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Abstract: Biological communities are populations of various species interacting in a common location.
Microbial communities, which are formed by microorganisms, are ubiquitous in nature and are
increasingly used in biotechnological and biomedical applications. They are nonlinear systems
whose dynamics can be accurately described by models of ordinary differential equations (ODEs).
A number of ODE models have been proposed to describe microbial communities. However, the
structural identifiability and observability of most of them—that is, the theoretical possibility of
inferring their parameters and internal states by observing their output—have not been determined
yet. It is important to establish whether a model possesses these properties, because, in their absence,
the ability of a model to make reliable predictions may be compromised. Hence, in this paper, we
analyse these properties for the main families of microbial community models. We consider several
dimensions and measurements; overall, we analyse more than a hundred different configurations.
We find that some of them are fully identifiable and observable, but a number of cases are structurally
unidentifiable and/or unobservable under typical experimental conditions. Our results help in
deciding which modelling frameworks may be used for a given purpose in this emerging area, and
which ones should be avoided.

Keywords: dynamic modelling; systems biology; identifiability; observability; microbial communities

1. Introduction

Computational systems biology relies heavily on dynamic modelling to understand
the mechanisms of complex biological processes, with the ultimate goal of controlling and
optimising them [1]. To this end, control-theoretic concepts such as structural identifiability
and observability are being increasingly applied in this research area. Observability is the
possibility of inferring the system’s internal state from knowledge of its input and output [2],
while identifiability is the possibility of inferring its parameters [3]. Since parameters can be
considered as constant states, identifiability can be seen as a particular case of observability.
We refer to the joint analysis of structural identifiability and observability as ‘SIO’. The
concept of observability was introduced by R.E. Kalman in the 1960s and was later extended
to nonlinear systems in the 1970s [4]. Since the analysis of SIO can be very challenging
in nonlinear models, its application in biological modelling has become widespread only
recently, thanks to computational advances [5].

Microbial communities or consortia are a specific class of biological systems that result
from the coexistence of different species of microorganisms. Despite their abundance, de-
tailed information on the composition and function of microbial communities (both within
humans and Earth-wide) has been obtained only in the last few decades [6], thanks to exper-
imental advances in molecular biology. Likewise, the application of control-theoretic tech-
niques to their analysis is largely unexplored, despite a number of recent examples [7–9].
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The development of accurate and informative mathematical models is a key tool for un-
derstanding, predicting, and controlling the behaviour of microbial consortia [10,11]. Mod-
elling efforts often focus on bacteria, but some models also include bacteriophages, which
are viruses (also called phages) that infect bacteria [12]. Nonlinear systems of ordinary
differential equations can be used to describe the different types of interactions present in
these communities and their emergent dynamics. Different types of models are used to this
end. In some of them, such as the generalized Lotka–Volterra (gLV) models, the dynamics
arise from species–species interactions, which may be competitive or cooperative. Another
approach, that of species–metabolite interaction models, describes the emergent behaviour
of the community as a result of the competition for common resources. Several versions of
these models have been presented in the literature [13–16].

The parameters in microbial community models may have different meanings, such
as quantifying the degree of cooperation or competition between species, or representing
growth, degradation, or dilution rates. Therefore, knowledge of their values can provide
valuable insight about community dynamics. However, our ability to build informative
models can be greatly influenced by experimental limitations. Species abundances are
often inferred solely from high-throughput DNA sequence data. The resulting datasets
provide estimates of relative abundances, but typical modelling approaches—including
gLV—describe absolute abundances instead. Remien and coworkers [17] analysed the
structural identifiability of gLV models with absolute and relative data, as well as the local
practical identifiability of a synthetic community. Interestingly, they found that certain
interaction parameters were unidentifiable from relative data.

As structural identifiability is a requirement for successful parameter estimation,
observability is a requirement for successful state estimation. Since non-identifiability and
non-observability are often linked (e.g., due to one or more parameters being correlated
with a given state variable), both properties (SIO) need to be analysed jointly. The lack of
SIO can sometimes, but not always, be remedied by modifying the experimental setup so
as to measure more state variables or functions of them. Even when it is possible to first
perform parameter estimation offline, and then use the parameter estimates for the online
estimation of the unknown state variables using a state observer, it is crucial to ensure the
SIO of both experimental setups (online and offline). Otherwise, errors in the estimates
of the unknown parameters would be propagated to the estimates of the unmeasured
states. Since the SIO of a model determines the possibility of inferring its parameters
and internal state, it is crucial to analyse these properties to guarantee the reliability of
the modelling results. Thus, systematic studies on the SIO of the models available for a
particular application are useful resources; see, e.g., [18]. However, such analyses of the
properties of the most widely used microbial community models are currently lacking.
In the present paper, we perform the said study. We analyse three main types of models:
species–species interaction models, which include the aforementioned gLV as well as a
variant of them devised for compositional data; species–metabolite interaction models,
including quadratic interactions and enzymatic kinetics, and a third class of models that
are suited for therapeutic applications with phage cocktails.

