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Abstract: Dynamic magnetic resonance imaging has emerged as a powerful modality for investi-
gating upper-airway function during speech production. Analyzing the changes in the vocal tract
airspace, including the position of soft-tissue articulators (e.g., the tongue and velum), enhances
our understanding of speech production. The advent of various fast speech MRI protocols based
on sparse sampling and constrained reconstruction has led to the creation of dynamic speech MRI
datasets on the order of 80–100 image frames/second. In this paper, we propose a stacked transfer
learning U-NET model to segment the deforming vocal tract in 2D mid-sagittal slices of dynamic
speech MRI. Our approach leverages (a) low- and mid-level features and (b) high-level features. The
low- and mid-level features are derived from models pre-trained on labeled open-source brain tumor
MR and lung CT datasets, and an in-house airway labeled dataset. The high-level features are derived
from labeled protocol-specific MR images. The applicability of our approach to segmenting dynamic
datasets is demonstrated in data acquired from three fast speech MRI protocols: Protocol 1: 3 T-based
radial acquisition scheme coupled with a non-linear temporal regularizer, where speakers were
producing French speech tokens; Protocol 2: 1.5 T-based uniform density spiral acquisition scheme
coupled with a temporal finite difference (FD) sparsity regularization, where speakers were produc-
ing fluent speech tokens in English, and Protocol 3: 3 T-based variable density spiral acquisition
scheme coupled with manifold regularization, where speakers were producing various speech tokens
from the International Phonetic Alphabetic (IPA). Segments from our approach were compared to
those from an expert human user (a vocologist), and the conventional U-NET model without transfer
learning. Segmentations from a second expert human user (a radiologist) were used as ground truth.
Evaluations were performed using the quantitative DICE similarity metric, the Hausdorff distance
metric, and segmentation count metric. This approach was successfully adapted to different speech
MRI protocols with only a handful of protocol-specific images (e.g., of the order of 20 images), and
provided accurate segmentations similar to those of an expert human.

Keywords: dynamic speech MRI; articulator segmentation; protocol adaptiveness; transfer learning

1. Introduction

The human upper airway consists of oral, pharyngeal, and laryngeal structures that
intricately coordinate to perform essential tasks such as breathing, swallowing, and speak-
ing. These structures include the lips, tongue, hard palate, soft palate (or the velum),
pharynx, epiglottis, and vocal folds. The coordination of these structures changes the vocal
tract airspace (from the lips to the vocal folds), thus filtering the glottal sound source to
create the speech phonemes (vowels and consonants). Analyzing the changes in vocal
tract airspace and soft-tissue articulators (e.g., the tongue and velum) enhances our un-
derstanding of speech production. Magnetic resonance imaging (MRI) has emerged as
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a powerful modality for safely assessing the dynamics of the vocal mechanism during
speech production [1–3]. It has several advantages over competing modalities, such as
a lack of ionizing radiation compared to X-rays; higher soft-tissue contrast compared to
ultrasound; the ability to visualize in flexible/arbitrary planes; and the ability to visualize
deep structures in the vocal tract, such as the vocal folds, in contrast to electromagnetic
articulography. Dynamic MRI has been used to better understand the phonetics of lan-
guage [4,5], understand songs [6], beat-boxing [7], and understand speaker-to-speaker
differences [5,8]. In addition, it has been used in clinical applications, such as assessing
velopharyngeal insufficiency [9,10], assessing speech post-glossectomy [11,12], and assess-
ing oropharyngeal function in subjects with cleft lip and palate [13]. A long-standing
challenge with MRI has been associated with its slow acquisition speed, which reflects
compromises among the achievable spatio-temporal resolutions, and vocal tract coverage.
To address this, several “fast speech MRI” protocols have emerged in recent years [14–18].
These primarily operate by violating the Nyquist sampling criterion (i.e., they create images
more quickly by acquiring fewer samples) and reconstructing by imposing constraints
on the dynamic images. Several such protocols have emerged based on the choice of
scanner field strength, sampling, and reconstruction constraints [3]. Notably, two recent
open-source databases from these protocols have been released to the scientific commu-
nity [8,19]. The size of the dynamic images has increased considerably with the high frame
rates in the above-mentioned fast protocols. For example, a 15-second spoken utterance
with an 83 frame/s protocol produces ~1245 image frames [14]. Unfortunately, manual
annotation of vocal organs in these datasets is both labor-intensive and time-consuming. In
our experience, expert voice users spend an average of 1–2 min segmenting an individual
articulator in one frame. Thus, there is a need to automate this process, and a need for
segmentation algorithms that can be generalized to different fast speech MRI protocols.

