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Abstract: Experimental research is critical for advancing medical knowledge and enhancing patient
outcomes, including in vitro and in vivo preclinical assessments. Platelet-rich fibrin (PRF) is a blood
by-product that has garnered attention in the medical and dental fields due to its potential for
tissue regeneration and wound healing. Animal models, such as rabbits and rats, have been used
to produce PRF and examine its properties and applications. PRF has demonstrated potential in
the dental and medical fields for reducing inflammation, promoting tissue repair, and accelerating
wound healing. This narrative review aims to compare existing evidence and provide guidelines
for PRF animal research, emphasizing the importance of standardizing animal models, following
ethical considerations, and maintaining transparency and accountability. The authors highlight
the necessity to use the correct relative centrifugal force (RCF), standardize centrifugal calibration,
and report detailed information about blood collection and centrifuge parameters for reproducible
results. Standardizing animal models and techniques is crucial for narrowing the gap between
laboratory research and clinical applications, ultimately enhancing the translation of findings from
bench to bedside.
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1. Introduction

Translational research is a critical process that involves the translation of basic sci-
entific discoveries into practical applications that benefit human health [1]. It consists of
bridging the gap between basic research and clinical practice by using experimental studies
to develop new techniques and procedures in the medical field. Experimental studies
play a crucial role in the development of new medical techniques and procedures, as they
provide the necessary evidence to support the effectiveness and safety of these innova-
tions. For example, clinical trials are essential to testing the efficacy of new treatments and
drugs before they are approved for use in patients. Advancing medical knowledge and
developing new treatments that improve patient outcomes would be impossible without
experimental studies, including important results derived from in vitro and in vivo pre-
clinical assessments. The presence of experimental research in translational research is a
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vital step in ensuring that scientific discoveries are translated into practical applications
that improve human health [2,3].

In the past two decades, platelet-rich fibrin (PRF) has become increasingly popular in
medicine and dentistry for its potential use in wound healing and tissue regeneration [4–8].
However, PRF’s development deviated from the typical research process as it was first used
in humans before being studied in vitro and with animal models [9]. This unconventional
approach was taken to enhance the research and gain a better understanding of the blood
by-product. This sequence of application was likely due to the urgent need for effective
treatments in human patients, leading to the rapid adoption of PRF in clinical practice. As
more knowledge and experience were gained, researchers began to study PRF in vitro and
in animal models to better understand its mechanisms of action and optimize its use [10,11].
Such studies have yielded valuable insights into the properties and potential applications
of PRF, paving the way for further translational research to develop new techniques and
procedures [12–15].

In order to improve the techniques and discover new clinical applications, animal
models, such as rabbits [16–20] and rats [21–23], have been used to produce PRF and inves-
tigate its properties and potential applications. The high concentrations of platelets, growth
factors, and other bioactive molecules make PRF useful in promoting tissue regeneration
and enhancing bone growth [11]. In the dental field, the blood by-product has been used
in various procedures to reduce inflammation, accelerate wound healing, and improve
outcomes. In the medical field, PRF has been used to treat chronic wounds, burns, and
musculoskeletal injuries, with promising results in enhancing tissue repair and reducing
inflammation [24,25].

Fibrin research has shown that fibrin clots in mammals such as mice, rats, and rabbits
can exhibit different fiber diameters and clot densities compared to human clots. These
differences have been considered when using animal models to study blood clotting and
related disorders in humans, as they can inform therapeutic development and enhance our
understanding of blood clotting mechanisms in general [26,27].

Compared to platelet-rich plasma (PRP), PRF does not necessitate the addition of
anticoagulants or other external factors during its preparation. This simplifies the process
and potentially mitigates the risk of adverse effects related to additives [27]. Nevertheless,
the anticoagulants in PRP can aid researchers in acquiring the appropriate amount of this
blood derivative for use in animal models, giving them more time during the blood draw.

The major concern about PRF’s production using animal models is the necessity to
have fast blood collection, which is essential in producing high-quality PRF as it minimizes
the risk of clotting and ensures that the concentration of platelets and other bioactive
molecules remains high. However, in some animal species, such as rabbits and rats, blood
coagulates quickly, making it necessary to collect blood rapidly to avoid clotting. In
addition, tubes with clot activators, such as silica, can also aid in blood coagulation and
make PRF’s production difficult. In addition, access to appropriate vessels (veins or arteries)
from animals can be challenging, and the amount of blood that can be obtained may be
limited. In this context, PRF has been investigated through very diverse animal models
with a great heterogeneity of methodologies, with little help available for the choice of the
best protocol for the production of this blood byproduct.

