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Abstract: In large-scale syngas fermentation, strong gradients in dissolved gas (CO, H2) concen-
trations are very likely to occur due to locally varying mass transfer and convection rates. Using
Euler-Lagrangian CFD simulations, we analyzed these gradients in an industrial-scale external-loop
gas-lift reactor (EL-GLR) for a wide range of biomass concentrations, considering CO inhibition for
both CO and H2 uptake. Lifeline analyses showed that micro-organisms are likely to experience
frequent (5 to 30 s) oscillations in dissolved gas concentrations with one order of magnitude. From the
lifeline analyses, we developed a conceptual scale-down simulator (stirred-tank reactor with varying
stirrer speed) to replicate industrial-scale environmental fluctuations at bench scale. The configuration
of the scale-down simulator can be adjusted to match a broad range of environmental fluctuations.
Our results suggest a preference for industrial operation at high biomass concentrations, as this
would strongly reduce inhibitory effects, provide operational flexibility and enhance the product
yield. The peaks in dissolved gas concentration were hypothesized to increase the syngas-to-ethanol
yield due to the fast uptake mechanisms in C. autoethanogenum. The proposed scale-down simulator
can be used to validate such results and to obtain data for parametrizing lumped kinetic metabolic
models that describe such short-term responses.

Keywords: syngas fermentation; scale-up; scale-down; Euler-Lagrange; CFD; industrial; lifeline;
gas-lift; stirred tank; bubble column; bioreactor

1. Introduction

Syngas fermentation is nowadays an established process for the conversion of waste
gases into chemicals [1,2]. The company LanzaTech successfully commercializes the fer-
mentation of synthesis gas (containing CO, H2 and CO2) into ethanol, and is currently
exploring other products, such as acetone and isopropanol [3]. Although mass transfer
limitations have often been accounted as a limiting factor for scale-up of syngas fermenta-
tion, such limitations could highly relieved greatly by making products which are bubble
coalescence-suppressing, such as ethanol [4].

High product specificity towards ethanol (>90%) is required for successful commercial-
ization [1]. In a process called solventogenesis, Clostridium autoethanogenum, the workhorse
of industrial-scale syngas fermentation, produces ethanol from syngas (e.g., using Reaction
(1) and (2)), while during acetogenesis, syngas is converted into acetate [5,6]. Solventogen-
esis can be triggered by low extracellular pH [7], by high extracellular concentrations of
acetate [8], or by H2 supplementation [9].

6CO + 3H2O→ C2H6O + 4CO2 (1)
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6H2 + 2CO2 → C2H6O + 4H2O (2)

Since industrial-scale reactors are of considerable size (e.g., 5 m diameter by 25 m
height, or ~500 m3, is not exceptional), the occurrence of spatial gradients is more of a
rule than an exception. Usually substrate gradients occur when the characteristic time
of reaction τrxn is significantly lower than the characteristic time of transport, which is
related to mixing for substrates in the liquid phase via the circulation time (tc), and to mass
transfer for gaseous-phase substrates (τMT) [10,11]. For large-scale syngas fermentation,
τrxn is expected to be much lower (~0.3 s; [12]) than τMT (around 10–20 s; [4]) and tc (~40 s;
Figure S1). Furthermore, both hydrostatic pressure differences (3.5 bar at the bottom vs. 1
bar near the headspace) and gas mole fraction differences (e.g., yCO decreases from 50%
to 5% from bottom to top due to consumption) cause a gradient of around factor 35 in
saturation concentration, while the volumetric mass transfer coefficient kLa might vary
locally due to turbulent fluctuations, differences in bubble size and gas hold-up [4]. We
hypothesize that all of this leads to sizeable dissolved CO and H2 concentration gradients,
which might have implications for the syngas fermentation performance.

The impact of such concentration differences on C. autoethanogenum can be studied
with Euler-Lagrangian CFD modelling. In this way, environmental changes, for example in
substrate concentration, temperature, and shear stress, can be recorded from the perspective
of the microbe (the so-called “lifeline”) [13–15]. The cells are simulated as Lagrangian flow-
followers (particles) and, when they do not interact with the flow or concentration field
(one-way coupling), are used for analyzing the environmental fluctuations occurring in the
bioreactor [16–18]. Such analyses could be used for the development of scale-down simu-
lators [19,20] or to study cell population heterogeneity [21]. Two-way coupling has to be
realized when studying the influence of biomass on the flow or concentration fields [22,23].
This method requires the use of a structured metabolic-kinetic model that could be coupled
with the CFD model in a computationally viable fashion [15]. Although very detailed
genome-scale metabolic models and kinetic ensemble models are currently available for
C. autoethanogenum and other acetogens [9,24,25], two-way coupling of these models is
currently too computationally intensive for practical application. Development of less-
detailed, yet structured, kinetic models by metabolite lumping [26–28] is key in studying
the influence of C. autoethanogenum on the flow and concentration fields more accurately.

Previously was studied how C. ljungdahlii would respond to CO gradients in a severely
mass transfer limited bubble column reactor [17]. It was hypothesized, based upon Euler-
Lagrangian results and in analogy with Escherichia coli, that in such a case transcriptional
changes were very likely (>84%) to occur, because long-lasting CO limitations would lead
to a maintenance-dominated metabolism. Redox-controlled oscillations in biomass-specific
uptake and production rates were observed in C. autoethanogenum [29], within the timescale
of hours, while substrate fluctuations in the order of seconds (~tc) or minutes are expected at
the large-scale. With scale-down simulators (e.g., based on a single vessel, multiple vessels
such as stirred tank reactors coupled with plug flow reactors, or microfluidics) the physio-
logical cell response on such short term fluctuations could be studied, so that the large-scale
environment as experienced by the cell is reproduced at bench scale [10,11,13,15,30]. The
obtained metabolite fluctuations can be used for parametrization of the lumped metabolic
models [26].

Several scale-down simulators have been developed and used in recent decades, but
the requirements of a scale-down simulator for syngas fermentation have not yet been
identified. Since there are many unknowns in the scientific literature regarding kinetics and
short-term cell responses, the execution of scale-down experiments that are representative
of the large-scale behavior is crucial for advancing the syngas fermentation field. In this
study, we propose a scale-down simulator to study industrial-scale syngas fermentation at
lab-scale. To exemplify the distinctive applicability of the proposed scale-down simulator,
a wide range of industrial biomass concentrations were studied, since this is a major
determinant for the dissolved gas concentration. The impact of gas (CO2) production on
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the dissolved gas concentration gradients, and thus possible fluctuations for the microbe,
was studied. We used our previous CFD model of an industrial-scale external-loop gas-lift
reactor (EL-GLR) and our lab observations to develop and analyses lifelines representative
for large-scale syngas fermentation [4,31].