Upper-airway MRI segmentation methods may be classified either by the type of data
being segmented (e.g., static 2D images, static 3D volumes, 2D dynamic images, or 3D
dynamic volumes) or by the level of human intervention required, ranging from manual to
semi-automatic to fully automatic methods. Several semi-automatic methods have been
developed for 2D dynamic speech MRI segmentation. Bresch et al. used a semi-automatic
approach, where a manually segmented vocal tract model was used as an anatomical
template, and the parameters of this model were estimated for different dynamic frames via
an iterative optimization algorithm where data consistency was enforced with the acquired
k-space data [20]. This approach is computationally intensive, requiring ~20 min to segment
a single frame, and every new dataset requires manual annotation. Kim et al. proposed a
semi-automatic user-guided segmentation approach for 2D dynamic speech MRI, where
the user specifies grid points along the vocal tract, and this approach provides air tissue
boundary segmentation with image quality enhancement, pixel sensitivity correction, noise
reduction, and airway path estimation [21]. For 3D segmentation, Javed et al. used seed-
growing-based segmentation to identify the deforming 3D airway collapse in obstructive
sleep apnea [22]. Similarly, Skordilis et al. used seed-growing segmentation to identify
the tongue in 3D across various speech postures [23]. More recently, deep learning-based
methods have been developed to automatically label and segment articulators in the
upper airway [24–26]. Fully convolutional networks (FCNs) were used in [24] and [27]
for segmenting airways. In [28], the authors segment multiple articulators, such as the
upper lip, hard palate, soft palate, vocal tract, lower lip, jaw, tongue, and epiglottis, from
dynamic 2D speech MRI. The training set in this study used real-time MRI data from five
speakers with 392 images acquired on a 3T Philips Achieva MRI scanner and 16-channel
neurovascular coil. [28] They used the conventional U-NET model and applied it to a
segment of real-time speech MRI data from five speakers with 392 training set images
acquired with a 3.0T Philips Achieva MRI scanner and 16-channel neurovascular coil.
In [29], the authors developed a novel upper airway segmentation method using anatomy-
guided neural networks for both static and dynamic MRI scans. In this generalized region
of interest (GROI) approach, the airway was divided into different regions, and manual
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parcellation into static 3D MRI data was implemented. For dynamic 2D datasets, the
method utilized 3440 annotated slices of mid-sagittal scans and employed the conventional
U-NET model with modified loss as a function of false positive and false negative rates. One
limitation of these algorithms is that it was not tested on different speech MRI acquisition
protocols, and the classical U-NET model warrants the need for re-training with a large
number of samples when switching to a new protocol.

In this paper, we propose a stacked transfer learning-based U-NET model to segment
the deforming vocal tract airspace, the tongue, and the velum in dynamic mid-sagittal
2D speech MRI datasets. Our approach leverages (a) low- and mid-level features and
(b) high-level features. The low- and mid-level features are derived from models pre-
trained on labeled open-source brain tumor MR and lung CT datasets and an in-house
airway labeled dataset. The high-level features are derived from labeled protocol-specific
MR images. We developed three different networks to individually segment the vocal
tract’s airspace, tongue, and velum. In this investigation, our approach was successfully
adapted to different speech MRI protocols with only a handful of protocol-specific images
(e.g., on the order of 20 images) and provided accurate segmentations similar to those of
an expert human. The main contribution of this work is the development of the protocol-
adaptive U-NET model based on transfer learning. This model effectively handled multiple
fast-speech MRI protocols and required only a small amount of protocol-specific training
data. Our contribution also includes the release of our segmentation and pre-processing
codes as open-source software. Our model’s robustness and efficiency make it a valuable
addition to the field of speech and voice science.

2. Methods

Three networks are built to individually map the vocal tract airspace, tongue, and
velum to their respective segmentations. We utilize a multi-level transfer learning scheme to
hierarchically adapt the network to low/mid/high-level features from the various datasets.
To learn the low- and mid-level features required for effective performance, our network
was pre-trained with multiple annotated datasets. These were sourced from publicly
available databases: one containing brain-MR scans and the other containing lung-CT
scans. Additionally, we utilized an in-house annotated speech MRI database, as shown in
Figure 1.
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Figure 1. Samples of images and segmentations taken from all datasets used in STL U-NET training.
MR images are provided in the first row, and their corresponding expert human segmentations are in
the second row. Representative colors are used to identify the organ or articulator in the image. Tags
representing each dataset are given as headings for each data instance.
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Following pre-training, we applied transfer learning to re-train the network and learn
high-level features from three different protocol-specific dynamic speech MRI datasets.
This transfer learning approach allowed the network to adapt to the unique characteristics
of each dataset, enabling it to accurately segment vocal tract structures in dynamic speech
MRI scans. The use of multiple datasets for pre-training and transfer learning helped to
improve the overall robustness and accuracy of our network, making it better equipped
to handle a wide range of dynamic speech MRI datasets. Finally, the model is applied
to segment the vocal tract structures of interest from unseen dynamic images acquired
from the specific protocol at hand. In the following sections, we describe the details of the
datasets used, the transfer learning-based pre-training and re-training of STL U-NET, and
the implementation of our network.

