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Abstract: Stroke commonly affects the ability of the upper extremities (UEs) to move normally.
In clinical settings, identifying and measuring movement abnormality is challenging due to the
imprecision and impracticality of available assessments. These challenges interfere with therapeutic
tracking, communication, and treatment. We thus sought to develop an approach that blends
precision and pragmatism, combining high-dimensional motion capture with out-of-distribution
(OOD) detection. We used an array of wearable inertial measurement units to capture upper body
motion in healthy and chronic stroke subjects performing a semi-structured, unconstrained 3D
tabletop task. After data were labeled by human coders, we trained two deep learning models
exclusively on healthy subject data to classify elemental movements (functional primitives). We
tested these healthy subject-trained models on previously unseen healthy and stroke motion data.
We found that model confidence, indexed by prediction probabilities, was generally high for healthy
test data but significantly dropped when encountering OOD stroke data. Prediction probabilities
worsened with more severe motor impairment categories and were directly correlated with individual
impairment scores. Data inputs from the paretic UE, rather than trunk, most strongly influenced
model confidence. We demonstrate for the first time that using OOD detection with high-dimensional
motion data can reveal clinically meaningful movement abnormality in subjects with chronic stroke.

Keywords: stroke; motor impairment; inertial measurement unit; deep learning; out-of-distribution
detection

1. Introduction

Stroke commonly causes motor impairment in an upper extremity (UE), resulting in
abnormal movement that interferes with function [1–3]. These movement abnormalities
are underpinned by the loss of volitional motion, poor control of motion, and/or intrusive
muscle co-activations, all of which hinder activities of daily living (ADLs) such as grooming
or feeding. A major goal of stroke rehabilitation is to restore UE function by guiding
abnormal movements toward more normal patterns.

Rehabilitation therapists observe the performance of ADLs to identify movement ab-
normalities, for which knowledge about healthy movement is needed. Sighted individuals
have built an internal representation of what healthy movement looks like from decades of
observing other humans move (hence the uncanny valley phenomenon [4]). Rehabilitation
clinicians have sharpened this internal representation with domain training and experience,
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which inform their identification of abnormal movement patterns resulting from stroke
and other clinical disorders. This observational approach supports the rapid appraisal of
movement abnormality but is challenging to communicate in a standardized manner and
is liable to be influenced by level of clinical experience. An ideal approach would provide a
rapid assessment of movements in a functional context while also providing a standardized
and detailed measurement of abnormality.

Clinical instruments, such as the Fugl-Meyer Assessment (FMA) [5], Action Research
Arm Test (ARAT) [6], and Wolf Motor Function Test (WMFT) [7], have good standardization
and solid clinimetric properties [8] but are limited by imprecision and impracticality. Their
ordinal scales coarsely score the quality of movements [9,10] and their administration
requires additional time (30–45 min), a trained assessor, and specialized testing kits. These
limitations reduce their utility in clinical and research settings to provide granular and
frequent feedback about movement abnormality.

Optical- and sensor-based motion capture systems generate quantitative metrics of
movement and can more precisely detail abnormality [11–13]. Most commonly, these
kinematic setups evaluate simplified planar motions to virtual targets while arm weight is
supported and joints are locked out [14–16]. The kinematic patterns of these constrained
motions differ from real-world functional movements, where a stroke patient engages
an actual object while managing weakness, gravity, and multi-joint control [12,17–20].
Unconstrained 3D motion capture allows better replication of real-world conditions and
thus provides more functionally relevant read-outs [12,21–26]. However, many kinematic
variables are produced with higher-dimensional motion capture, leading to a computational
bottleneck. Investigators have typically relied on variable preselection, feature engineering,
or dimensionality reduction to manage computational complexity, but these steps risk
human selection bias or the omission of relevant information [11,27].

Combining motion capture with deep learning (DL) may provide a solution for ap-
praising the complex, nonlinear, multivariable data generated by functional movements.
DL models automatically learn data features and relationships that are most informative for
inference, thus avoiding feature selection bias or information loss. An emerging strategy,
called out-of-distribution (OOD) detection [28–30], could be used to measure movement
abnormality in complex kinematic datasets. In this approach, a predictive classifier first
learns the data features (patterns) of a training dataset and is then tested on a previously
unseen test dataset. If data features of this test set are shifted, i.e., OOD from the training
set, the DL model is less confident in its classifications and assigns them lower prediction
probabilities [28,30]. If the test set consists of stroke data, lower prediction probabilities
signal an OOD deviation from the learned normal data features. In other words, lower
prediction probabilities flag abnormal data.