2. Materials and Methods
2.1. Definitions

We study models that assume that the populations of each microorganism are suf-
ficiently large to be well described by deterministic equations. Furthermore, we neglect
spatial variability. Therefore, we use ordinary differential equation (ODE) models that can
be written as

M :

{
ẋ(t) = f (x(t), u(t), θ),
y(t) = h(x(t), u(t), θ).

(1)

where x(t) ∈ Rn, u(t) ∈ Rq, θ ∈ Rp, and y(t) ∈ Rm represent the state, input, parameter,
and output vectors, respectively. We refer to their elements with subindices, e.g., θi, xj. The
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inputs are assumed to be known, while the parameters are, in principle, unknown. The
outputs are the measured quantities, which often consist of direct measurements of state
variables, although they may also be functions of them.

Broadly speaking, we say that a model of the form (1) is observable (respectively,
structurally identifiable) if its state vector x(t) (respectively, parameter vector θ) can be deter-
mined by measuring its future outputs y(t) and inputs u(t) in a bounded time horizon. We
consider local versions of these properties, which hold in a neighbourhood of each variable.

More formally, we say that a parameter θi of (1) is structurally locally identifiable (SLI)
if, for almost all vectors θ∗, there is a neighbourhood N (θ∗) in which the following condi-
tion holds:

θ̂ ∈ N (θ∗) and y(t, θ̂) = y(t, θ∗)⇒ θ̂i = θ∗i (2)

If (2) is not fulfilled, θi is structurally unidentifiable (SU). If all its parameters are SLI, the
model is SLI; otherwise, it is SU.

Similarly, a state variable xi(τ) is observable if it can be distinguished from any other
neighbouring states from knowledge of the output y(t) and input u(t) vectors in the
interval t0 ≤ τ ≤ t ≤ t f , where t f is finite. Otherwise, xi(τ) is unobservable. A model is
called observable if all its states are observable; otherwise, it is unobservable.

We use the acronym FISPO (full input, state, and parameter observability) to refer to a
model that is SLI and observable [19].

2.2. Analysis Methods

The structural local identifiability and observability (SIO) of a nonlinear model can
be determined with a differential geometry approach, applying techniques based on the
concepts presented, e.g., in [4]. To this end, the state variables and parameters are included
in an augmented state vector, x̃ = [x, θ], and an observability–identifiability matrix ONL

I (x̃)
is calculated as follows [20]:

ONL
I (x̃) =



∂
∂x̃ h(x̃)

∂
∂x̃ (L f h(x̃))
∂

∂x̃ (L2
f h(x̃))
...

∂
∂x̃ (Ln+p−1

f h(x̃))


(3)

where L f h(x̃) is the Lie derivative of the output,

L f h(x̃) =
∂h(x̃)

∂x̃
f (x̃, u) +

j=∞

∑
j=0

∂h(x̃)
∂u(j)

u(j+1). (4)

and higher-order derivatives can be obtained as

Li
f h(x̃) =

∂Li−1
f h(x̃)

∂x̃
f (x̃, u) +

j=∞

∑
j=0

∂Li−1
f h(x̃)

∂u(j)
u(j+1) (5)

If ONL
I (x̃) has full rank, i.e., n + p, the model is FISPO. Note that the ith column of

ONL
I (x̃) contains partial derivatives with respect to the ith element of x̃, which is either a

parameter or a state variable. Therefore, when rank(ONL
I (x̃)) < n + p, the identifiability of

each parameter and the observability of each state variable can be determined by removing
the corresponding column and recalculating the matrix rank [2]: if the rank decreases, the
corresponding parameter (respectively, state variable) is SLI (respectively, observable). If it
remains constant, the parameter is SU (respectively, the state variable is nonobservable).