Brain Tumor segmentation dataset (BRATS): This database contains multi-modal brain
tumor MR datasets, where regions of low- and high-grade glioma tumors were manually
labeled in a variety of MR contrast images, including native T1-weighted, post-contrast
T1-weighted, T2-weighted, and T2-FLAIR volumes [30,31]. We reformatted a total of 119 T2-
weighted volumes in 1138 2D slices, with the goal of leveraging the low-level segmentation
features from this T2-weighted labeled database via transfer learning in our network to
segment the soft-tissue vocal tract structures (e.g., the tongue and velum). Our rationale
for using the T2-weighted volumes was that the task of segmenting bright-intensity tumors
from the surrounding darker-intensity healthy tissue shared similarities with the task of
segmenting bright soft-tissue vocal tract structures from the surrounding dark airspace.

Thoracic CT segmentation dataset: This dataset was created in association with a
challenge competition and conference session conducted at the American Association of
Physicists in Medicine (AAPM) 2017 annual meeting [32]. It contained 60 patients with
segmentations of multiple structures, such as the esophagus, heart, left and right lungs,
and spinal cord. For our work, we used the right and left lung segments to learn the
low-level features in the network that segments the vocal tract airspace. The 3D volumes
and segmentations were sliced down into a total of 1582 2D slices, which were used as data
instances for our purposes.

In-house dynamic 2D Cartesian speech MRI dataset: We collected dynamic speak-
ing datasets on a 3T GE Premier Scanner with a custom 16-channel airway coil using a
Cartesian 2D dynamic GRE sequence with the following parameters: FOV: 20 cm × 20 cm;
2.5 mm × 2.5 mm; slice thickness = 6 mm; flip angle = 5 degrees; parallel imaging accelera-
tion factor = 2; temporal resolution = 153 ms; scan duration = 23 s. A total of 4 speakers were
scanned. They were asked to produce a range of speaking tasks, such as producing alternat-
ing consonant and vowel sounds, “za-na-za, zee-nee-zee, zu-nu-zu, lu-lee-laa”, and fluent
speech, such as counting numbers out loud. The subjects were asked to voluntarily slow
their speaking rate to minimize the motion blurring of fast articulatory movement. Parallel
imaging reconstruction was performed online, and images were exported as DICOM files.
The vocal tract airspace was then manually segmented in the MATLAB environment by
a trained biomedical engineer with 4 years of image processing experience (author: Erat-
takulangara). A total of 914 2D dynamic frames from data combined from all the speakers
were manually segmented and were used for transfer learning the mid-level features in our
network for airspace segmentation.

Fast speech MRI datasets: To demonstrate the protocol adaptiveness of the stacked
UNET model, we used it to segment vocal organs in dynamic speech MR images obtained
from three different fast-speech MRI protocols. The details of these protocols and the
imaging data used in this study are detailed below.

Protocol 1: In this protocol, we considered 2D mid-sagittal dynamic images from
the open-source French speaker speech MRI database [19]. Data acquisition was per-
formed on a Siemens 3T Prisma scanner with a 64-channel head-neck coil. Radial sam-
pling was performed with an RF-spoiled FLASH sequence with sequence parameters,
TR/TE = 2.2 ms/1.47 ms; FOV = 22 × 22 cm; flip angle = 5 degrees; slice thickness = 8 mm.
Spatio-temporal resolutions were 1.6 mm and 20 ms/frame. Reconstruction was conducted
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via non-linear sparsity-based temporal constrained reconstruction with a joint estimation
of coil sensitivity maps and dynamic images. In this study, we randomly chose dynamic
image data from three speakers (1 for training, 1 for validation, and 1 for testing). A total of
20/3/10 dynamic image frames, respectively, from Speaker 1, Speaker 2, Speaker 3, were
used in the training, validation, and testing sets. This database contained speech sounds
from French speakers. Sixteen different French speech tokens were used in this protocol.
To capture the maximum variation of the vocal tract motion, we randomly choose image
frames from dynamic datasets across these speech tokens.

Protocol 2: This protocol used images from the University of Southern California’s
open-source multi-speaker raw MRI database [8]. Images were acquired on a GE 1.5 T
Signa MRI scanner using an eight-channel custom vocal tract coil and a uniform-density
spiral GRE sequence. TR was ~6 ms, readout duration = 2.4 ms; slice thickness was 6 mm;
spatio-temporal resolutions were 2.4 × 2.4 mm2 and 12 ms/frame. Reconstruction was
achieved via a sparse SENSE temporal finite difference iterative algorithm. Similar to
protocol 1, we randomly choose three speakers from this database (one for training, one
for validation, and one for testing). These speakers produced fluent speech, including
speaking the “grandfather passage”, speaking sentences in the English language, and
counting numbers out loud. As with protocol 1, we randomly chose dynamic images from
these speaking tasks such that 20/3/10 images were respectively drawn from Speaker
1/2/3 and belonged to the training, validation, and testing sets.

Protocol 3: This protocol was developed on the 3T GE Premier scanner at the University
of Iowa. Data were collected from three speakers with a custom 16-channel upper-airway
coil in accordance with the University of Iowa’s institutional review board policies. A
variable density-based spiral GRE sequence was implemented with a TR of 6 ms; readout
duration = 1.3 ms; slice thickness = 6 mm; spatio-temporal resolutions of 2.4× 2.4 mm2 and
18 ms/frame. Reconstruction was achieved by a learning-based manifold regularization
scheme. Speakers produced alternating consonant and vowel sounds and fluent speech
by counting numbers out loud. As in the above protocols, 20/10/3 dynamic images,
respectively, from Speaker 1, Speaker 2, Speaker 3, were used in training, validation, and
testing sets.