OOD detection has been increasingly used in medical image processing, for example,
to identify and score brain lesions in MRIs [31], to distinguish malignancies in histopatho-
logical samples [32], to detect skin cancer in images [33], and to detect malaria in blood
smears [33]. OOD detection has also been applied to motion data captured by sensors [34]
or video [35] to detect new activities unrelated to trained activities. To our knowledge, this
strategy has not been applied to stroke motion data to detect abnormal movement patterns.
Here, we sought to identify movement abnormality in stroke subjects using sensor-based
motion capture and OOD detection. We trained two DL models on healthy subjects per-
forming a 3D functional activity to learn the data patterns of functional primitives (reaches,
transports, repositions, stabilizations, idles [36]). We anticipated that motor impairment
after stroke would shift the data distributions of these primitives, resulting in diminished
model confidence and lower prediction probabilities.

2. Materials and Methods
2.1. Subjects

We studied 29 healthy subjects and 50 chronic stroke subjects (Table 1). Enrolled
subjects were ≥18 years old, right-hand dominant (premorbid in stroke), and able to com-
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prehend language and the tasks involved. Stroke subjects had a unilateral ischemic or
hemorrhagic stroke at least 3 months before resulting in contralateral UE weakness (Medi-
cal Research Council score < 5/5 in any major muscle group). We excluded individuals
with subarachnoid or intraventricular hemorrhage; hemorrhagic stroke with mass effect;
traumatic brain injury; musculoskeletal, major medical, or non-stroke neurological condi-
tion that interferes with motor function; contracture at shoulder, elbow, or wrist; moderate
UE dysmetria or truncal ataxia; visuospatial neglect; apraxia; global inattention; or legal
blindness. Stroke was confirmed with the radiographic report. Lesions in non-motor areas
and in the opposite hemisphere were permitted barring bilateral weakness. Both ischemic
and hemorrhagic stroke were included, as chronic motor deficits do not substantially differ
between the two types [37].

Table 1. Subject demographics.

Healthy Controls Stroke Patients

n = 29 n = 50

Sex 1 15 M, 14 F 23 M, 27 F
Age 62.4 ± 13.1 years 57.7 ± 14.0 years

Race 2 11 W, 14 B, 1 A, 1 AI, 2 O 23 W, 11 B, 8 A, 0 AI, 8 O
Paretic side 3 n/a 27 L: 23 R

Fugl-Meyer score 4 65.2 ± 1.0 43.1 ± 16.1
Impairment level 5 n/a 20 mild, 22 moderate, 8 severe
Time since stroke n/a 5.4 ± 6.1 years

1 Sex: Male (M), Female (F); 2 Race: White (W), Black (B), Asian (A), American Indian (AI), Other (O). 3 Paretic
side: Left (L), Right (R); 4 Fugl-Meyer Assessment (FMA): 0–66 points, 66 is normal; 5 Impairment levels: UE FMA
score range 53–65 (mild), 26–52 (moderate), 0–25 (severe).

All subjects gave written informed consent in accordance with the Declaration of
Helsinki. The study was conducted with Institutional Review Board approval at the New
York University Grossman School of Medicine. We previously reported the development of
a primitive-counting pipeline that used some of the stroke subjects and models examined
here [38,39].

2.2. Functional Activity

Subjects performed a semi-structured functional activity entailing the movement of a
hand-sized object around a horizontal target array (Figure 1). Movements were made freely
in three dimensions; no trunk restraint, joint braces, or body weight supports were used.
Subjects were seated at a table with the target array printed on a mat. The array consisted
of a center target and eight outer targets (target diameters 5 cm; array diameter 48.5 cm).
Subjects were asked to extend their arm (nonparetic side for stroke) to the furthest target
while we observed their trunk. The mat was positioned so that this distant target would
not elicit trunk flexion.

