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Abstract: Due to the high prevalence and rates of disability associated with musculoskeletal system
diseases, more thorough research into diagnosis, pathogenesis, and treatments is required. One of
the key contributors to the emergence of diseases of the musculoskeletal system is thought to be
changes in the biomechanics of the human musculoskeletal system. However, there are some defects
concerning personal analysis or dynamic responses in current biomechanical research methodologies.
Digital twin (DT) was initially an engineering concept that reflected the mirror image of a physical
entity. With the application of medical image analysis and artificial intelligence (AI), it entered our
lives and showed its potential to be further applied in the medical field. Consequently, we believe that
DT can take a step towards personalized healthcare by guiding the design of industrial personalized
healthcare systems. In this perspective article, we discuss the limitations of traditional biomechanical
methods and the initial exploration of DT in musculoskeletal system diseases. We provide a new
opinion that DT could be an effective solution for musculoskeletal system diseases in the future,
which will help us analyze the real-time biomechanical properties of the musculoskeletal system and
achieve personalized medicine.

Keywords: digital twin; AI; musculoskeletal system; biomechanics; personalized medicine

1. Introduction

With the aging of populations and increasing attention to non-communicable dis-
eases, the global incidence of musculoskeletal system disease has been increasing annually,
which has been both a strong indication of the need for medical treatment and the main
cause of days lost from work [1]. It has become a globally common symptom and occurs
in all ages. Musculoskeletal system diseases have high incidence and disability rates;
thus, it is necessary to conduct more in-depth research on diagnosis, pathogenesis, and
treatments [2]. The occurrence of these disorders is often accompanied by biomechanical
changes, and biomechanical factors are indispensable in the development and treatment
of these disorders [3]. Analyzing biomechanical changes can help us improve the under-
standing of disease pathogenesis and prevention and help physicians choose appropriate
treatment strategies. However, conventional biomechanical research methods have certain
defects concerning personality analysis or dynamic responses. Digital twin (DT) technol-
ogy may provide new ideas for further improving biomechanical analysis methods in the
medical field.

Early DTs were introduced and employed in industrial and manufacturing fields, such
as aerospace, DT workshops, etc. [4–6]. Currently, the goal of personalized medicine is
to offer each patient a unique course of treatment. Artificial intelligence (AI) has been
gradually applied in clinics, providing clinicians with a repeatable second opinion and
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laying the technical groundwork for the realization of DT. On the basis of multi-modal
data integration and fusion, it has gained several successful applications in the medical
field [7]. Referring to cases of DTs applied in industry and combining characteristics of
medicine itself, we used this brand-new technical method to create a DT of the lumbar
spine in the first instance [8]. The research was the first case of DT technology applied
in regard to the spine, using interactions between the physical and digital worlds to
predict the biomechanical parameters of intervertebral discs. In some areas, such as
real-time synchronization, faithful mapping, high fidelity, various data integration, and
full periodicity, DT has incomparable advantages over conventional methods [9]. It can
be further applied in the whole musculoskeletal system to counteract the shortcomings
of conventional methods and explain complex biomechanical problems. In the future,
high-resolution models will be established and DT will finally become a solution for
musculoskeletal system diseases to achieve real-time monitoring and/or precise diagnosis.
Herein, we discuss the limitations of conventional biomechanical methods and suggest a
potential solution for personalized diagnosis and the treatment of musculoskeletal system
diseases. Current applications of DT in musculoskeletal systems were reviewed and we
hope that there will be more related research on the musculoskeletal system, providing
valuable research data and solutions for the prevention, treatment, and monitoring of
diseases. At the same time, it will further help us analyze the real-time biomechanical
properties of the musculoskeletal system and realize personalized medicine.

2. Biomechanics of Musculoskeletal System

Biomechanics are ubiquitous in the musculoskeletal system and play an indispensable
role in the occurrence, development, and treatment of disorders, including spine-related
diseases such as lower back and neck pain, joint-related diseases such as osteoarthritis,
traumatic diseases such as fractures, and other musculoskeletal diseases such as ventilation
and rheumatoid arthritis [10]. The musculoskeletal system supports and protects other
parts of the body and promotes movement. This system expresses mechanical properties
through intricate interactions between bones and soft tissues [11,12]. Stresses on bones
include compressive, tensile, and fluid shear stress. Bone formation and reconstruction
under stress occur due to changes in the function of local osteoblasts and osteoclasts [13,14].