Generation of manual segmentations: To train, validate, and test the STL UNET, we
leveraged human annotators to generate manual segmentations. To reduce the subjectivity
of test labels, each image in the test set was segmented by three expert humans. The first
human annotator was a radiologist with expertise in body, cardiovascular, and thoracic
imaging, and with more than 10 years of experience in radiology (author: Priya). The
second human annotator was a professional voice user, researcher, and vocologist with
more than 20 years of experience in human vocal tract anatomy and voice research (author:
Meyer). The third annotator was a graduate student with 4 years of experience in upper-
airway MRI and image processing (author: Erattakulangara). Prior to segmentation, all
three users established and agreed to an anatomical guide and landmarks to segment
the vocal tract (see Figure 2). The three users listed above manually annotated the test
set in each of the three protocols by manual pixel-wise labeling of tongue, velum, and
airway in either MATLAB R2021 (Mathworks, Natick, MA, USA) or the Slicer platforms
(https://www.slicer.org) accessed on 4 August 2022. The third user alone annotated the
images in the training and validation sets.

Pre-training and re-training of the STL U-NET: Figure 3 shows the STL U-NET Model
with the three individual networks that respectively segment the tongue, velum, and vocal
tract airspace. Note that while the network in Figure 3b is the standard U-NET model
with the contracting and expanding blocks, it differs from how we train the model by
leveraging the previously mentioned datasets. This model has a total of 39 layers, including
the convolution, RELU, max-pooling, and concatenation steps. The two networks that
segment the soft tissues (i.e., tongue and velum) were first trained with 1138 labeled T2-
weighted brain tumor MR images from the open-source BRATS database. In a second
step, the layers of the pre-trained models capturing the low-level features were frozen, and

https://www.slicer.org
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the model was re-trained with the 20 protocol-specific speech MR images to optimize the
remaining m number of layers representing the high-level features. Similarly, the network
segmenting the vocal tract airspace was first pre-trained with 1582 labeled lung CT images
from the AAPM database, and 914 in-house dynamic speech MR images to learn both low-
and mid-level features. The first layers with the low- and mid-level features were frozen,
and the network was re-trained again to learn the high-level features in the remaining m
number of layers using the 20 protocol-specific MR images. Figure 3b shows a schematic of
how each of the U-NETs was re-trained with a protocol-specific dataset. We employed an
exhaustive grid search optimization criterion to find the parameter m above in all the three
networks based on achieving the least validation loss (see Table 1). We specifically swept
through the parameter space of m spanning between 5 and 35, in steps of 5. Later, the step
of 5 was fine-tuned to identify the layer number that yielded the lowest validation loss for
each component: velum, tongue, and airway. Our results showed that the optimal layer
numbers for these components were 14, 19, and 21, respectively.
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Figure 2. Prior to manual segmentation of the protocol speech MRI datasets, the anatomic boundaries
of the vocal tract were established in consensus with all three human annotators: a vocologist, a
radiologist, and a biomedical engineer. The blue colored region is the manually segmented upper
airway. Red colored regions with notations show the boundaries for creating the manual segmentation.
The boundaries are; A—lower boundary (vertebral column 6 and vocal fold), B—inferior boundary
of velum, C—hard palate, D—a straight line connecting posterior edge of lower lip with upper lip,
and E—region containing teeth up to the soft tissue connecting it.

Table 1. A list of hyperparameters used and the values considered when tuning the network. Grid-
based search was implemented to try all the combinations from this list to be used for training the
neural network. Fine-tuning is conducted after the best-performing combination is found after a grid
search of this table.

Hyper Parameter Values Considered

Number of epochs 60, 100, 200, 700, 1000, 1500

Steps per epoch 50, 100, 150, 200

Number of layers to re-train (training with
protocol specific data) 3, 5, 10, 15, 20, 25, 30, 35

Learning rate 1 × 10−4, 3 × 10−4, 3 × 10−5, 1 × 10−5
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Figure 3. The stacked U-NET network architecture consists of three individual networks to respec-
tively segment the tongue, velum, and vocal tract airspace. (a) provides high-level overview of
network architecture with stacked individual U-NETs, describing the datasets used in training the
respective networks. (b) shows the 39-layer U-NET architecture. Transfer learning enables sharing of
weights from pre-training stage, and these weights are preserved as is in all the non-dotted layers.
The dotted lines show the extent up to which re-training has been performed with protocol-specific
speech MR data.

The network was implemented using TensorFlow, and training was performed on an
Intel Core-i7 8700CK, 3.70 GHz 12 core CPU machine. We used the following binary cross
entropy loss function to train the U-NET model. Here y is the reference label and p(y) is
the predicted probability.