Subjects were instructed to move a toilet paper roll between the center and each outer
target at their natural pace, returning the UE to rest after each movement. Skillfulness (i.e.,
accuracy and speed) was neither emphasized nor measured. Healthy subjects performed
five trials of the target array with each UE (10 trials total), whereas the stroke subjects
performed five trials with their paretic UE only.

The tabletop activity generated multiple samples of functional primitives, elemental
movements that are strung together to complete an ADL [36]. We previously identified
five main classes of functional primitives: reaches (UE movement into contact with a target
object), transports (UE movement to convey a target object), repositions (UE movement
proximate to or away from a target object), stabilizations (minimal UE motion to keep a
target object still), and idles (minimal UE motion to stand at the ready near a target object).
Three primitive classes are motion-based (reaches, transports, repositions) and two have



Bioengineering 2023, 10, 648 4 of 17

minimal or no motion (stabilizations, idles). Given the task requirements, the tabletop
activity mainly generated motion-based primitives.
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Figure 1. Subjects performed five trials of a semi-structured tabletop task, entailing a series of
reach–transport–reposition primitives to move the object between the center target and each outer
target. Nine IMUs were affixed to the upper extremities (bilateral arms, forearms, and hands) and
back (C7, T10, and sacral spine); those on the back were worn under the shirt but are shown here to
demonstrate location. Two orthogonal cameras captured upper body motion synchronously with the
IMUs, which was used to label IMU data with their primitive classes.

A trained assessor administered the UE FMA to all stroke subjects, which produced the
ground truth estimate of clinically relevant movement abnormality. The UE FMA consists
of 33 scored movement items, with the maximum total score of 66 indicating normalcy. Of
note, the FMA rates UE movements not only by whether they can be completed in their
entirety but also by the intrusion of abnormal flexor and extensor synergy patterns [5].

2.3. Motion Capture

During the functional activity, we recorded upper body motion with nine inertial
measurement units (IMUs; Noraxon, Scottsdale, AZ, USA). IMUs were affixed to the
bilateral hands, forearms, and arms, and the C7, T10, and sacral spine (Figure 1). Sensors
were approximately positioned relative to bony landmarks (e.g., the forearm sensor at three
finger-breadths proximal to the wrist crease, the arm sensor midway between elbow and
shoulder, etc.). By introducing some variation in the sensor data based on location, this
step built in robustness to minor differences in sensor placement across individuals.

Each sensor measured 3D angular velocity, 3D linear acceleration, and magnetic head-
ing at 100 Hz. Motion capture software (myomotion, Noraxon) used the angular velocities
to generate 3D unit quaternions per sensor, which we transformed to a sensor-centric frame-
work using coordinate transformation matrices. The software also generated 22 anatomical
angles for the upper body (Table 2) by applying a proprietary height-scaled skeletal model
to the IMU data. The sensor array thus generated a high-dimensional kinematic dataset
with 76 dimensions (9 IMUs × 3D accelerations, 9 IMUs × 3D quaternions, 22 joint angles)
every 10 ms.

To generate ground truth labels for the IMU data, we used video synchronized with
the IMU recordings. Upper body motion was recorded at 60 FPS with two high-definition
cameras (1088 × 704 resolution) placed orthogonally ~2 m from the subjects. Human
annotators were trained on our taxonomy of functional motion [36] to identify the visual
appearance and boundaries of primitives. Once they achieved high interrater reliability
with our experts (AP, EF; Cohen’s K ≥ 0.96), the annotators segmented the beginning and
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end of each primitive on the video recordings. This applied ground truth labels to the
corresponding IMU data. We used these labeled IMU data for model training and testing.

Table 2. Anatomical upper body angles.

Joint Anatomical Angles

Shoulder Flexion/extension, internal/external rotation,
adduction/abduction, total flexion 1

Elbow Flexion/extension

Wrist Flexion/extension, pronation/supination,
radial/ulnar deviation

Thorax 2 Flexion/extension, axial rotation, lateral
flexion/extension

Lumbar 3 Flexion/extension, axial rotation, lateral
flexion/extension

The motion capture system (myomotion, Noraxon, USA) used 9 IMUs and a proprietary height-scaled model to
generate 22 upper body angles, shown in relation to their joint of origin. 1 Shoulder total flexion is a combination of
shoulder flexion/extension and shoulder ad-/abduction. 2 Thoracic angles are computed between the 7th cervical
(C7) and 10th thoracic (T10) vertebrae. 3 Lumbar angles are computed between the thoracic vertebra and pelvis.