Intervertebral disc degeneration is one of the major causes of lower back pain; its
biology and mechanics have been implicated as the predominant inductive cause [15]. In
addition to the common loading mechanisms, chronic loading has a large destructive effect
on the human spine. Adverse outcomes include uneven stress distribution and reduced
mechanical stiffness of the vertebral body and appendages, disrupting the original stable
biomechanical structure of the spine [15,16]. The load-sharing relationship between the
discs and facet joints is very intricate, and much depends on the posture of our spine [17].
The degeneration of discs causes an increase in the transmission of force across the facet
joints [18]. When facet tropism (FT) occurs, the angles of the ipsilateral sagittal plane
of the facet joint are different, whereby the intervertebral disc stress on the larger angle
side increases, and the stress increases with increases in FT values [19]. Biomechanical
factors also play an important role in joint diseases. Taking the knee as an example, using
biomechanical methods can sufficiently analyze and verify the role of the anterolateral
soft tissue in its rotational stability and the change of the internal rotation angle after the
corresponding ligament injury [20,21].

3. Limitations of Conventional Biomechanical Methods

The anatomy of the human musculoskeletal system is complex and there are multiple
mechanisms of bone diseases. Conventional biomechanical methods have shortcomings
in some aspects, which inevitably lead to deviations in the human anatomy [22]. The
research methods of human biomechanics can be divided into in vivo and in vitro research.
In vivo research includes conventional technology based on morphology and imaging
systems and implantable sensor technology [23]. In vivo research can better understand
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some complex structures that are difficult to accurately simulate by computer models so as
to better predict the progression of diseases and optimize treatment plans [24]. However,
several technical and safety bottlenecks such as the volume of sensor systems and the safety
of battery technology should be overcome [25].

In vitro experiments include cell or animal experiments, as well as cadaver studies.
However, it is hard to simulate the microenvironment with cell experiments, and results
from animal models and tissue cultures have low reproducibility. Additionally, human
cadavers are scarce and often subject to ethical constraints, making finite element anal-
ysis (FEA) an effective tool for studying orthopedic-related diseases [26,27]. Compared
with conventional methods, FEA is based on computer models and can be quantitatively
analyzed. It has the advantages of non-invasiveness and repeatability, and can also be
combined with big data and deep learning [28]. Medical image analysis based on machine
and deep learning is playing an increasingly important role in disease prevention and
control [29].

However, the finite element (FE) method for the biomechanical analysis of the muscu-
loskeletal system also has limitations. First, the accuracy of the model parameters has a
significant impact on the accuracy of this numerical method for simulation. Additionally,
current FE methods are based on the quasi-static force analysis of different attitudes, and
the dynamic response of the object is simulated by separating the actions, which makes the
dynamic response of human actions difficult to achieve in real-time [30]. The analysis of
individualized biomechanical properties is also difficult. There are great differences in the
biomechanical properties of bones in different individuals and genders [31,32]. Further-
more, the integration of models of the musculoskeletal system with clinical applications
is not well understood or demonstrated. There are many data sources and methods for
constructing FE models; for example, biomechanical CT is one of the state-of-the-art meth-
ods for testing skeletal biomechanics [33]. It can help monitor responses to treatments and
assess surgical risks. However, its effectiveness has only been demonstrated for oppor-
tunistic use, and there are individual differences in the effectiveness and robustness of
thresholds [34].