2. Methods
2.1. Eulerian Concentration Field
2.1.1. Geometry and Flow Field

As a starting point for the simulations, the 3D reactor geometry and computed flow
field of the EL-GLR were used, for which the modelling approach was validated on pilot-
scale data, as described in [4]. The only change was in the syngas composition, from a
50% CO, 50% N2 mixture to a 50% CO, 20% H2, 30% CO2 (v/v) mixture [29]. Since the
average molar mass of these compositions is similar and the ideal gas law applies, the
mass-flow inlet boundary condition of 2.11 kg s−1 was kept the same, as well as the absolute
headspace pressure of 101 kPa.

Next to the equations for gas and liquid flow, volume fraction and turbulence, the
species equations were solved transiently for both phases to obtain the concentration fields,
by implementing user-defined functions for both mass transfer and biological reaction
(Figure 1) in ANSYS Fluent 2021R1.

Figure 1. Conceptual representation of the modelling procedure for both (a) the industrial-scale
reactor and (b) the scale-down simulator. The 3D geometry, based on publicly available pictures of
the Shougang-LanzaTech plant, the hydrodynamic model CFD of the EL-GLR and its validation on
pilot-scale data, are extensively described in our previous work [4]. The scale-down simulator is
based upon a 3 L bioreactor (2 L liquid volume), with varying durations of high and low stirrer speed
after the start-up phase. See Table S1 for details of the geometry of this reactor [32]. Created with
BioRender.com (accessed on 30 August 2022).

2.1.2. Mass Transfer Model

The mass transfer coefficient kL was computed by taking the maximum value derived
from either the Higbie [33] (Equation (3)) or the Lamont-Scott relation [34], the result of the
latter corrected for the underestimation of the energy dissipation rate ε by the k-ε model [20]
using the pneumatic power input derived from standard correlations [35] and the liquid
volume integral of ε (Equation (4)). The maximum kL of species i was used to account for
both surface layer renewal mechanisms, since high kL might be obtained in zones with high
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energy dissipation [36], but transfer in low-turbulent conditions is better approximated by
the Higbie relation [37].

kL,i = 2

√
DL,ivslip

πdb
(3)

kL,i = 0.45DL,i
1
2 (εcor/νL)

1
4 with εcor = fcorεlocal and fcor =

Pin∫
VL

εlocaldVL
(4)

In order to obtain a realistic mass transfer rate for industrial-scale syngas fermentation,
spherical bubbles with constant diameter (3 mm) were assumed, based upon our previous
work [4] (Equation (5)). Since coalescence could be suppressed by the presence of surface-
active compounds (e.g., ethanol, salts) in syngas-to-ethanol fermentations, small bubbles
can be obtained, leading to high mass transfer rates [18,31,38,39].

While our multiphase model accounted for mass loss through interphase mass transfer
and gas expansion using the ideal gas law in Fluent’s volume fraction equation [40], we
acknowledge that bubble coalescence, break-up, shrinkage by consumption, and pressure-
based bubble expansion were not considered by assuming a constant bubble size. Although
these factors could have potentially improved the accuracy of the gas phase description,
we chose to prioritize realistic gas mass transfer rates and to focus on the biological aspects
of our study. Therefore, we opted for a simplified set of equations, similar to those in [17],
that were within the scope of our work.

The saturation concentration was calculated considering the local gas phase mole
fraction. The pH equilibrium of CO2 with carbonate species could increase the gas-to-
liquid mass transfer rate in neutral (pH 6–8) and basic conditions (pH > 8); however,
this effect can be neglected, as the syngas fermentation process is operated at pH 5. To
ensure complete saturation of CO, H2, and CO2, and achieve steady-state conditions
(i.e., statistically stationary) in the average flow and concentration fields, the mass transfer
model was run for 1000 s. Although short-time fluctuations occurred, there were no long-
term dynamics, as evidenced by the constant rolling average of the global gas hold-up and
dissolved gas concentrations.

MTRi = kL,ia∆cL,i = kL,i6
εG
db

(Hi pyi − cL,i) (5)

2.1.3. Biological Reaction Modelling

The biomass-specific CO and H2 uptake rates (qi) were modelled using a recently
derived kinetic model [12]. The kinetic models for both CO and H2 uptake account for CO
inhibition (Equations (6) and (7)), and are based on the models derived by [41] and [42],
respectively.

qCO = qmax
CO

 cL,CO

KS,CO + cL,CO +
c2

L,CO
KI

 (6)

qH2 = qmax
H2

(
cL,H2

KS,H2 + cL,H2

) 1
1 + cL,CO

KI,CO

 (7)

The overall reaction rate ri is the product of qi and the biomass concentration cX, the
latter assumed to be spatio-temporally constant, as a continuous process is considered in
steady state. The reaction rates were enabled once CO and H2 concentrations reached a
steady saturation value. Once statistically stationary flow and concentration fields were
obtained (after 600 s, the rolling averages of the global dissolved gas concentrations and
hold-up remained constant), time-averaged fields were collected over an averaging period
of 200 s. Parameters used for computing the Eulerian concentration fields are provided
in Table 1.



Bioengineering 2023, 10, 518 5 of 22

Table 1. Parameters used for the simulation of the Eulerian concentration field.

Name Symbol CO H2 CO2 Unit Source

Inlet gas fraction yi,in 0.5 0.2 0.3 moli molG−1 [29]
Henry coefficient Hi 2.30 × 10−7 1.47 × 10−8 1.06 × 10−5 kg m−3 Pa−1 [43]

Diffusion coefficient DL,i 2.71 × 10−9 6.01 × 10−9 2.56 × 10−9 m2 s−1 [44]
Maximum uptake rate qmax

i 1.459 2.565 - mol molX−1 h−1 [12]
Half-saturation coefficient KS,i 0.042 0.025 - mol m−3 [12]

Inhibition coefficients KI , KI,CO 0.246 0.025 - mol2 m−6,
mol m−3 [12]

The influence of microbial CO2 production was examined by modelling two extreme
cases at 25 g L−1 biomass: (1) only CO2 consumption by H2 catabolism, qCO2 = − 1

3 qH2 ,
and (2) also including production by CO catabolism: qCO2 = 4

6 qCO − 1
3 qH2 . The case with

the most extensive dissolved gas concentration gradient was subsequently used to study
a wide range of industrially relevant conditions, by running simulations with varying
biomass concentrations (2, 5, 7.5, 10 and 25 g L−1).