There is an alternative method that calculates the matrix rank more efficiently. It
adopts a differential algebra approach [21] and allows us to compute the set of observable
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variables in polynomial time. For the purpose of notation, capital letters are used for the
initial conditions of a function and its derivatives, i.e., u(r)(0) = U(r) and y(r)(0) = Y(r)

for r ≥ 0 and then U = (U(0), U(1), ...), Y = (Y(0), Y(1), ...). Moreover, having U(0)
i , U(1)

i , ...

for i = 1, ..., nu and Y(0)
j , Y(1)

j , ... for j = 1, ..., ny, then R〈U, Y〉 denotes the field adjoining
the indeterminates to R. In [21], the transcendence degree is also calculated with the rank
of ONL

I (x̃). In order to compute the matrix, a different approach is taken to avoid the
expensive calculation of the Lie derivatives. The underlying procedure can be seen in
Algorithm 1.

We have implemented both methods in the Matlab toolbox STRIKE-GOLDD [22].
In the analyses reported in this paper, we have used preferentially the second, most
efficient algorithm.

Finally, we note that it is possible to extend the approach defined in this section to
models with unmeasured inputs; see [19,23,24] for details.

Algorithm 1: Probabilistic algorithm to test local algebraic observability in poly-
nomial time

Preprocesing Construct a straight-line program encoding the variational system ∇P
with P = ˙̃x− f (u(t), x̃(t)) and the expressions used during its integration.

Specialization Specialisation of the parameters, θ∗, and the inputs, u∗

Power Series Solution Computation of the power series solution of ∇P at order nx̃ + 1
with a specialised value for the states

Jacobian computation Evaluation of ∇y on the previous results, giving the coefficients
of the Jacobian matrix

Rank computation Calculation of the matrix rank and transcendence degree
if transcendence degree = 0 then

System is algebraically observable
else

Determine which variable or variables are not observable.
end

3. Models

A number of microbial community models have been proposed within the framework
defined by (1); we describe them in the remainder of this section. Their diagrams are shown
in Figure 1.

3.1. Species–Species Interaction Models (SSI)

Species–species interaction models (SSI) assume that the dynamic behaviour can be
modelled as the result of direct interactions between species. If we only take into account
two-way interactions between species, the dynamics of each species is given by

ẋi = hi(xi) +
n

∑
j=1

fij(xi, xj) (6)

where xi is the abundance of species i, hi its intrinsic growth, and fij describes the increase
or decrease in species i due to the interaction with species j. Typical SSI models include the
classic Lotka–Volterra models of predator–prey interactions from community ecology, as
well as different versions of them.

3.1.1. Generalized Lotka–Volterra Models (gLV)

The generalized Lotka–Volterra model (gLV) is of the form (6), with the assumption
that hi = ri · xi and fij = βij · xi · xj. This yields

ẋi = ri · xi +
n

∑
j=1

βij · xi · xj (7)
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Thus, gLV models have one ri parameter per state variable, which represents its
growth rate, and one βij parameter for each pair of state variables, which represents their
interaction rate. Note that the latter are not necessarily symmetrical, i.e., βij 6= β ji.

PS

PR

m1 m2 I

Species-species
interaction (SSI)

Species-metabolite
interaction (SMI)

Phage cocktails
(PC)

S

R

X1

X2

X1

X2

Figure 1. The three main classes of microbial community models analysed in this paper. Positive
interactions (i.e., which increase the abundance of the entity to which they point) are represented by
solid arrows, while negative interactions (which decrease the abundance of the target) are represented
by dashed lines with a square end. SSI models (left) describe the dynamics as direct competition or
cooperation between species (depicted as two different bacteria). SMI models (central panel) describe
the dynamics as the result of competition for resources. In the diagram, bacterium X1 consumes
metabolite m2, while X2 consumes m1; furthermore, m2 can also be transformed into m1, which is a
by-product detrimental to X1. The panel on the right depicts a phage cocktail (PC) in which each
phage (PS, PR) attacks a specific bacterium; the immune response I is also included.

3.1.2. Composite Lotka–Volterra Models (cLV)

The composite Lotka–Volterra framework (cLV) was introduced by [14]. It was mo-
tivated by the fact that microbiome datasets are often obtained by high-throughput se-
quencing and are therefore compositional, i.e., they have an arbitrary total imposed by the
instrument [25]. In many practical applications, only relative abundance measurements
are available; however, the state variables in gLV models represent absolute abundances.
By applying a technique from compositional data analysis, the additive log-ratio transfor-
mation [26], absolute abundances are replaced with the logarithms of pairwise ratios of
the abundances. This transformation turns gLV models into cLV models, whose variables
represent relative abundances.