The aim of this narrative review is to compare the available evidence and provide a
helpful guideline for animal research on PRF. The guideline aims to assist researchers in
avoiding unnecessary loss of time and taking the lives of animals during the study process.
It is essential to emphasize the importance of animal welfare and ethical considerations in
research, and this guideline serves to clarify and guide future studies in this area.

2. Definitions and Search Process

Experimental studies aim to investigate the properties and potential applications of PRF.
For this narrative review, the authors conducted a literature search in PubMed/MEDLINE
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databases for experimental studies involving the most common methods of blood collection
used in animal studies for PRF production.

3. Overview of Animal Research

Animal care is a crucial aspect of any animal study, as researchers are responsible for
ensuring that their subjects are treated humanely and with the utmost respect. This consists
of providing appropriate housing, nutrition, and care to minimize any potential harm that
may be inflicted on them during the study. In addition, by establishing an ethical committee
for animal studies, researchers can ensure that all aspects of the study are reviewed by an
independent body to ensure compliance with ethical standards and regulations [28].

In addition to ethical oversight, guidelines are essential in any animal study. The
ARRIVE guidelines were developed to provide a checklist of information that should be
included in reports of in vivo experiments [29]. These guidelines help to ensure trans-
parency and consistency in reporting by providing a standardized format that contains
information about animal welfare, housing, and health status. These guidelines also ensure
that researchers provide sufficient detail on their experimental design, methods, and results,
allowing others to reproduce the study if necessary. They are of special interest in platelet
concentrate research as these products depend on the content of several growth factors
and inflammatory mediators whose production and release may be affected by different
biological factors, health status, and stress.

Similarly, the PREPARE guidelines were developed to provide a framework for the
planning phase of animal studies [30]. By considering all the factors that may influence
the study’s outcome during the planning phase, researchers can ensure their study is
well-designed and scientifically rigorous. This includes considering factors such as the
choice of animal model, sample size, experimental design, and statistical analysis.

The importance of these guidelines cannot be overstated, as they provide clear and
concise instructions for the ethical use of animals in research. They promote transparency,
consistency, and accountability, ultimately enhancing the research findings’ credibility.

Sample size calculation is another critical aspect of studies involving animals [31,32].
By determining the minimum number of animals required to achieve statistical power,
researchers can ensure that their research is adequately powered to detect any effects of
the intervention or treatment being tested. Furthermore, sample size calculations consider
factors such as the expected effect size, variability, and significance level to ensure the study
is well-designed and scientifically rigorous. Adequate sample sizes also help to minimize
the number of animals used in the study, reducing any potential harm that may be inflicted
on them.

4. Considerations on Blood Collection

When collecting blood from animals for research, it is essential to prioritize the safety
and well-being of the animals, which requires adhering to similar guidelines as those
followed in human blood donation. One fundamental recommendation is the “10% rule”,
which states that the amount of blood drawn should not exceed 10% of the animal’s
total blood volume [33,34]. For instance, a 2 kg rabbit has an average blood volume of
approximately 55–70 mL per kilogram of body weight, translating to a total blood volume
of around 110–140 mL. Hence, based on the 10% rule, a maximum of 11–14 mL of blood
can be safely collected from this rabbit to avoid any adverse effects. By following these
guidelines, researchers can collect blood from animals safely and humanely in a manner
that does not jeopardize their health.

Similarly, when collecting blood from rats, it is essential to use proper techniques and
equipment. The amount of blood that can be safely collected from a rat depends on several
factors, including body weight, age, and strain. As a general guideline, the amount of blood
that can be safely drawn from a rat should not exceed 10% of its total blood volume. For
example, a 250-g rat has a total blood volume of approximately 15–20 mL, so a maximum
of 1.5–2 mL of blood can be safely collected from this rat.
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In addition, ensuring safe and adequate blood collection involves adhering to proper
techniques and equipment, and selecting the appropriate vessel and blood flow for the
study type. The choice of vessel and blood flow depends on the desired blood by-product
and its specific requirements. For instance, in PRP studies [35–39], anticoagulants are
used, such as sodium citrate, which do not require fast blood flow to the collection tube.
Conversely, for PRF studies, a vessel with rapid blood flow is necessary due to the absence
of anticoagulants and the use of clot activators such as silica, making fast blood obtention
essential to produce this blood concentrate.