The obtained dissolved gas concentrations from the Eulerian simulations for the
different biomass concentrations were compared to approximations obtained by a simple
ideal-mixing model (cL,i from Equation (8)), wherein it was assumed that all transferred
gas is directly consumed. The ideal-mixing model used the same parameters (Table 1) and
uptake kinetics (Equations (6) and (7)), an average pressure (274 kPa), and the volume-
average kLa obtained from the CFD simulations.

MTRi = (kLa)i(Hi pyi − cL,i) = qicX = ri (8)

2.2. Lifeline Analysis

Microbial lifelines were obtained for three cases with different biomass concentrations
(5, 10 and 25 g L−1). Massless Lagrangian particles were injected at the sparger and tracked
for a certain number of circulation times Ntc and particles Np. To account for turbulence
effects, Fluent’s discrete random walk model was enabled. While tracking the particles, the
current time, position, concentrations and biomass-specific uptake rates were stored in text
format every 0.1 s. Data obtained for the first 90 s (approximately one 95% mixing time
tm, Figure S1) were discarded to ensure that the particles were evenly dispersed over the
whole reactor volume during the entire analysis.

The lifelines revealed distinct periods of maxima and minima (i.e., peaks and valleys)
in both dissolved CO and H2 concentrations. Peak and valley periods were defined from
the lifelines by comparing the transient concentrations in the lifeline with the Eulerian
average dissolved gas concentration: in case the transient concentration was 2 times (for
the 5 g L−1 case) or 1.5 times (for the other cases) higher or lower than the Eulerian average
concentration for at least 1 s, then a peak or valley was assigned, for which the residence
time and the average gas concentration were stored. Probability-normalized histograms
were calculated subsequently using 100 linearly distributed bins over the whole parameter
space (e.g., residence time or average concentration in peak), except for time in the valleys,
where the maximum value was capped at 150 s. The circulation time tc was calculated as
the average time between two peaks (Equation (9)):

tc = Np
tlifeline
Npeaks

(9)

For the case with 5 g L−1 biomass, lifelines were obtained during tlifeline = 1000 s
(around 23 circulation times) and for Np = 160,000 Lagrangian trajectories. This resulted
in extensive simulation time and data usage, so that the analysis of the full dataset was
computationally unwieldy. We determined how many Lagrangian trajectories (Np) and
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circulation times (Ntc ) were needed to ensure statistical independence using the Kullback-
Leibler divergence (see Supplementary Information, Figures S2 and S3).

2.3. Design of a Scale-Down Simulator

The scale-down simulator was designed based on the results of the lifeline analysis
(i.e., the probability density functions of concentrations and residence times in peaks and
valleys). The goal of this scaled-down system is to reproduce to the best possible degree
the residence times and concentrations experienced by microbes in the full-scale system.
The starting point was a continuously operated bench-scale stirred tank reactor (CSTR)
(see Figure 1 and Table S1), for which operational conditions were varied to mimic the
large-scale environment at several biomass concentrations.

Mass transfer, dilution and consumption rates were modelled for CO, H2, CO2 and
biomass while assuming ideal mixing in the liquid phase (Equation (10)). The evolution
of the gas composition in the dispersed phase yD,i and in the headspace yH,i were also
considered (Equations (11) and (12)) since these could be highly variable during operation
at low gas flow rates. The dispersed gas volume VG,D was determined by approximating
the gas hold-up using the method proposed by [45], while volume balancing was done to
calculate the headspace gas volume VG,H.

dcL,i

dt
= D(cL,i,in − cL,i) + (kLa)i(Hi pyi − cL,i) + qicx (10)

dyD,i

dt
=

FG,in

VG,D
yi,in −

FG,out

VG,D
yD,i −

VL
VG,D

(kLa)i
(
csat

L,i − cL,i
)RT

p
with

FG,out = FG,in − ∑
i=all gases

[
(kLa)i

(
csat

L,i − cL,i
)]

VL
RT
p

(11)

dyH,i

dt
=

FG,out

VG,H
(yD,i − yH,i) (12)

The volumetric mass transfer coefficient kLa of compound i is dependent on the
superficial gas velocity and the stirrer speed [46] and was estimated by considering mass
transfer enhancement by the broth composition ( fbroth = 1.5; [31]), the temperature and
the compound-specific diffusion coefficient in water (Equation (13)). The power input was
estimated for a Rushton impeller with P0 = NPon3d5

i and the geometry used [32,45].

(kLa)i = fbroth ·
[

0.026
(

P
VL

)0.4

(uG,s)
0.5

](
1.022(T−293.15)

)√ DL,i

DL,O2

with P = α

(
P2

0 nd3
i

FG,in
0.56

)β

(13)

The overall gas consumption rate was determined using the local concentrations in the
liquid phase via Equations (6) and (7) and the biomass concentration. The biomass growth
rate µ · cX was determined using the model parameters derived in [47] for solventogenic
conditions (Equation (14)), while neglecting the maintenance requirements of the biomass.
Biomass retention in the system was assumed (e.g., [48]) and varied by adjusting the
biomass recycling rate Rrec.

µ = qCOYX/CO + qH2YX/H2 (14)

The modelled bench-scale reactor was operated with a constant dilution rate of
0.021 h−1, inlet gas flow of 0.05 vvm, temperature of 37 ◦C, pressure of 101 kPa and a
stirrer speed during start-up of 75 rpm. Initial concentrations of CO, H2, CO2 and biomass
in the liquid (Table 2) were assumed to solve the system with the ode15s function in MAT-
LAB. After the start-up period, the concentration oscillations were repeatedly imposed by
varying the stirrer speed. The obtained scale-down lifelines were analyzed using the same
routine as for the industrial-scale reactor but considering no threshold factor to discriminate
between the peaks and valleys, since these were manually imposed.
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Table 2. Parameters specifically used for the design of the scale-down simulator. Other parameters as
in Table 1.