Hp(q) = −
1
N ∑N

i=1 yi·log(p(yi )) + (1− yi)·log(1− p(yi))

The network was trained with the Adam optimizer, which has hyperparameters
β1 = 0.9, β2 = 0.999 and ε = 1× 10−8. The training was conducted for 150 epochs using early
stoppage criterion. Data augmentation was also performed on the input data to increase
the number of protocol-specific speech MR training samples by a factor of 4. Rotation,
scaling, and cropping were the basic operations performed to augment the images. For
training, a crucial part of achieving the desired performance is tuning the hyperparameters.
The parameters given in Table 1 are considered to be relevant to network performance. The
second column shows the range of parameters we have tested to find the best among them.
This grid-based search allows the network to test all the combinations of these parameters
and to select the best based on the lowest validation loss.

Pre-processing and post-processing: In this study, we applied pre- and post-processing
to improve the STL U-NET performance. First, data curation from the different speech MRI
protocols was applied while re-training the STL U-NET model. Each protocol may contain
images where the airway, tongue boundary, or velum boundary are poorly visualized due
to swallowing, or images with motion artifacts and un-resolved alias artifacts. Figure 4
shows examples that were omitted from the training set. The input dynamic images from
the protocols were cropped in pre-processing to focus on the regions of interest in the vocal
tract and surrounding soft tissue vocal organs. Images were then re-scaled to a 256 × 256
image matrix size. Since the reconstructed images may contain non-uniform intensities, we
applied a bias field intensity correction algorithm to provide uniform intensity across the
field of view. In our earlier experiments [26], we found that a soft intensity thresholding
on the images can improve the segmentation accuracy of U-NET segmentation. Next, we
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performed soft-intensity thresholding to remove pixels with image intensities less than 20
on a 255-intensity scale. Output segmentations may occasionally contain segmentation
boundaries with blurred or fog-like regions that cannot be corrected by modifying the
network. Since the majority of the segmented pixels fall in the 200–255 intensity range, and
the blurred and fog-like regions have segmentation intensities in the range of 0–70, we
applied a thresholding up to 70 to remove the blurred regions. Following thresholding,
we binarized the segmentations to have all other bright pixels attain 255-pixel intensity.
Once binarized, breaks in the inside morphology of each of these articulators may occur.
To avoid such gaps, we have used dilation with a line structuring element of size 5 pixels
to fill those gaps. Further, small independent regions on the segmentation map that are not
relevant to the morphology of the vocal structures may occur (e.g., on the nasal airway, on
the spine). Since segmentations of the individual vocal structures have a minimum number
of pixels, we removed all independent segmentation maps with a total connected pixel
count of less than 100 pixels. All pre-processing and post-processing functionalities were
created using MATLAB R2021 (Mathworks, Natick, MA, USA).
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Figure 4. Data curation was applied prior to re-training the STL U-NET model. Image frames where
the airway, tongue, or velum boundaries were blurred or indistinguishable. Shown here are examples
of omitted frames from all the protocols.

Evaluation: In this study, we compared the performance of STL-UNET against the
conventional U-NET model without transfer learning [26,28], and manual segmentation
from the second human expert (vocologist). The segmentations from the first human expert
(radiologist) were used as the ground truth. The following quantitative metrics were used
in our comparisons:
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1. DICE coefficient (D): this measures the spatial overlap between two segmentations
according to the expression given below, where A and B are respectively the binary
predicted segmentation and binary ground truth segmentation.

D =
2|A ∩ B|
|A|+|B|

2. Hausdorff distance (HD): It is a distance-based metric widely used in evaluation of
image segmentation as dissimilarity measures [33]. It is recommended when the
overall accuracy (e.g., the boundary delineation/contour) of the segmentation is of
importance. The HD distance between two finite point sets A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn} is defined by.

HD = max (h(A, B), h(B, A))

where h(A, B) is called the directed Hausdorff distance and given by:

h(A, B) = max
a∈A

min
b∈B
||a− b||

3. Segmentation count (Seg count): This is a metric used to count the number of seg-
mentations generated by different methods. It is a useful tool for evaluating and
comparing non-anatomical segmentations generated by the network. When segment-
ing the tongue or the velum, the ground truth value of Seg count should always be
one. When segmenting the airway, Seg count can be >1, since the airway could be
disjoint based on the vocal tract posture.

To establish a statistical measure while comparing pair-wise segmentations, the paired
t-test was used for both Hausdorff distance (HD) and DICE metrics and the Wilcoxon paired
test on the Segcount metric. We classified statistical significance at multiple p-values as: no
significance—(p > 0.05), *—(p ≤ 0.05), **—(p ≤ 0.01), ***—(p ≤ 0.001), ****—(p ≤ 0.001).