5. Venipuncture of Rats

Blood collection in rats is a common procedure in many research studies that require
blood samples for analysis (e.g., cytokines and growth factors) or for blood concentrate
production [40–46]. There are several anatomical sites from where blood can be collected
from rats; the most common are the tail vein, intracardiac function, and orbital sinus
(Table 1).

Table 1. Data was collected from the PRF process using the rat model in the last five years, including
one from 2023.

Author and
Year Breed Animal

Size
Number of

Animals
Blood

Collected (mL)
Centrifuge

(RPM/min or RCF) Donor Area

Akyildiz et al.
(2018) [44]

Sprague-Dawley
rats 340–380 g 23 4 3000 rpm/10 min Intracardiac

puncture
Alizadeh et al.

(2023) [45] Wistar rats 230–300 g NR NR 2700 rpm/12 min Orbital sinus

Alsherif et al.
(2020) [46] Wistar rats 300–360 g 10

(PRF group) 4 2000 rpm/10 min
(400 RCF) Orbital sinus

Awadeen et al.
(2020) [47]

Sprague-Dawley
rats NR 63 10 3000 rpm/10 min Orbital sinus

da Silva et al.
(2022) [11] Wistar rats 350–450 g 24 3

2700 rpm/12 min
(701 RCF-max) and
1500 rpm/14 min

(216 RCF-max)

Intracardiac
puncture

Demirel et al.
(2018) [48]

Sprague-Dawley
rats 400–450 g 28 16 3000 rpm/13 min Intracardiac

puncture
Engler-Pinto

et al. (2019) [42] Wistar rats 250–300 g 8 3.5 2700 rpm/12 min Intracardiac
puncture

Grecu et al.
(2019) [49] Wistar rats 220–420 g 35 10 1300 rpm/8 min

(400 RCF)
Intracardiac

puncture
Grecu et al.
(2019) [50] Wistar rats 220–420 g 35 (scarified to

produce PRF) 10 1300 rpm/8 min
(400 RCF)

Intracardiac
puncture

Huang et al.
(2020) [23]

Sprague-Dawley
rats 180–220 g 24 (sacrificed to

produce PRF) 5 400 g/10 min NR

Jamalpour et al.
(2022) [51] Wistar rats 300–350 g 60 2

1500 rpm/14 min
and

2700 rpm/12 min
Orbital sinus

Mirhaj et al.
(2022) [52] Wistar rats 250–300 g 3

(PRF group) NR 2700 rpm/12 min Orbital sinus

Mourad et al.
(2022) [53] Wistar rats 250–300 g 30 2 3000 rpm/10 min Tail vein

Neves-Atti et al.
(2022) [54]

Spontaneously
hypertensive rats 250 g 40 6 3000 rpm/10 min Intracardiac

puncture
Nica et al.
(2019) [55] Wistar rats 460–550 g 40 9 to 12 450 g/12 min Intracardiac

puncture
Nugraha et al.

(2018) [56] Wistar rats 250 g 36 1.5 3000 rpm/10 min Intracardiac
puncture
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Table 1. Cont.

Author and
Year Breed Animal

Size
Number of

Animals
Blood

Collected (mL)
Centrifuge

(RPM/min or RCF) Donor Area

Özçay et al.
(2018) [22]

Sprague-Dawley
rats 250–300 g 40 1 3000 rpm/10 min Intracardiac

puncture
Özçay et al.
(2020) [40]

Sprague-Dawley
rats 250–300 g 10 (PRF group) 1 3000 rpm/10 min Intracardiac

puncture

Padilha et al.
(2019) [57] Wistar rats 300–400 g

1 animal
scarified per

group
9 3000 rpm/12 min Intracardiac

puncture

Rady et al.
(2022) [19] Wistar rats 175–200 g 36 2 3000 rpm/10 min Tail vein

Silveira et al.
(2022) [58] Wistar rats 320 g

54 (2 animals
scarified for

PRF)
10 2700 rpm/12 min

(857 RCF max)
Intracardiac

puncture

Sumida et al.
(2019) [59] Wistar rats 400–450 g 23 6 890 g/13 min Intracardiac

puncture
Tavakoli et al.

