal HRI activities was possible.
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6. Discussion
6.1. Discussion and Limitations

To evaluate the performance of the classifiers in detecting anomalies, we used an
anomaly score, histogram-based novelty score, and Laplacian score with the same baseline
parameters and thresholds for consistencies. For example, for all three algorithms, an
anomaly score of less than 0.5 was considered normal and values above 0.5 were considered
anomalies. The detection of anomalies was plotted and visualized in histogram-based
novelty scores. The training distributions and test data points in the plotted histograms
rapidly showed the identification of outliers, patterns, or trends based on the degree of
anomaly calculations. The Laplacian score was computed for each feature based on the
locality preserving property (data from the same class were often close to each other). It
selected variables with the smallest scores and ranked the features of the observations
using the Laplacian scores.

For compliant collaboration during training and testing, motion trajectories were not
fixed between a start and end point; rather, it was bounded by 6-axis rectangular areas
in the 1D, 2D, and 3D workspaces [51]. This allowed flexible dynamic motions within
certain ranges, instead of restricted movements. To evaluate the classifiers, we trained
all three models with the same training datasets that were collected during the preset,
daily human–robot interactions. Each training interaction in the 1D-X, Y, Z plane, 2D-XY,
YZ plane, and 3D-XYZ plane was different and, hence, the collected data were different
in terms of the applied interactive forces and motion trajectories. Even in a selected
interaction, such as in the 1D-X plane, the five repetitions of collected data were not exactly
same. These pretrained models were evaluated on test data where unwanted interactions
happened between the human and the robot. The anomaly score, histogram-based novelty
score, and the Laplacian score were calculated for each model. For fair comparison, cross-
trial evaluations of the detection of unwanted interactions were carried out several times.
Likewise, due to uncertainties involved, the five repetitions of the test interactions were
not exactly same. Thus, the cross-trial evaluations showed the viability of the proposed
system even for a single test repetition scenario.

As this study was done in a strictly monitored experimental environment with a
certain setup, we defined a few regular preset tasks and one unwanted test scenario
where a human participant interacted with a 7-DoF serial manipulator. The models were
trained with different interactions in the 1D, 2D, and 3D planes, which were separate
from each other. This was done with the intention to represent a variety of pre-defined
industrial human–robot interactive tasks as regular tasks. In the test scenario, we selected
an interaction that was unwanted, undefined, impulsive, and suddenly occurring between
the human and the robot. The models were examined separately five times as cross-
trial evaluations of the test scenario. It was observed that the models were able to detect
anomalies or novel, unsafe interactions and could detect the occurrence of a potential health
and safety hazard within a second, not only for the best case (100% anomaly detection via
MD model) but also for the worst case (9% of anomaly detection via OCSVM model).

This study relied on data-driven models to learn the latent features of FMG biosignals
in detecting anomalies or safety hazards. The trained model used a variety of pHRI-ADL or
regular data to detect unusual or irregular pHRI data. During evaluation, detecting novel
or unwanted interactions was possible because the hazardous movement was significantly
different from the usual tasks. Hence, for real-time practical applications, the collection of
every possible regular activity’s data is required to ensure safety in industrial workspaces.
In a situation wherein safety hazards arise during usual interactions and the worker tries to
continue the preset fixed task, it might become difficult for the data-driven model to detect
anomalies. The model might not succeed to determine safety hazards if the unwanted
interaction becomes similar to the regular data. Therefore, the proposed safety detection
in this study can be implemented as an additional feature with the usual surveillance
monitoring that prevails in the industry.
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In contrast to multimodal safety systems, we relied on one type of biosensory data,
i.e., the FMG data only, for both the underlying compliant collaboration control layer and
the proposed safety monitoring as an additional layer. This study was an extension of the
previous works where instantaneous applied hand forces were predicted for admittance
control via a supervised convolutional neural network model [51]. The focus was to
investigate safety in collaborative tasks when the human worker had direct contact with
the robot, rather than implementing a collision-free or collision avoidance system. With
the FMG-based admittance control, a human worker could manually push away the robot
if needed, but it was not possible to know the occurrences of potential safety hazards.
This motivated us to build an additional safety layer for unwanted pHRI detection with
the same biosensory data. This helped in reducing control signal communication and
computational complexity by having one type of sensory data instead of multimodal data.
Hence, the proposed system can be used as a single source of sensory data in combination
with prominent surveillance systems such as the vision system. It can provide an additional
layer of protection within the existing safety protocol for human–robot workspaces, rather
than as a stand-alone safety system. In the future, FMG biosignals can be used with
other sensory devices such as IMU data or with vision systems for a comprehensive
workspace safety design. Therefore, although the proposed system was found viable
with the experimental training and test applications, we believe that it could feasibly be
applied in industrial scenarios of real human–robot interactive applications, although
further studies involving more human participants are required in the future.