3. Results

Figure 5 shows representative image frames from reference segmentation (Expert 1,
radiologist), manual segmentation (Expert 2, vocologist), vanilla U-NET segmentation, and
STL U-NET segmentation. For each protocol, two images from the test set were randomly
chosen and shown. The segmentations in this figure are displayed with their correspond-
ing mid-sagittal input image. DICE scores are provided for individual articulators when
compared against the reference segmentation. We observe anatomically inaccurate seg-
mentations largely in the Vanilla U-NET in comparison to the STL U-NET (see velum
segmentations in Protocol 2, and airway segmentations in Protocol 1). This is reflected
in the superior DICE measures of the STL U-NET in comparison to the vanilla U-NET.
Segmentations between Expert 2 and Expert 1 showed similarities largely in images where
boundaries were well defined (e.g., Protocol 1, 2; with DICE > 0.86). However, there was
a lower DICE similarity (between 0.77 and 0.85) between the two experts in segmenting
images from Protocol 3. This was largely due to increased air-tissue boundary blurring due
to spirals at 3 T MRI. STL U-NET depicted similar trends as Expert 2, with similar DICE
distributions. In contrast, vanilla U-NET showed overall lower DICE values and broken
airway segmentations (e.g., see airway segmentations in Protocol 3).
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Figure 5. The figure shows two samples taken from each protocol and their DICE scores compared
with reference. (1) column shows the sample image, (2) column shows the reference segmentation
from Expert 1 (radiologist), (3) column shows the segmentation performed by the second expert
annotator (vocologist), (4) column shows segmentation generated by vanilla U-NET architecture.
(5) shows the segmentation generated by STL U-NET. DICE values are provided for all three articula-
tors represented by different colors (Tongue: Red, Velum: Yellow, Airway: Green). Inter-observer
variability can be observed by evaluating column (3), where two expert segmentations are compared.
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Figure 6 shows the box-and-whisker plot representations of the DICE metric across
the test images in each of the three protocols. In this figure, the columns represent the
MRI protocols, and the rows represent the segmentation method. To help the reader
evaluate the figure, a red dotted line is provided at a DICE score of 0.8, which typically
indicates a high level of agreement. The graphs show that the vanilla U-NET had a wider
distribution of values compared to the STL U-NET. In particular, in Protocols 2 and 3,
the vanilla U-NET had DICE distribution of certain articulators less than 0.8. The tongue
segmentations consistently provided good DICE scores for all three segmentation methods.
The velum is the one articulator that showed the highest distribution of values among
all methods. This may be due to two factors, (1) the difficulty of identifying the velar
boundaries, and (2) the motion artifacts common in the velum during speech. The airway
articulator had a wide distribution of DICE scores, but slightly less than the velum. The
vanilla U-NET underperformed against both STL U-NET and expert segmentations by
a great margin. Generally speaking, the distribution style of the STL U-NET graphs in
Figure 6 is comparable to the expert segmentation.
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Figure 6. Box-and-whisker plots showing DICE value comparisons between (1) protocol-specific
data from different MRI protocols used and (2) types of segmentation. The types of segmentations
include (a) segmentation by Expert 2 (vocologist), (b) segmentations generated by vanilla U-NET,
and (c) segmentations generated by STL U-NET. The plots are generated by using the entire test set
for each of the protocols. A red dotted line is provided to show a 0.8 mark on the DICE coefficient
for easily evaluating the performance of the segmentation modalities. The center line inside the
boxes signifies the median of distribution; the width of the box corresponds to the interquartile
range; and the left and right bars correspond to the minimum and maximum. One way to compare
the segmentation performance of different protocols is by examining the individual columns that
show each protocol’s various segmentation types. Upon observation, it becomes apparent that the
distribution of STL U-NET is similar to that of Expert 2, whereas vanilla U-NET differs significantly
from the expert segmentation.
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Figure 7 is an aggregation of 27 graphs that compare three different metrics, three dif-
ferent articulators, and three independent MRI protocols. The performance of the network
is evaluated on the grounds of (a) spatial performance using DICE score; (b) the ability to
segment specific curvatures using a distance-based metric called Hausdorff distance; and
(c) non-anatomical segmentation using methods that count the number of segmentations.
Two types of statistical tests were performed between the three different segmentation
methods. An asterisk “*” is used to indicate statistical significance when two individual
bars are compared. Color coding indicates which method has superior performance. For
example, in the case of HD distance, a lower value means better performance. Therefore,
when comparing two methods, the asterisk will have the color of the method that has the
lowest HD distance. In the case of the DICE score, however, the asterisk color indicates the
method that had the highest DICE score. In the majority of HD distance cases, the vanilla
U-NET segmentation values contained many outliers and higher average values, indicating
poor performance. Out of nine comparisons between vanilla U-NET and STL U-NET,
six had statistically significant differences. Generally, STL U-NET performed better than
vanilla U-NET. In all other cases (with one exception), the STL U-NET and the inter-user
variability (i.e., differences between Expert 1 and Expert 2) showed statistically better per-
formance. The segmentation count metric allowed us to count the number of independent
segmentations generated in each of the three methods. Segmentations generated by STL
U-NET showed segmentation that counts are consistent with numbers from inter-user
variability. This was not the case with the vanilla U-NET, which had segmentation counts
inconsistent with expert segmentations. The DICE coefficient metric was used to compare
the spatial overlap between the segments. In seven out of nine comparisons between
methods, STL U-NET had a statistically significant DICE score compared with vanilla
U-NET. When compared with inter-user variability, STL U-NET had similar or higher
levels of performance, with the exception of a single case where expert segmentations
performed slightly better against STL U-NET (DICE of velum in Protocol 2). In summary,
when comparing these three independent imaging protocols, it can be concluded that
STL U-NET provided statistically significant differences in most articulator segmentations
against vanilla U-NET. When comparing the STL U-NET segmentation against the expert
segmentation, in most of the cases, the STL U-NET had a similar performance. There were
three cases where STL-UNET provided better segmentation than Expert 2 (DICE of the
airway, tongue in Protocol 2, and DICE of the airway in Protocol 3). However, there were
two cases where the expert segmentations outperformed the STL U-NET, and both were
during velar segmentation in Protocol 2.