(2022) [60] Wistar rats 400 g NR 6 1500 rpm/14 min Orbital sinus

Tayşi et al.
(2018) [61]

Sprague-Dawley
rats 240–260 g

60 (including a
sacrigication

group)
10 to 15 3000 rpm/10 min

(400 RCF)
Intracardiac

puncture

Torul et al.
(2018) [39] Wistar rats 200–250 g 30 2 3000 rpm/10 min

(400 RCF) Tail vein

Vares et al.
(2021) [62] Wistar rats 250–280 g 32 2 3000 rpm/12 min

(400 RCF)
Intracardiac

puncture
Wang et al.
(2021) [41]

Sprague-Dawley
rats NR 30 5 400 RCF/10 min Abdominal

aortic
Zhang et al.
(2019) [63]

Sprague-Dawley
rats 210–310 g 20 5 3000 rpm/10 min Abdominal

aortic
Zhang et al.
(2022) [64]

Sprague-Dawley
rats 250–300 g 32 3.5 600 RCF Intracardiac

puncture
RCF = relative centrifugal force; NR = not reported.

Blood collection from the tail vein is relatively easy and minimally invasive, making it
a preferred option for many researchers. The rat’s tail is first warmed with a heat lamp to
dilate the veins, and sometimes a small incision is made to collect the blood. This method
is used for collecting small amounts of blood and is suitable for tests that require minimal
manipulation of the blood sample.

Intracardiac is a more invasive blood collection method involving accessing the heart
directly. It requires surgical skills and experience and should be performed under anesthesia
(Figure 1). This method allows for the collection of larger volumes of blood and is more
suitable for tests that require more extensive manipulation of the blood sample. Therefore,
intracardiac should be the first area of election to produce the PRF from the rats.

Table 1 shows another option for blood collection in rats, the orbital sinus that involves
accessing the veins located behind the rat’s eyes (Figure 2). Although this blood collection
method is simple to carry out and is applicable for tests, with minimal manipulation of
blood samples and smaller volumes, it may be ineffective in situations where low blood
flow is an issue. Insufficient blood flow, which can result from certain medical conditions
or injuries, may restrict the amount of blood obtained using this method. Thus, in such
circumstances, alternative blood collection methods such as venous or arterial puncture
may need to be used to obtain the required amount of blood for testing. These observations
provide a comprehensive view of the advantages and limitations of this blood collection
method and emphasize the significance of considering alternative techniques when blood
flow is reduced.
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Figure 1. (A) Intracardiac puncture in the rat’s heart using a syringe with a needle ranging between
18 to 23G; (B) Blood placed in tube (without additives); (C) The tube is then quickly placed in the
centrifuge, following protocols for PRF production, rpm, time, and relative centrifugal force (RCF);
(D) PRF is produced after following the previous steps.
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Figure 2. (A) Orbital sinus puncture in the rat’s orbital area using a syringe with a needle ranging
between 21–23G; (B) Blood placed in a tube/falcon (without additives); (C) The tube is then quickly
placed in the centrifuge, following protocols for PRF production, rpm, time, and RCF; (D) PRF is
produced after following the previous steps.

Once the blood sample is collected for PRF production, it is essential to understand
that the coagulation time for rat blood is around 2–5 min, which is faster than the human
coagulation time of 5–10 min [65–70]. Considering this information, the researcher needs a
fast blood collection from a vessel with satisfactory blood flow. After that, the tube must go
quickly to the centrifugation process.

In terms of the number of cells in the blood, rats have a higher number of red blood
cells and a lower number of white blood cells compared to humans. It is important to note
that the platelet count in rats can vary widely depending on various factors such as age, sex,
strain or breed, and health status. The platelet count in rats can range between 600,000 and
1,500,000. Therefore, it is recommended to consider these factors when interpreting the
platelet count in rats for PRF production. Additionally, the quantity of cytokines and
growth factors in rat blood varies based on these [71–73]. Therefore, it is essential to
consider these factors when conducting research using rat blood samples and comparing
data from different studies in the literature.
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6. Venipuncture of Rabbits

Rabbits are another animal model used to study different types of blood concen-
trates [74–79]. Considering the animal’s anatomy, there are several areas where blood can
be collected from rabbits. The most common areas found in studies involving PRF include
the ear vein, intracardiac, and jugular (Table 2).

Table 2. Data was collected from the PRF process using the rabbit model in the last three years.