2.4. Primitive Classification

To enable the DL models to learn the data patterns that are in-distribution with healthy
functional movements, we trained the models to learn the motion features that identify
and distinguish primitive classes exclusively on healthy patients. We speculated that these
motion features would also contain information about movement quality. Having the
models focus on the motion features that distinguish primitives forces them to ignore
information that is irrelevant to abnormality detection, such as idiosyncratic motions of
individuals, target order, resting posture, or physical characteristics, such as arm length.

2.5. Model Selection

Because we were interested in how well OOD detection could work as a general ap-
proach for identifying movement abnormality, we trialed separate DL models with distinct
architectures: a sequence-to-sequence (Seq2Seq) model and action segment refinement
framework (ASRF). We previously showed that these models could effectively learn prim-
itive classification from IMU and discuss their development and architectures in detail
elsewhere [38–40].

Briefly, our approach involves using six-second data windows as inputs for our models.
Within each window, the models focus on predicting primitives within the middle 4 s. The
remaining 1-s segments on either side of the middle segment provide valuable temporal
context for the prediction process. It is important to note that the six-second data windows
do not correspond directly to segmented primitives. Instead, they serve as an input for
predicting the primitives within the middle 4-s segment. It is possible for this segment to
contain multiple primitives, each primitive with a duration typically ranging from 0.5 to
1 s. The Seq2Seq model aims to determine the correct order of the primitives within the
window, rather than identifying the exact time step of each primitive.

The Seq2Seq model consists of a three-layer bi-directional gated recurrent unit (GRU)
encoder and a single-layer GRU decoder. Seq2Seq encodes the sequence of primitives
from the input motion data into a hidden vector, which is then decoded into a predicted
sequence of primitive classes performed by the subject.

The ASRF consists of two convolutional neural network modules: a segmentation
module to perform pointwise predictions of the primitives and a boundary detection
module to demarcate primitive boundaries. The output of the segmentation module
is refined using the boundaries detected by the boundary detection module. Between
two detected boundaries, one primitive is selected based on the majority vote. Once the
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segmentation output is refined, the resultant output is the predicted sequence of primitive
classes performed by the subject.

For each model, its final softmax layer assigns normalized probabilities to each prim-
itive class. Both models use a winner-take-all approach for classification, selecting the
primitive class with the maximum softmax probability as the final prediction. Hence, for
each predicted sequence of primitives, we used the winning probability scores to examine
model uncertainty (see Section 2.8, below).

2.6. Model Training and Testing

We trained Seq2Seq and ASRF on the healthy subject data using a leave-one-subject-
out approach (Figure 2). We iteratively held out one healthy subject from each training
run, using the remaining healthy subjects for training (n = 24) and validation (n = 4). We
performed this iterative training to enable the models to learn the motion features of all
healthy subjects, which avoided training biases introduced by a single training subset.
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Figure 2. Schematic for model training and testing. This approach was separately used for the
Seq2Seq and ASRF models. In Step 1, one healthy subject was iteratively held out when training each
model, producing 29 healthy-trained models. All stroke subjects were held out from model training.
In Step 2, the held-out subject was used to test the trained model. All stroke subjects were used to test
each of the 29 healthy-trained models. Winning softmax prediction probabilities for motion-based
primitives (reaches, transports, repositions) were collected from each healthy-trained model.

The training runs produced 29 healthy subject-trained versions of the Seq2Seq and
ASRF models (which we henceforth refer to as “healthy-trained”). We used these healthy-
trained models to classify primitives in the healthy test subject who was held out during
training (n = 29). This allowed us to determine the performance and confidence of a
healthy-trained model on new healthy data, which benchmarked model confidence when
classifying in-distribution data. We then used the 29 healthy-trained versions of each model
to classify primitives in stroke subjects (n = 50).