Name Symbol CO H2 CO2 Biomass Unit Source

Inlet gas fraction yi,in 0.5 0.2 0.3 - moli molG−1 -
Inlet liquid concentration cL,i,in 0 0 0 cL,X,outRrec mol mL

−3 -
Biomass yield YX/i 0.041 0.0070 - - molX moli−1 [47]

Initial liquid concentration cL,i,0 0.1 0.03 7.4 2.03 mol mL
−3 -

3. Results
3.1. Eulerian Concentration Gradients in the Industrial Reactor
3.1.1. Influence of Gas Production

The results of Eulerian simulations with 25 g L−1 biomass in two CO2 production
cases were compared in terms of the dissolved CO concentration cL,CO distribution in the
reactor (Figure 2a,b). Although the dissolved gas concentrations in both simulations were
in the same range (as expected, since the biomass concentration was kept constant), the
spatial distribution of cL,CO within the riser was completely different. In both cases, the
highest CO concentrations appeared at the base of the riser, where the mass transfer rates
are high due to the hydrostatic pressure and high CO and H2 gas fractions. As the gas
rises, the pressure and gas fractions decrease, leading to lower mass transfer rates. More
mass transfer was observed in the top separator due to the locally increased gas hold-up
(Figure S4), leading to increased cL,CO. In the downcomer, the long biomass residence time
and poor gas renewal caused low CO concentrations.

Figure 2. Effect of CO2 production on mass transfer and dissolved gas distribution. Time-averaged
(200 s) dissolved CO concentrations cL,CO in the zy-plane (x = 0) of the EL-GLR for 25 g L−1 biomass
(a) without CO2 production and (b) by considering CO2 production. Time-dependence of the disper-
sion volume-averaged (c) εG and (d) kL,COa during the CFD-simulations. Until 2200 s, only gas-liquid
mass transfer was included (black line). At 2200 s, gas consumption was switched on in the model
in three cases: 2 g L−1 biomass without CO2 production (blue line), 25 g L−1 biomass without CO2

production (red line), 25 g L−1 biomass including CO2 production (green line).
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The gas plume is pushed towards the left side by the liquid exiting the downcomer,
causing high dissolved gas concentrations at the left side in the case without CO2 pro-
duction, which is due to reduced oscillations in the gas plume. When CO2 is considered,
the gas, and thus the dissolved syngas, concentrate towards the middle (Figure 2a,b), in
a similar manner to the case without gas consumption [4]. Additional gas is generated
halfway along the riser by microbial reaction and is transferred back to the gas phase due
to CO2 oversaturation at decreased hydrostatic pressure. The additional gas in the riser
(cf. Figure S4a,b) leads to transport dissolved CO towards the right side of the riser (cf.
Figure 2a,b) and homogenizes the dissolved gas distribution (i.e., the variation of cL,CO and
cL,H2) within the whole reactor volume (Figure S5).

Next to cL,CO, the evolution of gas hold-up εG and consequently kLa in the EL-GLR are
highly affected by gas consumption (Figure 2c,d). As the mass transfer simulation starts
without dissolved gas at t = 1200 s, there is an initial drop in εG due to gas dissolution.
The lower εG causes a drop in kLa because of their linear dependence (Equation (5)). After
about 400 s, the liquid saturates with dissolved gas and εG and kLa stabilize. When the
reaction is switched on at t = 2200 s, both εG and kLa suffer a significant drop in cases with
high biomass concentration, since high amounts of gas are being consumed (Figure 2c),
even when CO2 production is included. Similar decreases in εG were also visible in the
model in [17]. Interestingly, with little biomass in the reactor (2 g L−1), the gas conversion
decreases significantly (from 0.67 kg s−1 at 25 g L−1 to 0.16 kg s−1) due to inhibiting CO
concentrations (see Section 3.1.2 and Figure S6), and increasing εG and kLa, compared to the
cases with more biomass.

Although εG could be well predicted with empirical relations in cases without gas
consumption [4], the 33% decrease in εG by microbial gas consumption makes the prediction
of εG, and thus kLa, even more challenging in operational EL-GLRs. This observation is
especially relevant for gases rich in carbon source or electron donors, like the used syngas,
in contrast to air, where the dilution with inert N2, and typically near equimolar conversion
of O2 into CO2 results in negligible volume changes due to mass transfer.

The reduced gradients when considering CO2 production make the cL,CO variations
less impactful for the micro-organisms. Due to uncertainties regarding the metabolism,
e.g., the possibility of simultaneous CO and H2 consumption [49], the modelled cases
would either under- or overestimate the CO2 production rate. Since the case without CO2
production appears to generate larger fluctuations and thus complicate the design of the
scale-down simulator (and this is, dependent on the syngas composition, the ideal gas
fermentation process from an environmental point of view), we chose to further examine
this scenario.

3.1.2. Influence of Biomass Concentration

Dissolved gas concentration fields in the large-scale reactor were computed with 2,
5, 7.5, 10, and 25 g L−1 biomass, as shown in Figures S5 and S6. The variability that the
microbes experience in dissolved CO and H2 concentrations, as well as the corresponding
biomass-specific uptake rates qCO and qH2, are displayed in Figure 3.

The mean values for the Eulerian fields follow the same trend as the ideal-mixing
model (Equation (8)), indicating that the concentration range is predominantly cL,i < KS,i.
For cX below 5 g L−1, the high potential mass transfer capacity compared to the reaction
rate leads to strong CO inhibition, while in the 5–10 g L−1 range, the mass transfer rate is in
equilibrium with microbial syngas consumption at lower dissolved gas concentrations. At
high cX (25 g L−1), gas uptake is fast, leading to low cL,i and thus also to low uptake rates.
This decrease in qi is compensated by the greater cX, causing the volumetric reaction rate
and gas conversion to remain similar to cases with less biomass and higher biomass-specific
uptake rates (Figure S6). The ideal-mixing model suggests that an optimum qi could be
obtained at a certain biomass concentration, but the exact biomass concentration remains
difficult to be determined using the CFD models, considering the wide concentration
distribution, the non-linear kinetics, and that iteratively running these models is very time-
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consuming. As there is less inhibition at higher cX, there could be a possibility of increasing
gas conversion by supplying more gas, providing that coalescence remains suppressed by
the broth components [31].

Figure 3. Spatial variations in (a,b) dissolved CO and H2 concentrations and (c,d) biomass-specific
uptake rates, represented in boxplots, for varying biomass concentrations. The boxplots were obtained
from the 200 s time-averaged results of the CFD simulations and depict the spread around the mean
values, with each quartile representing 25% of the reactor volume, while the diamond symbol
represents the volume-averaged mean value. The dashed line is the result of a simple ideal-mixing
model, using the volume-averaged kLa from the CFD model (0.050 s−1 for CO and 0.074 s−1 for H2).