We conducted ablation studies to assess the effectiveness of the two pre-training
datasets used in airway segmentation. Figure 8 presents a collection of bar graphs that
compare the ablation cases and the STL U-NET. The results indicate that in all cases, the
STL U-NET consistently performed in a manner similar to expert segmentations. When
considering the HD distance and segmentation count metrics, the STL U-NET pre-trained
with just Chest CT had the worst performance compared to the one pre-trained with the
in-house airway MR dataset alone. Although the STL U-NET pre-trained with an in-house
airway MR dataset showed very close results for Protocols 1 and 2, it diverged in Protocol
3, indicating inconsistencies across different protocols. On the other hand, the STL U-NET
pre-trained with both Chest CT and in-house airway MR datasets showed consistent results
in all three metrics and were comparable to expert segmentation. Figure 9 displays two
samples from each protocol along with their ablation results. Visually, the segmentations
from the STL U-NET pre-trained with either Chest CT or in-house airway MR datasets
by themselves show significant non-anatomical segmentation. However, the STL U-NET
pre-trained with both Chest CT and in-house airway MR datasets provided robust results
across protocols, similar to the manual expert segmentations.
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Figure 7. Bar plots are provided for all the three quantitative evaluation metrics (Hausdorff distance, segmentation count, and DICE coefficient) used for evaluating
the segmentation, Whiskers show the outliers in data (as mean ± standard deviation). Paired t-test were performed for both Hausdorff distance (HD) and DICE;
Wilcoxon paired tests were performed on segment count data. The significance of difference between each method is shown using “*“ marking which shows the
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p-value of the analysis. The correlation between the “*“ marking and p value is given as; no significance—(p > 0.05), *—(p ≤ 0.05), **—(p ≤ 0.01), ***—(p ≤ 0.001),
****—(p ≤ 0.001). Each primary column displays bar plots for individual MRI protocols, with sub-columns for different evaluation metrics. As we move down
the rows, each row represents a specific articulator, such as an airway, tongue, or velum. Color coding has been given to identify best-performing segmentation
method. Based on the observations, it is apparent that the STL U-NET model outperforms the vanilla U-NET model in most cases and is also comparable to expert
segmentations. Interestingly, expert segmentations showed a better performance compared to both U-NET models in the case of Protocol 2 when evaluated using
the HD distance and DICE score metric on the velum articulator. These findings suggest that the STL U-NET model is a promising approach for improving the
segmentation accuracy.
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Figure 8. Ablation studies on the STL U-NET to evaluate its performance on airway segmentation
using two different pre-training datasets: chest CT and in-house airway MR. Each pre-training
dataset was removed during testing, and the results were compared against expert segmentation.
The individual graphs display the ablation on the network along the x-axis; (a) STL U-NET(Chest CT):
STL U-NET pre-trained with chest CT dataset and re-trained with protocol-specific data (Protocol 1, 2,
or 3), (b) STL U-NET (in-house airway-MR): STL U-NET pre-trained with in-house airway MR dataset
and re-trained with protocol-specific data, (c) STL U-NET(Chest CT, in-house airway MR): STL U-NET
pre-trained with chest CT, in-house airway MR datasets and re-trained with protocol-specific data.
The Y-axis represents the metric we used to assess the neural network's performance quantitatively.
All three different protocols are tested, and results are provided under each sub heading and the
inter-user variability is provided at the end for comparison on individual graphs.
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Figure 9. The figure displays two representative samples from each protocol, with the results of the
ablation test overlaid on the image. Each row represents an individual protocol, and the columns
show different ablations performed. Column (2) shows the STL U-NET (Chest CT), which was
pre-trained with the chest CT dataset and re-trained with protocol-specific data (Protocol 1, 2, or 3).
Column (3) shows the STL U-NET (in-house airway MR), which was pre-trained with the in-house
MR dataset and re-trained with protocol-specific data. Column (4) shows the STL U-NET (Chest
CT, in-house airway MR), which was pre-trained with both the chest CT and in-house MR datasets
and re-trained with protocol-specific data. Finally, Column (5) shows the reference segmentation
provided by Expert 1. Note that the performance of STL UNET improved by using both the in-house
airway MR and chest CT datasets in pre-training as opposed to using only one of them. This is
apparent in the reduced number of non-anatomical segmentations in the fourth column compared to
the second and third columns. Particularly, note the closer representation of the STL UNET in the
fourth column to the expert segmentation (fifth column).
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4. Discussion