To derive the cLV equations, let us denote the sum of all species abundances by
N = ∑n

i=1 xi, and the relative abundance of each species by πi =
xi
N . Note that both N

and πi are time-dependent. Then, by setting the mean community size to 1, the following
equation is obtained:

d
dt

log
(

πi
πn

)
= ḡi +

n

∑
j=1

Āij · πj(t), (8)

where Āij = Aij − Anj. It is possible to include an additional term in (8) to account for
external disturbances:

d
dt

log
(

πi
πn

)
= ḡi +

n

∑
j=1

Āij · πj(t) +
nu

∑
p=1

B̄ip · up =: Fi. (9)
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Equation (9) must be rewritten as (1) in order to perform SIO analysis, which leads to

d
dt

πi = πi ·
(
Fi − F̄

)
, (10)

with F̄ = ∑n−1
j=1 πj · Fj.

3.2. Species–Metabolite Interaction Models (SMI)

It has been argued that the emergent dynamics of certain microbial communities are
more faithfully represented as competition among species for a common resource, instead
of the predator–prey relationship implied by SSI models [15]. Since the resources are
typically metabolites, the resulting models are called species–metabolite interaction models
or SMI. They have the following general structure:

ẋi = xi ∑nm
j=1 f i

j (xi, mj),

ṁj = ∑n
i=1 ∑nm

l=1 hj
il(xi, ml),

(11)

where each of the nm metabolites is denoted by mj. Several choices of interaction functions

f i
j and hj

il are possible.

3.2.1. Quadratic Species–Metabolite Interaction Models (QSMI)

The simplest SMI models assume quadratic terms. Ref. [15] argued that this assump-
tion yields a faithful representation of a well-mixed system, and included constant dilution
terms for metabolites (di) and microorganisms (d∗j ). The resulting model is of the form

ẋi = xi ·
(

∑nm
j=1 ψij ·mj − di

)
,

ṁj = mj ·
(
−∑n

i=1 kij · xi − d∗j
)
+ f j + ∑n

i=1 ∑nm
l=1 φ

j
il · xi ·ml ,

(12)

where the f j terms allow for a constant influx of metabolite j and φ
j
il for its production as

a by-product of a reaction involving another metabolite. We refer to the model described
in (12) as QSMI, a quadratic species–metabolite interaction.

3.2.2. SMI Models with Simple Monod Growth Kinetics (MSMI)

The incorporation of the Monod growth terms leads to

ẋi = xi ·
(

∑nm
j=1

Vij ·mj
Kij+mj ·xi

− di

)
,

ṁj = mj ·
(
−∑n

i=1
V∗ij ·xi

K∗ij+mj ·xi
− d∗j

)
+ f j + ∑n

i=1 ∑nm
l=1

φ
j
il ·xi ·ml

K∗il+xi ·ml
,

(13)

We refer to model (13) as MSMI. The parameterization resulting from Monod growth
kinetics has more parameters than the QSMI one. A simplified version of this class of
models (including only one metabolite) appeared in [16], where a consumer–resource
model using Monod kinetics was proposed as a means to explain the diversity of microbial
communities having different growth rates.

3.3. A Phage Cocktail Model (PC)

A particular type of microbial community includes bacteriophage viruses, also called
phages. Thanks to their ability to infect specific bacteria, phages provide an alternative
to antibiotics in therapeutic applications. Many context-specific models involving phages
have been proposed, including some [27,28] that describe their role in antimicrobial re-
sistance. Here, we consider an illustrative case study: a phage cocktail model presented
by Li et al. [29] that includes two bacterial strains, one sensitive (S) and one resistant (R)
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to therapy, the two phages that target them (PS and PR, respectively), and the immune
response I.

Ṡ = ri · S ·
(

1− S+R
KC

)
· (1− µ)− S · F(PS)− ε·I·S

1+(S+R)/KD
,

Ṙ = (r′ · R + µ · r · S) ·
(

1− S+R
KC

)
− R · F(PR)− ε·I·R

1+(S+R)/KD
,

ṖS = β · S · F(PS)− φ · S · PS −ω · PS + ρS,
İ = α · I · (1− I/KI) ·

(
S+R

S+R+KN

)
,

ṖR = β · R · F(PR)− φ · R · PR −ω · PR + ρR.