4. What Is Digital Twin?

Professor Michael Grieves first put forward the concept of DT to describe the life
management of productions [35]. In the early stages, it was initially defined by the Na-
tional Aeronautics and Space Administration as an integrated, multiscale, multi-physics
simulation of an as-built vehicle that mirrors the life of the corresponding flying twin in
the field of aerospace to predict the lifecycle of aircrafts [4]. Then, wider uses emerged in
the engineering and manufacturing fields, including simulation, validation, accreditation,
etc. [5]. In industry, it can build a virtual copy of a product or workshop through big
data, which can interact in real-time with the deep information and physical space that
cannot normally be observed. Tao et al. [6] put forward the concept of a DT workshop
driven by fused twin data to realize iterative operation, optimal management, and planning
and control of workshops. According to the latest research, DT mainly consists of five
dimensions, namely, physical entities, models in the virtual space, fused data, service,
and the connections [36]. Figure 1 shows the basic structures and new technologies of DT.
The new technologies include big data, AI, cloud computing, 5G, and virtual reality (VR),
which act as important interactions of the DT system. At the same time, the advancement
and popularization of novel technologies promote the progress and precision of DT. The
physical entity performs instructions and collects data via sensor devices. Virtual models
are twin models in digital space. DT data are muti-scaled and include the fusion among
them. The service and connections improve the diversity and fidelity of the DT model.
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In recent years, the idea of DT has attracted widespread focus from medical researchers,
and it is believed that the application of DT technology in the field of health has great
promise [7]. DT is data-centric and various complex substructures are related to each other
through technologies such as machine learning and AI to finally form a DT system [37].
At present, the DT system has made certain progress in the prevention and treatment of
cardiovascular, musculoskeletal, and immune system diseases [38,39]. It has also made
some breakthroughs in imaging diagnosis and radiotherapy [40,41]. Musculoskeletal
system diseases are greatly affected by biomechanical factors; thus, the application of the
DT system may be more promising in this area.

5. Current Applications of Digital Twin in the Musculoskeletal System

The DT system offers new opportunities and possibilities for innovative development
in the medical field. High fidelity and real-time data collection are the biggest advantages
of this technology. As the backbone of DT, high fidelity has a significant impact on the
quality of simulation [42]. The healthcare applications of digital twins focus on personal
health management and precision medicine, in which reliable progress has been made in
patient recovery [43], drug development [44], disease treatment [45], etc. However, chal-
lenges remain in areas such as standardized modeling, data security, and data fusion [46].
Real-time data collection can realize the real-time monitoring of patients to analyze possible
abnormal conditions and select individualized treatment plans according to a patient’s
condition. It has already been employed for several applications, such as disease prediction
and improving diagnostic accuracy [47,48]. There are many categories of medical informa-
tion, including human data from different sources. Data from the biological body include
computed tomography (CT), MRI, electrocardiogram or other scanning equipment test data,
and biochemical data such as blood routine, urine testing, and biological enzymes. There
are also virtual simulation data such as disease prediction, surgical simulation, virtual trials,
etc. The fusion of these data to produce diagnostic results and treatment options must
be further studied. However, the data collection of the human musculoskeletal system is
mainly about geometric and biomechanical data, giving the application of DT in the mus-
culoskeletal system great advantages. Table 1 compares the advantages and disadvantages
of traditional biomechanical methods and DT techniques in the musculoskeletal system.
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Table 1. Comparison of traditional biomechanical methods and DT techniques in musculoskeletal system.

Method Advantage Disadvantage

Morphology More accurate structural features can be presented
based on anatomical and imaging techniques. Invasive, ethical and safety issues.

Sensers Quantitative evaluation of biomechanical changes in
human body parameters through digital simulations. Sensor volume and safety issues.

Animal model Similar to the human body and avoids ethical barriers. Low reproducibility of animal models and
tissue cultures.

Finite element analysis Reproducible, quantifiable, and non-invasive. Low simulation accuracy and quasi-static
analysis.

Digital twin Reproducible, quantitative, personalized, and
dynamic analysis.

Lack of standardization, high cost, and
immature application.

We first applied this brand-new technology in the musculoskeletal system [8]. During
the construction of the DT system, we used CT images to develop an FE model of the
lumbar spine. The scanning conditions were set as follows: 120 kV, 125 mA, layer thickness
0.625 mm, layer spacing 0 mm, scanning around the spiral from top to bottom. The raw
data were stored in DICOM format and we used Mimics, 3dMax, CATIA V5, and Unity3D
software for hybrid modeling designs. Body movement was calculated by the inverse
kinematics algorithm. The average time delay introduced by the real-time computation
was approximately 24.70 ms, which included 8.04 ms of calculating time and 16.67 ms of
refresh and transmission time of the 60 Hz sensor. It satisfied the real-time requirements of
the biomechanical lumbar spine. As far as we know, this was the first DT example used
in a human musculoskeletal system. Finally, a 3D virtual reality system was developed
with the help of Unity3D software to record the real-time biomechanical performance of
the lumber spine, providing a new and effective method of real-time planning in the field
of spine treatments. Moreover, we used DT construction technology to establish a DT of
a human lumbar spine that dynamically displayed the action status and biomechanical
performance in real-time. It faithfully mapped the health information of the lumbar spine,
demonstrated the digital representation, and could be predicted through simulation. Early
warnings regarding dangerous postures for the human lumbar can help avoid damage to
the spine and provide a more accurate and individualized method for the prevention and
monitoring of spinal diseases.