There is a large volumetric spread in the dissolved gas concentrations obtained by
the CFD models. The highest quartile of concentrations is often a factor of 10 higher
than the concentrations in the second quartile (e.g., at 5 g L−1 Q2 of cL,CO starts at around
10−2 mol m−3, while Q4 starts at 10−1 mol m−3). This would imply that the micro-organism
could experience regular concentration fluctuations of around one order of magnitude.
However, due to the non-linear nature of the CO and H2 uptake kinetics, such fluctuations
only lead to minor oscillations in biomass-specific uptake rates. Here, the observed concen-
tration gradients are significantly smaller than those in sugar fermentations with similar
τrxn [16], due to the continuous gaseous substrate supply. However, the spread in the con-
centration fields may cause an overestimation of uptake rates by the ideal mixing models.

Overall, the ideal mixing model was able to describe the concentration range reason-
ably well, especially in the limitation regime, and could still be used for quick estimations of
dissolved gas concentrations at varying conditions (e.g., increased mass transfer, pressure,
or with different kinetics). Then, the spatio-temporal variations cL,i, which can only be
obtained by CFD modelling, are to be estimated as ± half-an-order of magnitude around
the derived concentrations from the ideal mixing model.
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3.2. Lifeline Analysis

From the lifelines obtained in cases with 5, 10 and 25 g L−1 biomass, it appears that
the micro-organisms could experience frequent fluctuations in solute concentrations (in
5 to 30 s), as visible from Video S1. To quantify the microbial experience, the residence
times in the peaks and valleys of substrate concentrations were determined, as well as the
average dissolved CO and H2 concentration during a peak or valley. From the resulting
probability density functions, we determined the joint probability of observing a specific
residence time and concentration in a peak or valley (Figure 4).

Figure 4. Scatter plots representing the likelihood of a microbe experiencing peaks or valleys along
with a certain combination of cL,CO and duration. Each dot represents a peak or valley with a
concentration and residence time, and is colored by the probability of occurrence of that specific
combination in the whole set of lifelines. Each row of plots represents data obtained with a specific
biomass concentration: (a,b) 5, (c,d) 10 and (e,f) 25 g L−1. Peaks are in the left column of plots (a,c,e)
and the valleys are at the right (b,d,f). A similar figure was made for H2 (Figure S9).
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The dynamic behavior of the EL-GLR causes a large spread in the observed concentra-
tions and residence times. This makes it impossible to standardize a concentration profile
of a lifeline. The differences in concentration between the peaks and valleys are around
a factor of 5, but within these there are significant deviations (up to 50%) around their
specific mean values.

Although the average gas concentrations during the oscillations are very different
for the three biomass concentrations, the microbial residence time distributions are quite
similar. This is caused by the similar hydrodynamic behavior in the three cases, resulting
from similar superficial gas flow velocity and gas conversion rates, while neglecting the
influence of biomass concentration on fluid properties (density and viscosity). Interestingly,
in the cases with 5 and 10 g L−1 the dips in concentration lasted sometimes for a very long
time (>100 s). This could be due to a recirculation pattern in the downcomer. Since, in
the 25 g L−1 case, the concentration difference is small between peaks and valleys, and
some gas pockets with relative high CO concentration still exist, such moments were
not observed.

During the CO peaks at 5 g L−1, cells can spend short moments (between 5 and 15 s)
at inhibitory concentrations (since KI = 0.25 mol2 m−6). In this case cL,CO still remains at
around the values needed for an optimum qCO, so that strong inhibition would not be
expected, since tpeak < tc ≈ 40 s, based upon the used kinetic model. The precise microbial
response to such short moments of potential inhibition is unclear.

Similar results were obtained for H2 (Figure S9). The residence times in peaks
and valleys were in the same ranges as for CO, with high concentration fluctuations
of about a factor of 5 noticed. Because H2 uptake was inhibited at a relatively low cL,CO
(KI,CO = 0.025 mol m−3), this resulted in high levels of CO inhibition during peaks. When
interested in H2 (and thus CO2) conversion, CO levels should be kept well below the
inhibitory values, which could be achieved by adjusting the inlet gas composition (e.g., by
green hydrogen supplementation) and/or by increasing the biomass concentration. Due
to the strong fluctuations in cL,CO and the inhibiting effect of CO on H2 uptake, qH2 was
significantly influenced, highlighting the need to study the mutual effect of CO and H2
fluctuations on qH2.

The ratio between the average dissolved concentrations of CO and H2 (cL,CO/cL,H2)
increases with an increased biomass concentration: cL,CO/cL,H2 ≈ 2 at 5 g L−1, 3 at 10 g L−1

and 6 at 25 g L−1. This is caused by the faster decrease of qCO compared to qH2 with biomass
concentration (cf. Figure 3c,d), due to decreased CO inhibition. To inspect the level of
inhibition by CO in the determined ranges for peaks and valleys, the biomass-specific
CO and H2 uptake rates were calculated for each case using its respective cL,CO/cL,H2
ratio (Figure 5).

From determining the specific gas uptake rates, it became clear that the reactor should
be operated in the limitation regime, when increasing cL,i would result in a greater qi
(e.g., at 25 g L−1), while inhibitory concentrations are avoided. At low biomass concentra-
tion (5 g L−1), CO inhibition is already problematic, leading to decreased H2 uptake rates
in the peaks. With 10 g L−1, a significant increase in qCO is observed when transitioning
from a valley to a peak (from 0.3 to 0.8 mol molx−1 h−1), but small increases in cL,CO during
the peaks could worsen overall performance, since qCO is close to optimum. From the
oscillatory dataset in [29], it was derived that fluctuations in qCO and qH2 in the timescale
of hours lead to large increases in qEtOH, and thus the ethanol yield [12]. Scale-down exper-
iments with imposed concentration fluctuations could be informative as to whether this
observation also holds for the circulation timescale.

Too low dissolved gas concentrations would cause a thermodynamically infeasible
catabolism and thus no syngas uptake at all. Such concentrations were estimated to be
around 4× 10−4 and 3× 10−3 mol m−3 for CO and H2, respectively, assuming independent
consumption of CO and H2/CO2 for solventogenesis [47]. Since such low cL,CO was not
obtained in our analysis, we do not expect such problems for CO consumption. However,
for H2, values below the thermodynamic limit were attained in the valleys for 10 and 25 g
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biomass L−1, so that a coupling with CO consumption is potentially required to supply
enough electrons for H2 uptake. As this may come at the expense of the product yield,
further scale-down studies are required to determine how C. autoethanogenum may react to
such short-term fluctuations in H2 concentration.