(14)

where the phage–bacteria interactions are given by F(Pi) =
φ·Pi

1+Pi/PC
for i ∈ {R, S}. Both

bacterial strains are killed by the immune response, as well as by the corresponding phage;
the kinetics of the immune killing is parameterized by ε and KD. Both bacteria undergo
logistic growth with a maximum capacity given by KC, and sensitive bacteria may mutate
into phage-resistant bacteria with a mutation probability µ. The immune response is
activated by the sum of both bacterial abundances, with activation rate α and saturation
given by KI . As for the phages, it is assumed that they have the same adsorption rate φ,
burst size β, and decay rate ω, but different injection rates, ρS and ρR. The former three
parameters are considered unknown, but the injection rates are assumed known since we
are modelling a phage therapy application.

Li et al. [29] also presented a scaled version of (14), which has a state vector given by
x = [x1, x2, x3, x4, x5] =

[
S

KD
, R

KD
, PS

PC
, I

KI
, PR

PC

]
and the following equations:

ẋ1 = r · x1 ·
(

1− x1+x2
KCD

)
· (1− µ)− KPD · x1 · I(x3)− ε̃·x4·x1

1+x1+x2
,

ẋ2 = (r′ · x2 + r · x1) ·
(

1− x1+x2
KCD

)
· µ− KPD · x2 · I(x5)− ε̃·x4·x2

1+x1+x2
,

ẋ3 = β · x1 · I(x3)− ψ · x1 · x3 −ω · x3 + q · u1,
ẋ4 = α · x4 · (1− x4) ·

(
x1+x2

x1+x2+KND

)
,

ẋ5 = β · x2 · I(x5)− ψ · x2 · x5 −ω · x53 + q · u2.

(15)

where I(xi) =
ψ·xi
1+xi

for i ∈ {3, 5}.

4. Results

We have used the approach described in Section 2 to analyse the SIO of the models
described in Section 3. Since SIO depends on the type of measurements available—i.e.,
on which state variables can be measured—for each model structure, we consider several
possible measurement configurations. Furthermore, we consider models of different di-
mensions (e.g., with two or three bacterial strains, and with one or two metabolites) in
order to find general identifiability patterns, i.e., which parameters are always unidentifi-
able irrespective of the number of species included in the model. Results of the analyses
are given in Tables 1–5. The main findings and trends are discussed in the remainder of
this section.

An overview of the results of gLV models can be seen in Table 1. The gLV models are
FISPO if and only if all their state variables are outputs, i.e., if their absolute abundances
are measured. If only some of its state variables are measured, some interaction rates (β)
are unidentifiable—specifically, the ones related to the interactions among the unmeasured
species and the other species. The interaction rates between two measured species remain
identifiable. In contrast, when the measurements consist of relative abundances, all the
interaction rates (β) are unidentifiable. Growth rates (r) are always identifiable, both with
absolute and relative measurements. As for observability, a state variable is observable if
and only if it is measured in absolute terms.
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Table 1. gLV. Results for the generalized Lotka–Volterra models.

x y Id Non-Id Obs Non-Obs

x1, x2

x1, x2 all - all -
xi r∗, β∗i β∗j xi xj

RM r∗ β∗ - x∗

x1, x2, x3

x1, x2, x3 all - all -
xj, xk r∗, β∗j, β∗k β∗i xj, xk xi

xi r∗, β∗i β∗j, β∗k xi xj, xk
RM r∗ β∗ - x∗

An asterisk as a subscript (∗) refers to the set of all the possible subindexes. We use subscripts i, j, k such that i 6= j,
i 6= k, j 6= k. RM (relative measures) means all the possible combinations of the form xi

∑n
j=1 xj

.

Table 2. cLV. Results for the composite Lotka–Volterra models.

x u y Id Non-Id Obs Non-Obs

π1
- π1 - all all -

u1 π1 B∗ g∗, A∗ all -

π1, π2

π1, π2-
πi

- all all -

π1, π2 B∗ g∗, A∗ all -u1 πi
An asterisk as a subscript (∗) refers to the set of all the possible subindexes.

Table 2 shows the results of the cLV models. Their dimensions have been reduced
taking into account that xn = 1 − ∑n−1

i=1 xi. These models were introduced for the purpose
of achieving observability, a goal that they achieve for all measurement configurations.
Their identifiability is strongly influenced by the existence of (measured) inputs. In the
absence of inputs, all the model parameters are unidentifiable. When we introduce an input,
the parameters related to the external perturbations (B) become identifiable, regardless of
which variables are measured.