6.2. Related Studies, Application, and Future Work

Due to increasing human robot collaborations, many safety monitoring systems prevail
in the industry and ongoing research is carried out focusing on anomaly detection. Among
all these systems, video anomaly detection provides an extra layer of protection in addition
to the robot’s own safety settings, and only uses the original surveillance videos, with no
extra cost [57]. Moreover, many smart sensory systems have been developed for monitoring
HRI activities. The authors in [58] used a capacitive sensory system to monitor data quality
using the OCSVM algorithm to achieve safe HRI. Abnormalities can also be used as an
indicator of health-related challenges. In one study, an ensemble of novelty detection
models consisting of iForest, OCSVM, local outlier factor (LoF), and robust covariance
estimation (RCE) was used for anomaly detection [59]. This study was conducted to detect
abnormalities in the daily routines of older people. In another study, upper limb spasticity
was observed via the iForest algorithm by detecting spikes in the surface electromyography
(sEMG) of the biceps and muscle resistive force [60].

In this study, observing human–robot interactions via FMG biosignals provided a
method to detect unsafe human activities. In our previous studies [48–53], human inten-
tions during motions and applied interactive forces for pHRI activities were successfully
incorporated in effective control system designs. In addition to the compliant collaboration,
this proposed unwanted pHRI activity detection system will provide an extra layer of
protection and will improve occupational health and safety monitoring. Moreover, it can
be a feasible solution for injury prevention in safer robotic systems designed for humans.
Nevertheless, more studies are required to investigate different hazardous scenarios where
the test data might be difficult to differentiate. As in this study, the training data had normal
data only; there were no abnormal data included. The test data had unwanted, abnormal
data, so there were no normal data included. However, even during unwanted interactions
in the 2D-XZ plane, some movements might have resembled some normal activities (such
as 1D-X, 1D-Z).

Adopting data-driven approaches was found to be advantageous in facilitating collab-
oration by learning motion patterns to recognize human feedback. These approaches also
helped to avoid the complex, time-consuming dynamic arm modeling of the individual
human participant. The unsupervised learning techniques used in this study showed the
viability of detecting normal or abnormal movements during human–robot interactions
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and generated alert signals for manual override. Further improvements can be achieved
by developing an automated decision-making system with collision avoidance trajectory
planning for the robot once unsafe interactions are identified.

In most pHRI studies, monitoring workers’ safety is based on camera surveillance. To
our knowledge, there is no other pHRI study using FMG biosignals to detect occupational
safety hazards in robotic workspaces. In the future, this work may be compared with
related biosignal-based human–robot interaction studies. Further studies can be conducted
involving more participants and performing industrial collaborative tasks with robots.
In this preliminary study, our focus was to investigate the viability of a single type of
biosensory data for safety monitoring along with compliant collaboration via admittance
control. The FMG signals provided useful information to interpret human motions and
to detect possible threats or hazardous situations. The study was conducted in a strictly
monitored experimental environment where one human participant wearing a forearm
FMG band interacted with a serial manipulator. Future studies can include another FMG
band on the upper arm to record shoulder abduction and adduction, an IMU sensor to
track the arm pose and orientation, and a vision system to capture unsafe interactions.
Multimodal sensory data would be more reliable in understanding human intentions and
monitoring potential safety threats during interactions in industrial workspaces. Moreover,
the approaches adopted here can be further studied in other fields where understanding
human activities can be insightful.

7. Conclusions

Common industrial human–robot collaborative tasks are usually preset daily activi-
ties for a human worker to interact with machines. Hence, observing human intentions
and motions during regular interactions via biosignals can improve occupational health
and safety monitoring. In this study, regular pHRI activity data were used to train a few
machine learning models and were interpreted as activities of daily life in pHRI (pHRI-
ADL). Observations on daily pHRI activities provided us intuitive information on human
intentions, motions, and interactive applied forces by diagnosing the underlying signal
patterns and learning latent feature distributions. Any unwanted interactions were diag-
nosed as an unsafe situation to prevent injuries by implementing safety measures in the
workplace. Three unsupervised learning algorithms (isolation forest, one-class SVM, and
Mahalanobis distance) were used to understand regular activities and then were evaluated
in detecting unwanted pHRI scenarios. These algorithms could detect novelty or unsafe
interactive activities quickly, even when test data were inliers, i.e., where the unknown
FMG signal distributions were within the normal distributions. The proposed models were
able generate anomaly scores every 100 ms, detected situations wherein safety concerns
arose, and created alert signals within 1 s of the occurrence. Hence, this study showed that
FMG biofeedback can be used to indicate unsafe situations to prevent injuries, improve
occupational health, and monitor safety via unsupervised machine learning algorithms.
With the advent of the IoT era for body-wearable devices [61], the wearable FMG armband
can be a viable solution as a control mechanism and be part of a safety monitoring system
along with other sensory devices.
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