2.7. Assessment of Classification Performance

To first identify classification performance by both models, we compared their pre-
dicted primitive sequences against the ground truth sequences using the Levenshtein
sequence-comparison algorithm [38–41] (Figure 3). This algorithm identifies the changes
needed to convert the predicted sequence to the ground truth sequence. We counted the
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number of required deletions (removing a primitive when the model incorrectly added it),
insertions (adding a primitive when the model incorrectly missed it), and substitutions
(swapping in a corrected primitive when it was misclassified).
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Figure 3. Assessment of model predictions. For both models, we used the Levenshtein sequence-
comparison algorithm to identify the changes needed to convert the predicted sequence (top row)
to the ground truth sequence (bottom row). Changes were counted as deletions, insertions, and
substitutions.

From these counts, we computed the false discovery rate (FDR) and true positive rate
(TPR) as follows:

FDR =
(# deletions + # substitutions)

# predicted primitives

TPR = 1− (# insertions + # substitutions)
# ground truth primitives

From these metrics, we calculated the F1 score to assess model classification perfor-
mance on each test set. The F1 score represents the harmonic mean between TPR and FDR
and ranges between 0 and 1; a value of 1 indicates perfect classification performance. It is
calculated as:

F1 =
2 TPR (1− FDR)
TPR + (1− FDR)

2.8. Assessment of Model Confidence

The central aim of our study was to determine whether the confidence of a healthy-
trained model could flag abnormality in functional movements. We thus focused on the
prediction probabilities assigned to the classifications of motion-based primitives—reaches,
transports, and repositions—by Seq2Seq and ASRF (Figure 2). Model classification generated
a cluster of ~450 prediction probabilities per healthy test subject (one model version, both
UEs) and ~7500 probabilities per stroke test subject (29 model versions, one UE).

We predicted that model confidence would decrease when encountering the move-
ments made by stroke subjects compared to healthy subjects. We pooled the prediction
probabilities for the healthy and stroke test sets and used generalized linear mixed models
(GLMMs) to test the fixed effect of subject group (healthy vs. stroke) on the probability
score. Subjects were treated as a random effect to adjust for within-subject correlations
between multiple observations.

We also predicted that model confidence would diminish with greater levels of motor
impairment. We thus stratified stroke subjects by their impairment category (mild, FMA
score 53–65; moderate, 26–52; severe, 0–25 [42]; Table 1) and examined their pooled prediction
probabilities. We used GLMMs to test the fixed effect of impairment category (mild vs.
moderate vs. severe) on prediction probabilities, with subjects again as a random effect.
We also performed post hoc pairwise comparisons between impairment categories using
two-tailed Student’s t-tests.

Finally, we predicted that model confidence for individual stroke subjects would scale
with their individual degree of impairment. To support this analysis, we trialed various
data summarization techniques on each subject’s probability cluster. We applied Gaussian
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and Cauchy fits and principal component analysis to generate the mean and standard
deviation (SD), median and interquartile range (IQR), and their first principal components
(PC1mean/SD and PC1median/IQR), respectively. We also computed the Wasserstein distance
between the probability clusters of a stroke subject and the healthy test set, which quantifies
the minimum cost of transforming one data cluster to match the features of another [43,44].

We used Spearman’s correlation to evaluate the relationship between the summarized
prediction probabilities (mean, median, PC1mean/SD, PC1median/IQR, Wasserstein distance)
of each stroke subject and their FMA scores.

2.9. Localization of Reduced Confidence

Finally, we examined the UE segmental locations of data inputs that most strongly
influenced model confidence. When UE motion is limited due to paresis, individuals
with stroke commonly use compensatory motion, such as trunk flexion, to complete an
activity. The magnitude of trunk flexion increases as elbow extension and shoulder flexion
decrease [25,45–47]. Because our input data contain both UE and trunk kinematics, it is
possible that model uncertainty stems either from the detection of altered or absent UE
motion, from the detection of increased truncal motion, or from both.

To this end, we examined which sensors and joint angles most strongly reduced
prediction probabilities for stroke subjects. To determine the features that influenced the
confidence measure, we used the technique of computing the gradients of confidence
with respect to the inputs [48]. Specifically, we computed the gradient of the predicted
confidence score with respect to each input feature at the time of prediction using the
backpropagation algorithm. The gradients were normalized per subject so that their sum
added up to 1. This allowed us to identify the relative contributions from each sensor and
joint angle to the overall gradient, which can be considered the relative importance of each
data input to the final confidence score. This roughly localized which locations the models
were most closely “looking at” to inform their classifications.