Figure 5. Overall biomass-specific (a) CO and (b) H2 uptake rates computed for biomass concentra-
tions of 5 (blue), 10 (red), and 25 g L−1 (green). cL,CO in the H2 uptake kinetics was calculated by using
a cL,CO/cL,H2 of 2, 3 and 6 for each respective case. The full arrows indicate the concentration ranges
of the peaks, while the dashed arrows indicate the ranges for the valleys. CO-uptake is independent
of the biomass concentration, hence the single line.

It has been estimated that a starvation regime could occur when cL,CO <
3 × 10−3 mol m−3 [17]. Since, in this regime, a major portion of the energy might be
spend on maintenance catabolism, lower growth rates can be expected, leading to higher
product yield. In the configuration they studied, such CO shortages were highly likely
to occur, causing a probable shift towards a starvation regime. In our simulations, this
situation may only occur in the valleys when operating with high biomass concentrations.
Due to higher cL,CO in our other cases, reaching the maintenance catabolism was very
unlikely to occur, since kL,COa of the EL-GLR was a factor 5 higher than in the BCR studied
in [17] (with kLa ~ 0.01 s−1 and cX = 10 g L−1).

Our results suggest that even higher biomass concentrations may be advantageous,
considering the current operation in the limitation regime and that high mass transfer could
be obtained due to bubble coalescence suppression in the fermentation broths. Operation
at very low cL,CO would enable operational flexibility and a high product yield, without
sacrificing gas conversion. Caution is needed to prevent the dissolved gas concentra-
tions becoming so low that the reaction becomes thermodynamically unfeasible, or that
the high biomass concentrations hampers mass transfer and mixing by increasing broth
viscosity [50].

In the LanzaTech process, kL,COa could well be around 3–4 times higher [4] than
the final one obtained in our model (650 h−1 vs. 180 h−1). This could be due to mass
transfer intensification (e.g., by introduction of perforated plates [51]) or by achieving
smaller bubbles (~1 mm). Although bubbles would become more rigid in such a case,
mass transfer might still be enhanced by cell monolayers around the bubbles, especially
in case of operating at high biomass concentrations [45]. In such high mass transfer
cases, substantial CO inhibition might be expected, stressing the need to operate at high
(>25 g L−1) biomass concentrations.

3.3. Development of Scale-Down Simulator

Based upon the analysis of the CFD data, we used numerical simulations to propose
a conceptual design of a scale-down simulator, in order to experimentally replicate the
dissolved gas concentrations which were estimated to be experienced by micro-organisms
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in the industrial-scale syngas fermentation. A single-vessel system, with a 2 L working
volume CSTR, was chosen as a basis for the scale-down simulator. Since rapid and irregular
fluctuations in peaks and valleys should be obtained, we did not consider multi-vessel
systems with forced circulation, because rapid consumption of dissolved gas in the tubes
connecting the vessels would be detrimental to performance. In addition to the advantage
of no substrate depletion in the tubes, clogging or high shear stress by pump action could
also be avoided. In a well-mixed stirred-tank, there are little spatial variations in dissolved
gas concentration (unlike plug-flow systems) so that the dissolved gas concentrations can be
better controlled. Another potential scale-down system would be a two-stage STR, with a
perforated plate separating two well-mixed zones [52]. In this way, the dynamic interchange
between two concentrations could be reproduced, although the step transitions might be
unrealistic for the observed large-scale behavior. A significant disadvantage of using a
single-vessel is the lack of population heterogeneity in cellular experience, which would
definitely be present in multi-vessel systems, as well as the poor incorporation of dead (or
low concentration) zones, such as the downcomer [53,54]. Furthermore, slow mixing at
low power input might possibly lead to local concentration gradients [55]. Operation at
smaller scales with better mixing (e.g., 200 mL) might, however, lead to practical problems
regarding sampling.

To mimic the large-scale successfully, we should make sure that the microbes expe-
rience similar peak/valley durations and the same concentration differences as in the
large-scale bioreactor. Although we could argue from Figure 4 that most peaks last between
5 and 15 s, and valleys 10 to 30 s, this argument does not account for frequently occurring
irregularities. There are peaks and valleys that largely exceed these times, e.g., peaks of
25 s and valleys of 60 s are not exceptional, and the scale-down simulator should replicate
such outliers in terms of time and concentration. With the probability distributions of the
residence times derived from the CFD lifelines, variations in the stirrer speed were imposed
to obtain corresponding peaks and valleys in the scale-down simulator. It was determined
that around 2000 oscillations, lasting ~15 h in total, should be applied in the scale-down
simulator to make sure that enough variation in peak or valley residence time is imposed
(Figure S10). To account for the varying biomass concentrations from the three CFD cases
(5, 10 and 25 g L−1), the biomass recycling rate Rrec was altered between the different cases
to adjust the reaction rate.

With this computational set-up and the iteratively derived operational conditions
(Table 3), lifelines were simulated in the conceptual bench-scale reactor for the three differ-
ent biomass concentrations that roughly correspond to the large-scale lifelines (Figure 6).
The pulses in stirring speed are well captured and provide the same peak-valley frequencies
as is expected at the large-scale. The concentrations that the microbes would experience
are similar as in the large-scale bioreactor within the peaks and valleys. For example, for
CO and H2 in the 5 g L−1 cases, the upper concentrations are always in the same order of
magnitude and the experienced valleys are very similar to those in the large-scale reactor
(Figure 6a,b). For the cases with high cX, it is more challenging to represent the deep
concentration valleys well (cL,i << 10−3), since the increased cX generally requires more
mass transfer in the valleys. Since the impact of such concentrations on the biomass-specific
uptake rates is small (Figure 5), negligible influence was expected.

Table 3. Operational conditions of the scale-down simulator to obtain an acceptable fit of the lifelines
obtained by the scale-down simulator with CFD-derived lifelines.