In this study, the authors developed a protocol adaptive stacked transfer learning
U-NET model to automatically segment the vocal tract airspace, the tongue, and the velum
in dynamic speech MRI. This approach leveraged low- and mid-level features from a
large number of open-source annotated brain tumor MR and lung CT databases, and high-
level features from a limited number of protocol-specific speech MR images. We showed
utility in segmenting vocal structures of interest from three fast speech MRI protocols with
different acquisition, reconstruction, and scanner field strength variations. When using
a small training set of 20 images in each protocol, the STL U-NET model outperformed
the vanilla U-NET model. There were no statistically significant differences in the majority
of vocal structures in the segmentations from the STL U-NET model and human expert
segmentation. The most significant differences were found in segmentations of the small
structures surrounding the velum, where the transition between the soft tissue soft palate
boundary and the bony hard palate boundary is fuzzy (e.g., see Protocol 2 HD and DICE
metric comparison on the velum). We also observed lower metric scores in Protocol 3 in
comparison to Protocols 1 and 2, largely because Protocol 3 employed a spiral trajectory at
3 T MRI and is more susceptible to off-resonance blurring at air-tissue boundaries. This was
reflected in lower HD and DICE scores for all of the vanilla U-NET, STL U-NET, and Expert
2 segmentations during segmenting the airway and velum in Protocol 3. In this paper,
segmentations from the proposed STL U-NET model were compared against segmentations
from a vanilla U-NET model and segmentations from a human expert annotator. The vanilla
U-NET model was chosen for comparison because it is the current state-of-the-art learning-
based model in speech and upper airway MRI segmentation [28,29]. Comparisons against
emerging networks, such as vision transformers and nn U-NET are beyond the scope of
this initial feasibility paper and will be addressed in our future work.

The introduction of large, annotated biomedical image datasets can greatly expe-
dite the development of data-efficient neural networks customized for specific domains.
Promising sources of such datasets include competitions, such as the Automated Cardiac
Diagnosis Challenge [34] and the LAScarQS 2022: Left Atrial and Scar Quantification
and Segmentation Challenge [35–37], which offer opportunities for pre-training neural
networks in the field of biomedical imaging. Segmentation methods applied to the upper
airway have the potential to aid in the investigation of carcinomas in the oropharyngeal, la-
ryngeal, and tracheal regions, providing critical information on assessing speech dynamics
and aiding the design of treatment plans. For example, in [38], the authors assessed speech
in normal and post-glossectomy speakers using dynamic speech MRI. Articulation kine-
matics revealed by dynamic speech MRI could aid in the management and re-organization
of speech production post-treatment of cancers in the upper airway regions (such as in
post-glossectomy). There are a few noteworthy limitations to our study. First, we only
segmented the tongue and velum as the major soft tissue articulators. In the future, we will
extend this approach to segment other vocal organs, including the lips, epiglottis, pharynx,
and glottis. Second, in this feasibility study, we tested this approach on ten randomly picked
image frames from each of the three protocols, where these image frames were manually
segmented by two expert annotators. We also randomly chose expert 1 (radiologist) as the
reference segmentation. However, comprehensive testing warrants the manual annotations
of multiple human experts. These human annotations are both time- and resource-intensive.
We plan to extend our approach in future studies to (1) test a higher number of images, and
(2) use methods, such as the STAPLE approach [39], to create reference segmentations from
more than two human annotators. Third, the field of upper airway segmentation currently
lacks large open-source datasets with annotated data, resulting in a lack of diversity in
training data across sex, geography, and age. However, with advancements in dynamic
time MRI technology, and access to dynamic speech MRI protocols on commercial scanners,
and processing tools to assist humans in efficiently annotating the datasets, we anticipate
the diversity of dynamic speech datasets will improve in the future. Another limitation
of the STL U-NET model is that it uses three independent networks to segment the vocal
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airspace, tongue and velum, and does not leverage anatomical constraints. In the future, we
will explore a unified network for joint segmentation of various vocal organs with implicit
anatomical constraints (e.g., if the tongue moves backward, the oropharynx airway should
be compressed).

5. Conclusions

In this paper, we presented a stacked transfer learning U-NET model to automatically
segment vocal structures in dynamic speech MRI. Our scheme leveraged low- and mid-level
features from a large number of open-source annotated brain MR and lung CT datasets,
and high-level features from a few protocol-specific speech MR images. In contrast to
conventional vanilla U-NET, our approach is adaptable to multiple speech MRI protocols
with different acquisition, reconstruction, and hardware settings. Using 10 randomly
chosen test images from three different fast speech MRI protocols, our approach provided
segmentations substantially better than the vanilla U-NET, and with similar accuracy as
human experts, while needing very few datasets for re-training (of the order of 20 images).
Future work will include comprehensive testing with multiple human annotators on a
larger number of test images. Our method has the potential for significant savings in
human time and resources for researchers and clinicians interested in the anatomy and
physiology of the vocal tract.
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