Other researchers then constructed DTs based on orthopedic surgery models to provide
valuable quantitative information for clinical treatment, optimize treatment methods, and
reduce the occurrence of surgical risks [49,50]. Ahmadian et al. constructed a DT system
that combined computational fluid dynamics and level-set methods to simulate the motion
of the bone cement and bone marrow separation interface [49]. After predicting the cement
morphology, the data co-registration algorithm was used to transform the fluid dynamics
model into a high-fidelity continuous damage mechanics model that enhanced the vertebral
body. It could predict the morphology and fracture response of cement injection within
the bone microstructure. Hernigou et al. developed a more accurate model with DT
technology to improve the method of assessing the downward axis and determining joint
orientation [51]. They used CT data from patients without osteoarthritis to determine the
direction of the subtalar joint axis. Subtalar compensation was assessed based on knee
angle deformity and the direction of the inferior axis, and the inaccuracy of the manual
selection of anatomical markers was greatly reduced. Aubert et al. [52] constructed DT
models using patients’ postoperative 3D X-ray images. They simulated 12 conditions in the
DT system using four stabilizing methods and three bone healing results. Biomechanical
characteristics such as stress distribution in the musculoskeletal system after surgery were
assessed by applying a load during a motion process to assess the risk of recurrent fractures.
Therefore, we are confident that DT will be paid more attention regarding the prevention
and treatment of musculoskeletal diseases in the future.
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6. Disadvantages and Possible Improvements of DT

The use of DT for the biomechanical analysis of the musculoskeletal system is a
further improvement against the limitations of traditional approaches, especially in terms
of technical safety and a lack of real-time dynamic analyses. However, verifying the results
is potentially a significant difficulty for DT. Current comparison methods for modeling and
assessment mainly use cadaveric data or data from previous studies, lacking individualized
assessments. In other words, the results depend on the assumptions that have been made
already. The effective integration of a large number of different component models is also
an urgent problem for the application of DT in the medical field. The accuracy of the
simulation partly determines the effectiveness of the technique. Therefore, data collection
based on multiple dimensions and the use of experimental data for simulation training or
fitting verification will be the main trends of digital simulation in the future. More accurate
validation methods are also needed to allow DT to be more widely used. Currently, there
are difficulties in obtaining real pressure data of the body during movement processes and
fusing different categories of medical information. There is a gap between the results of
model calculation and actual situations, and how to reduce this gap is another difficulty for
DT. For example, there is a possibility that risks not predicted or estimated during modeling
may occur during the process of surgery. Ethical issues are one of the main reasons why DT
may be disadvantageous, and privacy seems to be the most remarkable challenge [53,54].
The standardized definition of DT facilitates a more systematic analysis of ethical risks in
personalized health [55]. Additionally, the cost of DT health systems can lead to injustice in
medical conditions, which may exacerbate existing economic disparities.

In our previous study, DT of the human lumbar spine was designed to dynamically
display action status and biomechanical performance in real-time. It could not be com-
manded to make physical entities work optimally. In further research, technologies such
as exoskeleton devices or other actuators may be available in the human body to carry
out commands through virtual twins so that the human musculoskeletal system functions
more optimally. The development of DT requires the integration of multiple disciplines,
including medicine, engineering, and health law. A standard set of treatment protocols or
tools can facilitate the internationalization of treatment and ethics while enabling patients
to subjectively evaluate approaches. In the future, the accessibility of this approach and the
demand for related products will gradually increase. Safety, efficiency, and ethical practice
will be critical for the development of DT.