Author and Year Breed Animal
Size

Number of
Animals

Blood
Collected (mL)

Centrifuge
(RPM/min or RCF) Donor Area

Choi et al.
(2021) [77] New Zealand 2.5–3 kg 33 5 2700 rpm/12 min NR

Damayanti et al.
(2022) [78] New Zealand 3–4 kg 18 3 3200 rpm/10 min Ear

Dereli-Can et al.
(2020) [79] New Zealand 3.0–3.5 kg 45 5 2700 rpm/12 min Femoral vein

Karayürek et al.
(2019) [80] New Zealand 2.6–3.9 kg 28 8 3000 rpm/10 min Ear

Kim et al.
(2021) [81] New Zealand 3.0–4.0 kg 12 10 3000 rpm/10 min Ear

Kinoshita et al.
(2021) [82] New Zealand 3.5–4.2 kg 18 10 2400–3000 rpm/

13 min NR

Kızıldağ et al.
(2020) [83] New Zealand 3.0–3.5 kg 18 5 2700 rpm/12 min Ear

Koyanagi et al.
(2022) [74] New Zealand 3.5–4.0 kg 5 2.5 700 RCF/12 min Ear

Li et al.
(2022) [73] New Zealand 2 ± 0.2 kg 52 5 2000 RCF/5 min Intracardiac

puncture
Liu et al.

(2021) [84] New Zealand 3–4 kg 12 10 3000 rpm/10 min Ear

Liu et al.
(2019) [72] New Zealand 2.8 and 4 kg 12 5 3000 rpm/10 min Ear

Mogharehabed et al.
(2022) [76] New Zealand 1.5 kg 20 9 2700 rpm

(408 RCF)/12 min NR

Mu et al.
(2020) [71] New Zealand 3.0–3.5 kg 16 10 700 rpm/3 min NR

Mudalal et al.
(2019) [85] New Zealand 3.0–3.5 kg 12 10 3000 rpm

(1278 RCF)/12 min NR

Rezuc et al.
(2020) [86] New Zealand 2 kg 12 8 3000 rpm/

400 RCF/10 min Ear

Salih et al.
(2018) [87] New Zealand 1.5–2 kg 20 3 3000 rpm/10 min Intracardiac

puncture
Şentürk et al.

(2020) [14] New Zealand 2.0–3.0 kg 27 10 3500 rpm/15 min Ear

Shanei et al.
(2022) [15] New Zealand 2.5–3 kg 5 5 2700 rpm/8 min Ear

Taufik et al.
(2023) [16] New Zealand 2.0–3.5 kg 15 10 3000 rpm/10 min Ear

Wang et al.
(2022) [17] New Zealand 3–3.5 kg 10 10 3000 rpm/12 min Ear

Wong et al.
(2021) [88] New Zealand 2–2.5 kg 24 8 2700 rpm/10 min Ear

Zalama et al.
(2022) [18] New Zealand N/D 30 NR NR NR

Zhang et al.
(2023) [75] New Zealand 3.5 ± 0.5 kg 9 5 1300 rpm/14 min NR

RCF = relative centrifugal force; NR = not reported.

The ear vein is a less-invasive method for collecting small volumes of blood from
rabbits (Figure 3). This method is relatively easy, making it a preferred option for many
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researchers (Table 2). The rabbit’s ear usually is warmed to dilate the veins to collect the
blood. The ear vein is the most common area used by researchers to produce PRF (Table 2).
However, this area does not offer a large amount of blood in a favorable flow to produce the
PRF membrane. Therefore, it should not be considered the first area of election to produce
more than one or a larger PRF membrane.
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Figure 3. (A) Ear vein puncture in the rabbit using a syringe with a needle ranging between 21 to
23G; (B) Blood placed in a tube/falcon (without additives); (C) The tube is then quickly placed in the
centrifuge, following protocols for PRF production, rpm, time, and RCF; (D) PRF is produced after
following the previous steps.

Intracardiac function is a more invasive method of blood collection that involves
accessing the heart directly. It requires surgical skills and experience and should be per-
formed under anesthesia. As was described for the rat model, this method allows for the
collection of larger volumes of blood and is more suitable for extensive manipulation of the
blood sample.

The jugular vein puncture is another method for collecting blood in rabbits that
involves accessing the veins located in the neck area (Figure 4). This method is convenient
to perform, and it is used for collecting larger volumes of blood and is best suited for the
production of PRF and other blood concentrates. The jugular vein allows a faster and more
significant amount of blood than the marginal ear vein, making it less stressful for the
rabbit than a heart puncture [87].