We applied this technique to all stroke subjects in the test set. We localized the source of
reduced confidence by identifying which sensors and joint angles most strongly influenced
the model’s prediction. Per patient, we computed the average percent contribution to the
total gradient for each input feature. We then averaged these contributions of each input
feature across patients. We selected the inputs with the highest proportion of the total
gradient as the top sensor data and joint angles that most influenced confidence.

2.10. Analyses

We used Python 3.8 (Pytorch [49], Matplotlib [50], Numpy [51], Pandas [52], Pickle [53],
and SciPy [54] libraries) to train and test the DL models. We used Matlab to transform
the quaternions to a sensor-centric framework. We used Python (NumPy [51], SciPy [54],
Pandas [52], and scikit-learn [55] libraries) to generate the summary statistics. We performed
statistical analysis in JMP Pro 16 (SAS Institute Inc., Cary, NC, USA). Subject group and
impairment category data are reported as adjusted mean ± standard error of the mean (SEM).
Significance was set at α = 0.05 and was Bonferroni-corrected for multiple comparisons.

3. Results
3.1. Model Accuracy

We first confirmed that the Seq2Seq and ASRF models learned the healthy motion
features that characterize primitives (Table 3). We anticipated that healthy-trained models
would generalize better to healthy test data than to stroke test data, resulting in better
classification performance. Indeed, for both Seq2Seq and ASRF, F1 scores were higher
for healthy subjects than stroke subjects. The high F1 scores in healthy held-out test
subjects indicate that both models successfully learned the motion features that distinguish
primitive classes. The models also generalized reasonably well to stroke data, but their
diminished classification performance indicates that stroke motion features are OOD. We
next examined this OOD-ness in greater depth using model prediction probabilities.
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Table 3. Classification performance of the trained models.

Seq2Seq ASRF

Healthy Stroke Healthy Stroke

True positive rate 0.842 0.912 0.868 0.929
False discovery rate 0.115 0.272 0.159 0.312

F1 score 0.848 0.798 0.838 0.773

3.2. Model Confidence in Healthy and Stroke Groups

We first examined whether subject demographics influenced the confidence of either the
Seq2Seq or ASRF model. For the combined healthy and stroke groups, we found no significant
effects of subject sex (both models: t77 < 1.1, p > 0.290), age (t77 < 0.47, p > 0.630), or side
performing the activity (t105 < 1.1, p > 0.290). For stroke subjects, we also found no significant
effects of years since stroke (t48 < 0.69, p > 0.490) or paretic side (t48 < 0.84, p > 0.400). These
results collectively indicate that model predictions are robust to demographic characteristics
that could influence motion patterns.

We examined whether model confidence differs for stroke subjects compared to healthy
subjects. Seq2Seq generated significantly higher prediction probabilities for healthy subjects
(0.817 ± 0.011) than stroke subjects (0.766 ± 0.008; t77 = 6.6, p < 0.001). Similarly, ASRF
generated significantly higher prediction probabilities for healthy subjects (0.926 ± 0.016)
than stroke subjects (0.879 ± 0.012; t77 = 2.3, p = 0.025). These results indicate that model
confidence is able to signal differences in the subject type performing functional movements.

3.3. Model Confidence in Categories of Stroke Impairment

In stroke subjects, we next examined whether model confidence differs by motor
impairment category (Figure 4). Seq2Seq generated prediction probabilities that signifi-
cantly differed by impairment category (mean ± SEM: mild impairment, 0.808 ± 0.011;
moderate, 0.767 ± 0.010; severe, 0.659 ± 0.017; F2,46 = 46.5, p < 0.0001). Significantly lower
probabilities were generated for lower impairment categories (mild vs. moderate, t47 = 2.7,
p = 0.018; mild vs. severe, t47 = 7.3, p < 0.0001; moderate vs. severe, t47 = 5.4, p < 0.0001).
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Figure 4. Prediction probabilities aggregated by subject group. Shown are prediction probabilities
with overlaid mean and standard deviation from the healthy-trained Seq2Seq model (a) and ASRF
(b). Subject groups are held-out healthy subjects and stroke subjects with mild, moderate, and severe
impairment. Individual dots represent a single prediction probability for motion-based primitives.
There were significant differences amongst stroke impairment categories for both models (p < 0.0001).