Tables 3 and 4 summarize the results of the SMI models. Despite their different
kinetics, all of their state variables are observable if and only if they are outputs. As for
their identifiability, all the dilution terms d and d∗ are always identifiable. The constant
flux of a metabolite ( f ) is identifiable only if the abundance of that metabolite is an output.
The identifiability of other parameters depends on the type of kinetics. In QSMI models, k
terms are always unidentifiable. If mr is an output, ψ∗r (where the * means all the possible
indexes) are identifiable. When we measure more than one metabolite, some φ become
identifiable: if xi is observed, φ2

i1 and φ1
i2 are identifiable. In MSMI models, V∗ are all always

unidentifiable. If xi is an output, Vi∗ are identifiable. If mr is observed, φr
∗s are identifiable.

Finally, if xi and mr are both outputs, Kir and K∗ir are identifiable.
Lastly, the original formulation of the PC model is FISPO if and only if the immune

response (I) is observed (Table 5). If I is not measured, it becomes unobservable, even if the
other variables are outputs. In this case, measuring either bacterial abundances (S, R) or
phages (PS, PR) yields identical results; measuring both sets does not improve the identifia-
bility nor observability with respect to measuring a single one. For its scaled version, of all
the possible output combinations, we have considered those that are experimentally more
feasible: (x1, x2, x3, x4, x5) (x1, x2, x3, x5) (x1, x2, x4) (x1, x3, x4) (x2, x4, x5) (x3, x4, x5) (x1,
x2) (x1, x4) (x2, x4) (x3, x5) (x4). In all these cases, the model is FISPO.
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Table 3. QSMI. Results for the quadratic species–metabolite interaction models.

x y Id Non-Id Obs Non-Obs

x1, x2, m1

x∗, m1 d∗, d∗∗, f∗, ψ∗ k∗, φ∗ all -
xi , m1 d∗, d∗∗, f∗, ψ∗ k∗, φ∗ xi , m1 xj

m1 d∗, d∗∗, f∗, ψ∗ k∗, φ∗ m1 x1, x2
x∗ d∗, d∗∗ k∗, φ∗, f∗, ψ∗ x∗ m∗
xi d∗, d∗∗ k∗, φ∗, f∗, ψ∗ xi xj, m1

x1, x2, x3, m1

x∗, m1 d∗, d∗∗, f∗, ψ∗ k∗, φ∗ all -
xj, xk , m1 d∗, d∗∗, f∗, ψ∗ k∗, φ∗ xj, xk , m1 xi

xi , m1 d∗, d∗∗, f∗, ψ∗ k∗, φ∗ xi , m1 xj, xk
m1 d∗, d∗∗, f∗, ψ∗ k∗, φ∗ m1 x1, x2, x3
x∗ d∗, d∗∗ k∗, φ∗, f∗, ψ∗ x∗ m∗

xj, xk d∗, d∗∗ k∗, φ∗, f∗, ψ∗ xj, xk xi , m1
xi d∗, d∗∗ k∗, φ∗, f∗, ψ∗ xi xj, xk , mi

x1, x2, m1, m2

x∗, m∗ d∗, d∗∗, f∗, ψ∗, φ2
∗1, φ1

∗2 k∗, φ1
∗1, φ2

∗2 all -
xi , m∗ d∗, d∗∗, f∗, ψ∗, φ2

i1, φ1
i2 k∗, φ1

i1, φ2
i2, φj∗∗ xi , m∗ xj

m∗ d∗, d∗∗, f∗, ψ∗ k∗, φ∗ m∗ x∗
x∗, mr d∗, d∗∗, fr , ψ∗r , k∗, φ∗, fs, ψ∗s x∗, mr ms
xi , mr d∗, d∗∗, fr , ψ∗r k∗, φ∗, fs, ψ∗s, xi , mr xj, ms

mr d∗, d∗∗, fr , ψ∗r k∗, φ∗, fs, ψ∗s, mr x∗, ms
x∗ d∗, d∗∗ k∗, f∗, ψ∗, φ∗ x∗ m∗
xi d∗, d∗∗ k∗, f∗, ψ∗, φ∗ xi xj, m∗

x1, x2, x3, m1, m2

x∗, m∗ d∗, d∗∗, f∗, ψ∗, φ2
∗1, φ1

∗2 k∗, φ1
∗1, φ2

∗2 all -
xj, xl , m∗ d∗, d∗∗, f∗, ψ∗, φ2

j1, φ1
j2, φ2

l1, φ1
l2 k∗, φ1

j1, φ2
j2, φ1

l1, φ2
l2, φ∗3∗ xj, xl , m∗ xi

xi , m∗ d∗, d∗∗, f∗, ψ∗, φ2
i1, φ1

i2 k∗, φ1
i1, φ2

i2, φ∗j∗, φ∗l∗ xi , m∗ xj, xl

m∗ d∗, d∗∗, f∗, ψ∗ k∗, φ∗ m∗ x∗
x∗, mr d∗, d∗∗, fr , ψ∗r k∗, φ∗, fs, ψ∗s x∗, mr ms