The coagulation time for rabbit blood is around 5 to 10 min, which is similar to the
coagulation time in humans. In addition, they are often considered the best animal model
to study human platelets due to their similarities in platelet function and regulation [88–95].
Regarding platelet count, rabbits have a similar range of platelet numbers compared to
humans, with an average platelet count ranging from 150,000 to 450,000 platelets per
microliter of blood. However, there may be some differences in the size and distribution of
platelets between rabbits and humans, which can impact platelet function and response to
different stimuli [70,96].

In addition, comparing the number of cells in the blood, rabbits have a similar range of
red and white blood cells compared to humans. And the number of cytokines and growth
factors in rabbit blood can vary based on the age, sex, and strain of the rabbit [96,97].
Therefore, it is crucial to consider these factors when conducting research using rabbit
blood samples [70].

Regarding coagulation time, rabbit blood has a slightly longer coagulation time than
rat blood. However, both are faster than the human coagulation time.
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Figure 4. (A) The jugular vein puncture in the rabbit’s neck using a syringe with a needle ranging
between 18–23G; (B) Blood placed in a tube/falcon (without additives); (C) The tube is then quickly
placed in the centrifuge, following protocols for PRF production, rpm, time, and RCF; (D) PRF is
produced after following the previous steps.

7. Venipuncture of Dogs

Blood collection from dogs for experimental research involving blood concentrates is
a common practice. The most commonly used methods for blood collection in dogs include
venipuncture of the cephalic, saphenous (lower limb veins), or jugular veins (Table 3). The
choice of the site for blood collection depends on the animal’s size, temperament, and the
amount of blood needed for the study.

Table 3. Data was collected from the PRF process using the dog model.

Author and Year Breed Animal
Size

Number of
Animals

Blood
Collected (mL)

Centrifuge
(RPM/min or RCF) Donor Area

Alenazy et al. (2021) [95] Mixed
breed dog NR 4 10 3000 rpm/10 min NR

Anwar et al. (2022) [96] Mixed
breed dog 9–14 kg 9 20 2500 rpm/15 min NR

Benalcázar et al.
(2022) [97] Beagle dog NR 13 18 2700 rpm/12 min NR

El Halaby et al.
(2020) [98]

Mixed
breed dog NR 9 20 3000 rpm/10 min Right cephalic

vein
Jeong et al. (2013) [99] NR 10–15 kg 6 10 400 RCF/10 min NR

Ji et al. (2015) [100] NR 12–15 kg NR 5 3000 rpm/5 min Lower limb
vein

Kazemi et al. (2014) [101] Mixed
breed dog 20–30 kg 12 20 3000 rpm/10 min Jugular vein

Kazemi et al. (2017) [102] Mixed
breed dog 18–40 kg 12 20 3000 rpm/10 min Jugular vein

Mohammed et al.
(2021) [103]

Mixed
breed dog 18–23 kg 8 5 400 RCF/10 min Lower limb

vein
Neiva et al. (2016) [104] Beagle dog NR 8 NR 2700 rpm/12 min NR
Park et al. (2022) [105] Beagle dog NR 7 NR 408 RCF—time NR NR
Park et al. (2016) [106] NR 15 kg 6 10 3000 rpm/12 min NR
Park et al. (2023) [107] Beagle dog 15 kg 7 20 1300 rpm/8 min Jugular vein

Xuan et al. (2014) [108] Mixed
breed dog 15–20 kg 6 20 2400 rpm/10 min NR

Zhou et al. (2017) [109] Beagle dog NR 3 10 NR Antecubital
vein

RCF = relative centrifugal force; NR = not reported.
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The coagulation time in dogs is similar to that of humans, usually taking around 2
to 10 min. The number of cells in the blood, cytokines, and growth factors in dogs is also
similar to those found in humans [110,111]. However, it is important to note that there can
be individual variations in these factors between dogs, as well as between different breeds
and ages.

When compared to other animals used in experimental research, such as rats or rabbits,
dogs have a longer coagulation time. This difference should be considered when designing
studies that involve clotting factors or blood coagulation.

Regarding platelet count, dogs have a higher platelet count than humans, with an
average of 200,000 to 500,000 platelets per microliter of blood [111]. Thus, this difference
should also be taken into account when designing experiments that involve platelets.

8. Venipuncture of Pigs and Mini-Pigs

Blood collection in pigs and mini-pigs for studies in blood concentrates is a commonly
used technique in experimental research [112–117]. The choice of blood collection site in
pigs and mini-pigs will depend on the size and age of the animal. In PRF studies, the
most commonly used areas for blood collection in pigs and mini-pigs are the precaval vein,
jugular vein, and ear vein (Table 4).