Peak Valley Recycle

cX,EL−GLR
(g L−1)

n
(rpm)

kL,COa
(h−1)

P/V
(W m−3)

n
(rpm)

kL,COa
(h−1)

P/V
(W m−3)

Rrec
(-)

cX,SD
(g L−1)

5 910 153 23,000 20 1.3 0.11 0.5 0.54
10 900 150 22,000 150 15 70 0.91 1.44
25 500 71 3400 70 5.6 6.1 0.96 3.27
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Figure 6. Microbial lifelines obtained from the simulation of the EL-GLR (blue) and the scale-down
simulator (red), for CO and H2, and the varying biomass concentrations in the large-scale reactor:
(a,b) 5 g L−1; (c,d) 10 g L−1; (e,f) 25 g L−1. Random lifelines were chosen from the CFD simulation
(blue) and a random timespan of the lifelines in the scale-down simulator (red).

The rate of increase in dissolved gas concentration during the transition from a valley
to a peak in the scale-down simulator is very similar to that in the large-scale bioreactor:
instantaneously, the microbes experience concentration increases of up to around 1–2 orders
of magnitude in a matter of seconds (1–5 s). The decrease in the slope at the beginning of the
peaks in dissolved CO concentrations can equally be identified in some of the peaks of the
CFD lifelines. In the large-scale, this rapid increase is due to the micro-organism travelling
instantly into a zone with high mass transfer and thus dissolved gas concentrations, while,
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in the scale-down simulator, the mass transfer increase responds to the step increase in
stirring speed.

The transition from the peak to the valley was found to be more problematic to
reproduce in the bench-scale reactor for cases with 10 and 25 g L−1. Although the dissolved
gas concentration decay is more plug flow-like at the large-scale, immediate decreases back
to a representative “valley-baseline” were observed in the scale-down simulator. Simulating
a ramped decrease in stirring speed could be helpful in obtaining a more realistic decay
in concentrations.

A major factor varying between the two scales is the frequency and magnitude of cel-
lular exposure to shear forces. This was quantified with the energy dissipation/circulation
function (EDCF = Ptotal

Veff
1
tc

) [56,57] while approximating tc as 1
4 tm [55]. In the scale-down

simulator, there is highly varying exposure to shear between peaks and valleys when the
cells are close to the impellers (EDCF varies from 50 kW m−3 s−1 and 1 × 10−4 kW m−3 s−1,
respectively). In the EL-GLR. there is only a high shear region around the gas plume (EDCF
~ 0.06 kW m−3 s−1), without considering bubble burst. The significantly varying EDCF
between two scales could be impactful when C. autoethanogenum is shear-sensitive, but this
was not expected, due to its small size (around 3 µm) compared to the Kolmogorov scale
(~10 µm) [58,59].

The correspondence of the results of the scale-down simulator with the large-scale
reactor was determined by performing a lifeline analysis. In this way, the probability
distributions for the residence times and the concentrations in the peaks and valleys could
be compared quantitatively (Figures 7 and S11–S15). Generally, a very good correspondence
of the residence time distributions was obtained. To some extent this is logical, as CFD
results of these are the inputs of the scale-down simulator, although the limitations of
a bench-scale reactor do not guarantee sufficiently good correspondence to be feasible;
this indicates the feasibility of imposing rapid stirring speed fluctuations in a well-mixed
bench-scale system.

Corresponding concentration distributions were more challenging to obtain, since
the ranges of the large-scale CO peak concentrations are very large (0.1–0.25 mol m−3,
Figure 7a). In the scale-down simulator, the CO peak concentration could not become
that high (maximum 0.2 mol m−3) so that a narrower range was obtained, which was
more skewed towards the lower concentrations. The assumptions and parameters used
in the mass transfer and kinetic models make it challenging, however, to rely purely on
quantitative results for the concentration fluctuations in the scale-down setup. Using more
accurate mass transfer and kinetic models would increase the reliability of our quantitative
predictions and thus our conceptual scale-down simulator.

Despite all these limitations, we showed that. with a conceptually relatively simple
scale-down simulator, the large-scale dissolved gas concentration gradients for a wide
range of biomass concentrations could be reproduced at lab-scale. Model-based tuning
of the operational conditions (e.g., stirrer speed, gas flow rate, gas composition) of the
scale-down set-up on the probability distribution functions of the large-scale reactor, is a
possible strategy to maximize correspondence between the two scales and thereby provide
a fruitful basis for representative scale-down of syngas fermentation.

3.4. Outlook

Further improvement of the scale-down simulator could lead to even better represen-
tations of the large-scale behavior. An optimization routine could help in obtaining the
best-fit parameters with the CFD-derived data. The ideal scale-down simulator has as few
as possible variable parameters and represents the large-scale behavior for a wide range of
conditions. The effect of parameters (e.g., stirrer speed during the start-up phase) could be
derived using tools such as principal component analysis during the optimization and in
helping to decide whether or not to use the parameter in further analyses.
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Figure 7. Comparison of the probability density functions obtained by the scale-down simulator
(bars) with the CFD results (lines). Probability density functions for (a) the concentration of dissolved
CO during the peaks (blue) and the valleys (red), as well as the residence time in a (b) valley or
(c) peak. Here, the case of CO with 5 g L−1 biomass is provided, other cases (H2 5 g L−1, and both
compounds for 10 and 25 g L−1) are provided in Figures S11–S15. The scale-down simulator was
operated with 2000 peaks.

The quantitative results of the CFD study and the proposed scale-down study are
strongly dependent on the process conditions (e.g., headspace pressure, gas fraction), as
well as on the kinetic model for CO and H2 uptake. For example, the current model for CO-
uptake significantly underestimates the maximum specific growth rate (µmax

model = 0.03 h−1)
compared to experimental values (µmax

exp = 0.12 h−1) [60]. Since the used kinetic models
for gas uptake are parametrized using insufficient data, the accuracy of our simulations is
decreased and is therefore a major drawback of the study. Development of accurate kinetic
models is crucial for reliably modelling bioreactors, and we hope that our work motivates
further research in this area. The MATLAB scripts describing the conceptual scale-down
simulator are openly available and can be used for further development with updated
sub-models.se.
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Despite the limitations, the proposed set-up and method are still applicable to a
wide range of conditions. Even without using CFD, but with an ideal mixing model
(Equation (8)), one can estimate the effect of process variables (e.g., increased mass transfer
rates) on the average concentration in the large-scale reactor. In case the reactor is operated
in the gas limitation regime (cL,i < KS,i), spatial concentration differences of a factor of
5 around the mean could be expected based upon our CFD simulations. Since, in the
scenarios with varying biomass concentrations the residence time distributions in the peaks
and valleys do not greatly differ, neither are such differences expected in other operational
cases in the limitation regime. A scale-down simulator could then be tuned based upon the
estimated concentration differences and the residence time distributions.