xj, xl , mr d∗, d∗∗, fr , ψ∗r k∗, φ∗, fs, ψ∗s xj, xl , mr xi , ms
xi , mr d∗, d∗∗, fr , ψ∗r k∗, φ∗, fs, ψ∗s xi , mr xj, xl , ms

mr d∗, d∗∗, fr , ψ∗r k∗, φ∗, fs, ψ∗s mr x∗, ms
x∗ d∗, d∗∗ k∗, f∗, ψ∗, φ∗ x∗ m∗

xj, xl d∗, d∗∗ k∗, f∗, ψ∗, φ∗ xj, xl xi , m∗
xi d∗, d∗∗ k∗, f∗, ψ∗, φ∗ xi xj, xl , m∗

An asterisk as a subscript (∗) refers to the set of all the possible subindexes. We use subscripts i, j, l such that i 6= j,
i 6= l, j 6= l, and r, s such that r 6= s.

Table 4. MSMI. Results for the species–metabolite interaction models with Monod growth.

x y Id Non-Id Obs Non-Obs

x1, x2, m1

x∗, m1 d∗, d∗1 , V∗, K∗, K∗∗ , f1 V∗∗ , φ∗ all -
xi , m1 d∗, d∗1 , Vi1, Ki1, K∗i1, f1 Vj1, Kj1, V∗∗ , K∗j1, φ∗ xi , m1 xj

m1 d∗, d∗1 , f1 V∗, K∗, V∗∗ , K∗∗ , φ∗ m1 x1, x2
x∗ d∗, d∗1 , V∗ K∗, V∗∗ , K∗∗ , f1, φ∗ x∗ m∗
xi d∗, d∗∗, Vi1 Vj1, K∗, V∗∗ , K∗∗ , f 1, φ∗ xi xj, m1

x1, x2, m1, m2

x∗, m∗
d∗, d∗∗, V∗, K∗, K∗∗ , f∗, φ1

∗2,
φ2
∗1

V∗∗ , φ1
∗1, φ2

∗2 all -

xi , m∗
d∗, d∗∗, Vi∗, Ki∗, K∗i∗, f∗, φ1

∗2,
φ2
∗1

Vj∗, Kj∗, V∗∗ , K∗j∗, φ1
∗1, φ2

∗2 xi , m∗ xj

m∗ d∗, d∗∗, f∗, φ1
∗2, φ2

∗1 V∗, K∗, V∗∗ , K∗∗ , φ1
∗1, φ2

∗2 m∗ x∗
x∗, mr d∗, d∗∗, V∗, K∗r , K∗∗r , fr , φr

∗s K∗s, V∗∗ , K∗∗s, fs, φs
∗r , φr

∗r , φs
∗s x∗, mr ms

xi , mr d∗, d∗∗, Vi∗, Kir , K∗ir , fr , φr
∗s

Vj∗, Kis, Kjr , Kjs, V∗∗ , K∗is,
K∗jr , K∗js, fs, φs

∗r , φr
∗r , φs

∗s
xi , mr xj, ms

mr d∗, d∗∗, fr , φr
∗s

V∗, K∗, V∗∗ , K∗∗ , fs, φs
∗r , φr

∗r ,
φs
∗s

mr x∗, ms

x∗ d∗, d∗∗, V∗ K∗, V∗∗ , K∗∗ , f∗, φ∗ x∗ m∗
xi d∗, d∗∗, Vi∗ Vj∗, K∗, V∗∗ , K∗∗ , f∗, φ∗ xi xj, m∗
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Table 4. Cont.