Table 4. Data was collected from the PRF process using the pig model.

Author and Year Breed Animal Size Number of
Animals

Blood
Collected (mL)

Centrifuge
(RPM/min or RCF) Donor Area

Chen et al. (2014) [113] Mini-pig 25–30 kg 20 8 3000 rpm/10 min Superior vena
cava

Li et al. (2013) [116] Pig NR NR 10 2100 rpm/12 min Precaval vein
Li et al. (2014) [117] Pig NR NR 10 2100 rpm/12 min Precaval vein

Sheu et al. (2017) [118] Mini-pig 21.8 kg 6 8 3000 rpm/10 min Right jugular
vein

Tsai et al. (2019) [114] Mini-pig 26.6 ± 4.1 kg 6 40 1300 g/15 min Internal
jugular vein

Yang et al. (2012) [115] Pig 6.8–11.2 kg 21 8 3000 rpm/10 min Right jugular
vein

Yilmaz et al. (2014) [112] Pig 60 ± 5 kg 3 10 400 RCF/10 min Ear vein
RCF = relative centrifugal force; NR = Not reported.

Overall, pigs and mini-pigs are valuable models for experimental research. The use
of pigs and mini-pigs in biomedical research can provide important insights into human
health and disease. Careful consideration should be given to the choice of blood collection
site to ensure minimal stress to the animal and maximum accuracy of results.

The time for pig blood coagulation is approximately 2 to 5 min, which is similar to
human coagulation. This time may vary depending on the breed, age, and health status
of the animal. The number of cells in the blood, the quantity of cytokines, and the growth
factors in pig blood are also similar to that in humans. However, the platelet range is
between 250,000 to 600,000 per microliter of blood [67].

It is worth noting that pigs are often used as animal models for studying human health
and diseases. This is due to their anatomical and physiological similarity to humans and
their porcine genome being three times closer to that of humans than the rat’s genome [119].
However, researchers should be cautious when handling pigs and mini-pigs for PRF studies,
as their coagulation times can be faster than that of humans.

9. Venipuncture of Goats

Blood collection from goats for experimental research involving blood concentrates is
an important practice. The most common method for blood collection in goats is through
the jugular vein.
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The coagulation time in goats is longer than that of humans, usually taking around 3 to
7 min. The number of cells in the blood, cytokines, and growth factors in goats are also sim-
ilar to those found in humans. However, similar to dogs, there can be individual variations
in these factors between goats, as well as between different breeds and ages [67,110].

When comparing platelet counts, goats exhibit a range similar to that of humans. On
average, goats have between 100,000 and 500,000 platelets per microliter of blood, while
humans typically possess 150,000 to 450,000 platelets per microliter of blood. This difference
should also be taken into account when designing experiments that involve platelets [67].

It is important to note that goats are particularly useful as models for human research
in studying blood products, particularly fibrinogen, due to the similarity of goat and human
fibrinogen structures.

The number of cells, cytokines, and growth factors in goats is similar to those found
in humans, and goats are particularly useful in studying fibrinogen [120,121]. The lower
platelet count in goats compared to humans should be considered when designing experi-
ments that involve platelets.

To perform dependable experimental studies on platelet concentrates, researchers
must consider several vital factors that can affect the results. These factors include each
animal’s age, gender, strain or breed, and overall health, as they can significantly influence
platelet count, coagulation time (Table 5), and their corresponding averages. By addressing
these factors, studies can more effectively ensure accurate and consistent findings.

Table 5. Comparison of platelet count and coagulation time between humans and various animal
models: an overview.

Animal Platelet Count (Platelets/µL) Coagulation Time (Min)
Human 150,000–450,000 5 to 10

Rat 600,000–1,500,000 2 to 5
Rabbit 150,000–450,000 5 to 10

Dog 200,000–500,000 2 to 10
Mini-pig 250,000–600,000 2 to 5

Goat 100,000–500,000 3 to 7

10. Considerations on the Relative Centrifugal Force

Producing blood concentrates, such as PRF, requires precise adherence to protocols;
one of these is accurately calculating the relative centrifugal force (RCF) or g force required
for the centrifugation process. Errors in RCF calculations can significantly affect the
quality and reproducibility of the final product, making it vital to ensure accurate RCF
calculations in every study. Standardizing RCF values across different studies can also
enhance comparability and facilitate the transfer of scientific knowledge from animal to
human studies.