Although the developed scale-down simulator is conceptually easy to understand,
practical installation and operation might be challenging. The repeated variations in
stirrer speed at high frequencies should be controlled, along with possible ramp phases
when increasing or decreasing the stirring speed. Ideally, rapid-sampling and/or online
measurement for CO and H2 [61,62] should be applied to make sure that peaks and valleys
are obtained in the intended manner. As the peaks and valleys are applied in the second-
timescale, probe lag should be taken into account when analyzing the experimental data.
Furthermore, the influence of broth components on kLa in real fermentations should be
considered for better predictions [31]. If the in-situ concentrations cannot be measured,
they could be predicted using a precisely determined kLa [63].

Our conceptual scale-down simulator makes it possible to simulate a statistically
representative lifeline of the EL-GLR within a fraction of the time that it would take for the
CFD model to be run and analyzed. Such a lifeline could then be used to study interactions
between the extra- and intracellular environment by coupling with a metabolic kinetic
model [12]. The obtained response should then be similar to the large-scale response, due
to the correspondence of both lifelines. By making variations in such lifelines, the peak and
valley residence time and concentration distributions can be obtained, which could lead to
a desired large-scale response (e.g., high ethanol specificity).

Ramp and feast-famine studies in the scale-down set-up could be used to parametrize
kinetic models that describe the short-term response of C. autoethanogenum [12,28,64], by
rapid sampling of metabolite and enzyme concentrations. Ramp studies would be helpful
in determining whether the instantaneous electron supply in the peaks would indeed lead
to increased ethanol production, as was expected from long-term oscillations [29]. If the
gas uptake rates are product-independent, then such scale-down simulators could be used
for engineered strains to produce higher-value products [3], proteins [65], or for coupled
reactions with other micro-organisms, such as chain-elongators [66] or PHA production [67].
With the scale-down simulator, the microbe could be adapted to large-scale conditions, so
that fewer scale-up problems might be expected [14].

The analyses of the industrial syngas fermentation process in this and our previous
study [4] are all model-based and only slightly tuned, based upon the scarcely available
literature data of the full-scale LanzaTech operation [1,2,68]. To advance the syngas fermen-
tation process, for model validation and the execution of highly representative scale-down
simulators, the publication of real industrial data would be required, such as large-scale
circulation times, operational kLa values, a range of dissolved gas concentrations and their
gradients. All of this could, for example, enable the utilization of a broader range of gas
compositions, the development of processes towards higher-value products and intensified
fermentation equipment.

In our analyses we showed that high biomass concentrations (e.g., cX > 10 g L−1) might
be advantageous for both product yield and gas conversion. Since the highest reported
biomass concentration in syngas fermentation reactors is around 9 g L−1 [48], experiments
should target the influence of increased biomass concentrations and its viability on gas
uptake, broth viscosity and mass transfer. The precise operating interval in terms of
dissolved gas (CO and H2) concentrations should be retrieved experimentally, so that the
thermodynamically infeasible range can be avoided while operating in the maintenance-
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dominated regime, which would enable high product-to-substrate yields. Our results show
that, with the currently used syngas composition (20% H2) and high biomass concentration
(25 g L−1), H2 catabolism may be thermodynamically infeasible, although co-consumption
with CO might occur [9]. Thus, in a future with intermittent green hydrogen supply from
renewable resources [69], supplementation of hydrogen might be a good option to valorize
excess electricity and increase the CO-to-product yield.

4. Conclusions

The effect of biomass concentration and dissolved gas concentration fluctuations in
large-scale syngas fermentation was studied with Euler-Lagrangian simulations. Based
upon these numerical simulations, we recommend industrial operation at relatively high
biomass concentrations, as this would reduce the effects of CO inhibition, could increase
the product yield and would provide high operational flexibility. Simulations indicate that,
in large-scale syngas fermentation, C. autoethanogenum will experience frequent oscillations
(peaks and valleys) in a dissolved gas (CO, H2) concentration of about one order of mag-
nitude, in a timescale of seconds (5 to 30 s). Such concentration fluctuations may occur
irrespective of the biomass concentration and were hypothesized to favor the ethanol yield.

The large-scale concentration fluctuations should be simulated during small-scale
experiments to study how C. autoethanogenum adapts to industrial-scale conditions. We
proposed a single-vessel scale-down simulator that theoretically replicates the fluctuations
in dissolved gas concentrations by varying the stirrer speed based on the large-scale
oscillations. Numerical analysis shows that the durations of the oscillations could be
well replicated, but the settings might be adjusted to achieve higher similarities for the
variations in concentration. The obtained lifelines in the proposed scale-down simulator
well represent the large-scale reactor for a wide range of biomass concentrations and
operational conditions.
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Abbreviations
Latin
c Concentration mol m−3 or g L−1

D Dilution rate h−1

DL Diffusion coefficient in liquid phase m2 s−1

db Bubble diameter m
di Impeller diameter m
f Correction factor -

F Flow rate m3 s−1

H Henry coefficient kg m−3 Pa−1

k Turbulent kinetic energy m2 s−2

kL Liquid-side mass transfer coefficient m s−1

kLa Volumetric mass transfer coefficient s−1

KI Inhibition constant mol m−3 or mol2 m−6

KS Half-saturation constant mol m−3

MTR Mass transfer rate g L−1 h−1

n Stirrer speed rot s−1

Np Number of particles -
NPo Power number -
Npeaks Number of peaks -
Ntc Number of circulation times -
p Pressure Pa
P Power W
q Biomass-specific uptake rate mol molx−1 h−1

R Universal gas constant J mol−1 K−1

r Reaction rate g L−1 h−1

Rrec Recycling ratio -
t Time s
tm 95% mixing time s
T Temperature K
V Volume m3

vslip Slip velocity m s−1

us Superficial velocity m s−1

X Conversion -
y Mole fraction mol molG−1

Yi/j Yield moli molj−1

Greek
ε Energy dissipation rate m2 s−3

εG Gas hold-up mG
3 mD

−3

µ Biomass-specific growth rate h−1

ν Kinematic viscosity m2 s−1

τ Characteristic time s
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Sub- and superscripts
0 Initial
∞ Final
c Circulation
D Dispersion
G Gas
H Headspace
in Inlet
L Liquid
MT Mass transfer
SD Scale-down
out Outlet
rxn Reaction
X Biomass
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