x y Id Non-Id Obs Non-Obs

x1, x2, x3, m1, m2

x∗, m∗
d∗, d∗∗, V∗, K∗, K∗∗ , f∗, φ1

∗2,
φ2
∗1

V∗∗ , φ1
∗1, φ2

∗2 all -

xj, xl , m∗
d∗, d∗∗, Vj∗, Vl∗, Kj∗, Kl∗, K∗j∗,

K∗l∗, f∗, φ1
∗2, φ2

∗1
Vi∗, Ki∗, V∗∗ , K∗i∗, φ1

∗1, φ2
∗2 xj, xl , m∗ xi

xi , m∗
d∗, d∗∗, Vi∗, Ki∗, K∗i∗, f∗, φ1

∗2,
φ2
∗1

Vj∗, Vl∗, Kj∗, Kl∗, V∗∗ , K∗j∗,
K∗l∗, φ1

∗1, φ2
∗2

xi , m∗ xj, xl

m∗ d∗, d∗∗, f∗, φ1
∗2, φ2

∗1 V∗, K∗, V∗∗ , K∗∗ , φ1
∗1, φ2

∗2 m∗ x∗
x∗, mr d∗, d∗∗, V∗, K∗r , K∗∗r , fr , φr

∗s K∗s, V∗∗ , K∗∗s, fs, φs
∗r , φr

∗r , φs
∗s x∗, mr ms

xj, xl , mr
d∗, d∗∗, Vj∗, Vl∗, Kjr , Klr , K∗jr ,

K∗lr , fr , φr
∗s

Vi∗, Kjs, Kls, Ki∗, V∗∗ , K∗js,
K∗ls, K∗i∗, fs, φs

∗r , φr
∗r , φs

∗s
xj, xl , mr xi , ms

xi , mr d∗, d∗∗, Vi∗, Kir , K∗ir , fr , φr
∗s

Vj∗, Vl∗, Kis, Kj∗, Kl∗, V∗∗ ,
K∗is, K∗j∗, K∗l∗, fs, φs

∗r , φr
∗r , φs

∗s
xi , mr xj, xl , ms

mr d∗, d∗∗, fr , φr
∗s

V∗, K∗, V∗∗ , K∗∗ , fs, φs
∗r , φr

∗r ,
φs
∗s

mr x∗, ms

x∗ d∗, d∗∗, V∗ K∗, V∗∗ , K∗∗ , f∗, φ∗ x∗ m∗
xj, xl d∗, d∗∗, Vj∗, Vl∗ Vi∗, K∗, V∗∗ , K∗∗ , f∗, φ∗ xj, xl xi , m∗

xi d∗, d∗∗, Vi∗ Vj∗, Vl∗, K∗, V∗∗ , K∗∗ , f∗, φ∗ xi xj, xl , m∗
An asterisk as a subscript (∗) refers to the set of all the possible subindexes. We use subscripts i, j, l such that i 6= j,
i 6= l, j 6= l, and r, s such that r 6= s.

Table 5. PC. Results for the phage cocktail models.

x y Id Non-Id Obs Non-Obs

I, S, R, PS, PR

I all - all -
S, R, PS, PR r, r′, m, PC , KC , KD , KN , β, α, φ, ω E, KI S, R, PS, PR I

S, R r, r′, m, PC , KC , KD , KN , β, α, φ, ω E, KI S, R, PS, PR I
PS, PR r, r′, m, PC , KC , KD , KN , β, α, φ, ω E, KI S, R, PS, PR I

x1, x2, x3, x4, x5 Any all - all -

‘Any’ means that all combinations listed in Section 4 have given the same result.

5. Discussion and Conclusions

We have analysed the structural identifiability and observability (SIO) of more than
a hundred variants of the most common microbial community models. For each type of
model structure, we considered different dimensions, in order to obtain general results,
and different output configurations, so as to establish which measurements are more useful
for identification purposes.

Notable examples of the insights obtained in this study include the finding that, for
generalized Lotka–Volterra models (gLV), all the microbial species present in the community
must be measured in order to achieve full observability and identifiability. In contrast, if
one is only interested in determining their growth rates, it is sufficient to measure a single
species. Another species–species interaction formalism, the cLV, has better observability
properties than gLV at the expense of worse identifiability. As for species–metabolite
interaction models, an interesting conclusion is that the only observable state variables
are the measured ones, for both QSMI and MSMI model classes. Finally, the SIO of
the phage cocktail model that we have analysed exhibits a strong dependency on the
possibility of measuring the immune response. A scaled version of this model, which has
reduced dimensions, achieves full SIO at the cost of losing the biological meaning of its
reparameterized variables.

Thus, our results have revealed the limitations of several model variants, and facilitate
the tasks of choosing a model that is appropriate for a particular application and designing
the corresponding experimental setup. While it would be impossible to analyse all possible
model structures that could be used for the study of microbial communities in a short paper,
the present work has studied the most relevant ones, and serves as a demonstration of the
methodology that can be applied for other models.
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