7. Discussion

To realize personalized medicine, personalization and patient-centric modeling are
crucial [56]. DT provides a quantitative method concerning diseases, and it is considered
to be a driving force for personalized medicine [57,58]. It offers a potential solution for
personalized diagnosis and the treatment of musculoskeletal system diseases which might
revolutionize the development of medicine. There are many categories of medical infor-
mation, and how to integrate the different categories of data is key to the establishment
of DT in medicine. In general, the technologies behind DT are classified into two broad
categories: mechanical models that integrate multi-scale information and statistical models
that must learn from categories of data [44,59]. Mechanistic models incorporate physiologi-
cal knowledge and the fundamental laws of physics and chemistry, providing a framework
to integrate experimental and clinical data [60]. It can be used in surgical simulation, drug
discovery, and regulatory decision making. Statistical models include all mathematical
methods for inferring relationships from experimental data, using mathematical rules to
extract and optimize combinations of personalized biomarkers [61]. Faster-solving sur-
rogates of models may be developed in the form of machine learning models to solve
problems in real-time, which can help solve the technical hurdles during the creation
of high-fidelity models [62]. This will help accelerate model development and improve
the quality of models through the consideration of feedback from interactions between
various sub-processes.
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Figure 2 shows the connections between the physical and digital twins during the
construction and application of DT. The information in the physical space is acquired by
sensors and CT scans at key locations and then imported into the numerical calculation
system for analysis and calculation. Human reverse dynamics and biomechanics are used
to complete the fusion of various hetero-dimensional data such as human bone movement
information, mechanical information, and human spatial position data. Moreover, the
AI model is constructed by fused data and training data. Finally, through visualization
technology, the calculation results are rendered as high-fidelity digital twins of the human
musculoskeletal system. It can provide a credible digital dynamic model to show the
biomechanical performance of the musculoskeletal system and provide reference data for
subsequent human musculoskeletal medical studies. In the future, we hope to build a DT of
the whole musculoskeletal system and collect various data required by sensors via wearable
VR devices at important parts of the body and key bone positions (Figure 3). The data will
then be processed and imported into the numerical computing system for analysis and
calculation, which is primarily accountable for the security of network system, platform,
medical data, user personal privacy and information [63]. Then, we will use the data
transmission system to encode, read, decode, and write the collected data. Technologies
such as access control, anonymous generalization, storage networking technology, and
dynamic passwords can help the security system effectively prevent malicious attacks from
third parties, data theft, and information tampering [64]. Finally, through the DT display
system, computer graphics technology will be used to render the calculation results into a
high-fidelity DT of the human musculoskeletal system, providing an intuitive and credible
digital dynamic model. The real-time biomechanical performance will be provided on
the digital model, which will be highly compatible with a real human musculoskeletal
system. It will be able to predict the dangerous moments of our bodies in advance through
simulation and prediction so as to avoid damage to the musculoskeletal system and
provide valuable research data and solutions for the prevention, treatment, and monitoring
of musculoskeletal diseases.
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At present, application examples in musculoskeletal systems represent the initial
exploration of DT, and there are still many shortcomings and limitations, such as the
accuracy of simulations and the integration of data from different sources. Additionally,
there is no consensus on the extent to which DTs can transform healthcare systems over the
next decade due to technical, regulatory, and ethical barriers [65]. New technologies, such
as big data, cloud computing, blockchain, and VR, which act as important interactions of the
system, provide more motivation concerning the medical application of DT. The DT system
is based on the acquisition and simulation of multi-source data; thus, it is very sensitive to
data processing efficiency and required latency. Using laboratory datasets for simulation
training or fitting verification will help improve the efficiency of digital simulations. At the
same time, modulus-based DT optimization and soft sensor-based efficiency monitoring
will help to develop DT systems with better performance. However, this requires a trade-
off between the cost of deep learning and the performance of the DT system. Only in
this way can both reduce the cost of time and materials, making DT an effective tool for
analyzing the musculoskeletal system and human health. In the traditional framework, the
dependency structure of each module reflects the dependence between biological processes,
which is difficult to modify or extend. The open-source modular software platform for
model simulation and integration proposed by Masison et al. can realize distributed
model construction and integration and support a decentralized, community-based model
construction process [66]. This provides new ideas for the application of DT technology
in the medical field. Accordingly, we hope that this article will inspire researchers to
pursue more scientific applications of DT in the field of medicine, especially regarding the
musculoskeletal system.

8. Conclusions

The application of DT will be increasingly popular in the future of healthcare services
and will become a new platform for the health management of the musculoskeletal system.
Furthermore, DT technology in combination with intelligent medical technologies will have
a significant impact on personalized medicine. Simulations are performed based on the DT
system of the patient to select more accurate, appropriate, and individualized treatments.
In conclusion, it could be the solution for personalized diagnosis and the treatment of
musculoskeletal system diseases.
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