The RCF value is determined by using a formula that considers the rotor’s radius
and the revolutions per minute (rpm). The formula is an essential component of the
blood concentrate production process, and any errors in calculating the RCF value can
significantly impact the final product’s quality. Therefore, it is crucial to ensure that the
formula is accurately applied in every study to produce reliable and reproducible results.
In addition, it is recommended to use standardized methods for determining the RCF value
to enhance comparability between different studies. Overall, correctly applying the RCF
formula is critical for producing blood concentrates necessary for various scientific and
clinical applications [122–126].

Communication of scientific and clinical protocols is crucial to ensure the reproducibil-
ity of human studies in a standard format. The principles of translational research determine
that all details of a method of study should be reported to facilitate the transfer of scientific
knowledge of animal studies to humans. However, inaccuracies in reports may impair the
translation of research results. The PRF protocol is an example of such inaccuracy. The
protocol reports the 400× g centrifugation RCF but does not specify the location of the rotor
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in which the RCF was measured (mm). Therefore, to standardize the terminology for PRF
production, it is necessary to establish an approach that focuses on the RCF obtained from
the minimum radius (×1 mm), average radius (×2 mm), and maximum radius (×3 mm),
as illustrated in Figure 5. In doing so, animal studies can be conducted more accurately,
and the results can be applied more reliably to human studies.
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Figure 5. Schematic illustration of the blood centrifugation process, highlighting the minimum radius
(×1 mm), average radius (×2 mm), and maximum radius (×3 mm). It is important to note that
the relative centrifugal force (RCF) calculation is higher for ×3 mm than ×1 mm. Additionally, for
studies that use small tubes and low amounts of animal blood and for those using a commercial
centrifuge to produce PRF, the authors should consider the average radius (×2 mm) to provide the
RCF in their methods.

Obtaining standardization in centrifugal calibration is crucial for reliable and repro-
ducible results in the production of blood concentrate. The maximum RCF (×3 mm)
is the most commonly used parameter for centrifuge calibration, as it ensures the best
standardization in different models and brands.

In order to have accurate and consistent results in PRF production, it is recommended
to follow the same standardized standard for human studies and use the maximum radius
(×3 mm) to determine the RCF value. This value can be found in the literature [126] or
obtained from the centrifuge manufacturer.

However, it is essential to note that the location of the ×3 mm may vary depending on
the size and shape of the tube or hawk used for the study. Therefore, it is recommended
to include a ×2 mm measurement as a standard in the study method. This measurement
provides a reliable alternative to ×3 mm and can be used when the size or shape of the
tube or Falcon prevents the use of ×3 mm.

In addition to the use of standard measurements, it is also crucial to report all the
details of the centrifuge protocol in a standardized format to ensure reproducibility and
comparability between studies. This includes reporting the rotor’s location, the centrifuge’s
time and speed, and other relevant details. Following these guidelines, researchers can
improve the accuracy and reliability of their results and promote the advancement of
translational research in blood concentrate production.

It was important to identify the correct protocol for each centrifuge. The maximum
RCF (×3 mm) is commonly used for centrifugal calibration to obtain a more reliable
standardization. Consequently, in the standardization published for human studies, the
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maximum radius should be considered to determine the value of the RCF in the production
of blood concentrate using several centrifuges available on the market. The ×3 mm
information can be found in the literature or may be offered by the manufacturer.

The location of the ×3 mm mark for each study may also vary depending on the size
of the tube or falcon used and the centrifuge radius. If the ×3 mm mark corresponds to a
distance larger than the tube’s size, the authors should consider adding a ×2 mm mark in
the study’s methods to standardize the RCF used in the protocol.

In order to ensure consistency and quality in PRF production, it is important to follow
a standardized protocol. Protocol deviation can result in variations in the fibrin mesh,
cell count, and growth factor content, making the scientific data obtained incomparable
and potentially useless. Therefore, adhering to the established procedures for reliable and
reproducible results is crucial.

11. Conclusions

Overall, the study concludes that standardization of animal models and techniques
is essential for reducing the gap between laboratory research and clinical applications. It
is crucial to report detailed information about the materials and vessel used for blood
collection, the type of centrifuge used, rpm, RCF, and the maximum or average radius for
the calculus, as well as the size of the tube and the amount of blood collected, to ensure
reproducibility of results.
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