Similarly, ASRF generated prediction probabilities that significantly differed by im-
pairment category (mild, 0.930 ± 0.015; moderate, 0.894 ± 0.015; severe, 0.714 ± 0.024;
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F2,47 = 28.6, p < 0.0001). Significantly lower probabilities were generated for the severely
impaired category (mild vs. severe, t47 = 7.4, p < 0.0001; moderate vs. severe, t47 = 6.3,
p < 0.0001) but were comparable for the mild and moderate impairment categories (mild
vs. moderate, t47 = 1.7, p = 0.208). These results show that model confidence, on average,
can signal differences in the impairment category of stroke subjects performing functional
movements, and that Seq2Seq marginally outperforms ASRF in this capacity.

3.4. Model Confidence in Individual Stroke Impairment

We further examined whether model confidence relates to movement abnormality
in individual stroke subjects. Regardless of how we summarized prediction probabilities,
model confidence significantly correlated with individual impairment level (Table 4).

Table 4. Model confidence correlated with individual FMA scores.

Seq2Seq ASRF

Cauchy (median) 0.701 *** 0.705 ***
Gaussian (mean) 0.661 *** 0.619 ***

Cauchy PC1 −0.706 *** −0.727 ***
Gaussian PC1 −0.660 *** −0.600 ***
Wasserstein −0.511 ** 0.372 *

Values are Spearman′s rho. *** p < 0.0001, ** p < 0.001, * p < 0.01.

For both Seq2Seq and ASRF, the median prediction probabilities and Cauchy PC1median/IQR
showed the strongest associations with FMA (median probabilities shown in Figure 5). These
results show that model confidence can signal the individual level of movement abnormality of
stroke subjects performing functional movements.
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Figure 5. Subject-level prediction probabilities with respect to individual FMA score for Seq2Seq and
ASRF. Dots are the median (Cauchy) prediction probability for motion-based primitives performed by
each subject. Spearman’s correlations showed significant relationships for both models (p < 0.0001),
indicating that higher (i.e., more normal) FMA scores related to higher model confidence.

3.5. Locations Driving Model Uncertainty

Finally, we analyzed the gradient magnitudes of the network output with respect
to its inputs in healthy subjects and stroke patients. This analysis allowed us to identify
the locations of data inputs that most strongly influence model confidence. In the healthy
held-out data, the top features that contributed to both models’ confidence were shoulder
flexion, elbow flexion, arm acceleration (x-, y-, z-directions), and hand rotation (y-direction)
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in the moving UE. This result indicates that, during training, the models learned to focus
on the moving UE to classify primitives.

In stroke patients, the focus remained on the (moving) paretic UE (Figure 6, only
ASRF shown for parsimony). For Seq2Seq, the top features that contributed most to
model confidence were paretic UE shoulder flexion and abduction, elbow flexion, arm
acceleration (x-, y-, z-directions), and forearm acceleration (z-direction). For ASRF, top
features were paretic UE shoulder flexion and abduction, elbow flexion, arm acceleration
(x-, y-, z-directions), and arm rotation (y-direction). For both models, thoracic/pelvic
motion and nonparetic UE motion were less influential.
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Figure 6. Data features influencing model confidence. Shown are data for ASRF, averaged across
stroke patients. The normalized contributions to the absolute gradient (% total) from each data input
indicate their relative influence on model confidence. For ASRF, the top data inputs were from paretic
shoulder, elbow, and wrist angles and arm and hand acceleration/rotation. This result demonstrates
that the model was focusing on motion from the paretic UE, rather than compensatory motion from
the trunk or nonparetic side, to classify primitives.

These results are consistent with our training approach, where the healthy training
subjects kept their trunk and unused UE stationary during task performance. Readings
from these non-moving joint angles and sensors are not informative for discriminating
between different primitives. As a result, the models learned to rely primarily on motion
features from the moving UE to discriminate between different primitives.

When applied to stroke subjects, the models continued to rely on features from the
moving UE to perform classification. When paretic UE motion is altered or diminished,
this reliance leads to reduced confidence and lower prediction probabilities. Importantly,
truncal or nonparetic UE motion did not emerge as a major source of model confidence in
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stroke patients. This finding indicates that model confidence reads out abnormalities in
paretic UE movement, rather than the degree of compensatory motion.

4. Discussion

Current approaches for measuring UE movement abnormality after stroke are ham-
pered by imprecision, impracticality, or disconnection from a functional context. These
limitations impede the assessment of recovery and the generation of feedback to guide
rehabilitation training. We thus sought to develop an approach to pragmatically quantitate
movement abnormality during performance of a functional activity. Our approach com-
bined sensor-based motion capture, deep learning classification of functional primitives,
and out-of-distribution detection. In DL models trained on healthy motion, we found that
prediction probabilities flagged a distribution shift in stroke data. Prediction probabilities
were lower in stroke subjects than in healthy test subjects, scaled with stroke impairment
category, and correlated with impairment level in individual stroke subjects. We also
showed that the informative inputs for the models were shoulder and elbow flexion, arm
and hand acceleration, and shoulder abduction. These findings provide proof of principle
that OOD detection can be used as a strategy to generate objective, quantitative information
about movement abnormality from high-dimensional kinematic data.

We used two DL models, Seq2Seq and ASRF, to learn the motion patterns of functional
primitives from a labeled healthy training set. We purposefully undertook this supervised
training to focus model attention on motion features of primitives and to ignore non-functional
or idiosyncratic information. The trained models delivered high F1 scores in the healthy test
set, confirming that they successfully learned the motion features that distinguish primitive
classes. As expected, the models performed less robustly in stroke data.

In theory, a healthy-trained model applied to stroke data is likely to have poorer
classification performance, from which we could infer a distribution shift. In reality, labeled
stroke datasets are scarce, so estimating classification performance (which requires ground
truth labels) is challenging. We thus focused on prediction probabilities from the healthy-
trained models, which are always generated during inference, to identify distribution
shifts. We found that prediction probabilities from the healthy-trained models dropped
significantly for stroke motion data, confirming a distribution shift in stroke motion features
relative to healthy motion.

We next examined whether this distribution shift reflected clinically relevant motor
impairment, using UE FMA as the gold-standard comparison. We found that prediction
probabilities diminished with greater UE impairment, both by impairment category and
by individual impairment score. We furthermore confirmed that model predictions are
influenced by abnormal arm and shoulder motions in the affected UE rather than increased
compensatory motions in the trunk [45,46]. These results indicate that the motion features
that are used by the models to identify functional primitives also contain clinically relevant
information about movement abnormality.

These significant associations demonstrate concurrent validity with the UE FMA; our
approach similarly evaluates and reports on abnormal movement. Whether the detected
movement abnormality is based on diminished motion or the intrusion of flexor/extensor
synergies is less clear. We note that the FMA also does not make this distinction.

4.1. Previous Work

Our OOD detection approach with DL models advances existing strategies to mea-
sure movement abnormality from detailed kinematics. Most simply, healthy and stroke
kinematic data can be compared using inferential statistics [11], but this analysis requires
the pre-selection of specific kinematic variables (e.g., velocity, endpoint accuracy, move-
ment duration), limited recording locations (e.g., wrist, shoulder, hand), and/or manual
feature engineering (e.g., mean, max, entropy). Moreover, optimal kinematic variables for
measuring abnormality have not been established and feature engineering may overlook
relevant information [11,27].



Bioengineering 2023, 10, 648 13 of 17

Principal component analysis (PCA) is an alternative analytical approach that in-
corporates kinematic data from multiple sources (i.e., body locations, data types) into
lower-dimensional representations [56]. These principal components capture most of the
variance of the motion while retaining individual differences. Once derived, principal
components can be compared to healthy or expert populations to measure abnormality or
skillfulness, for example in planar reaching by stroke subjects [14,15] or in skiing runs by
non-experts [57]. Principal components can also serve as inputs for classifiers, for example
to identify subjects’ sex or joint disease from ambulation patterns [58,59] or athletic ability
from whole-body motion [60,61]. The advantage of PCA is that its inclusion of several
kinematic variables allows a more comprehensive and unbiased evaluation of motion.
One disadvantage is that standard PCA cannot computationally handle high-dimensional,
nonlinear datasets such as our motion dataset. This can result in the loss of important
information and may lead to inaccurate or incomplete results. Another disadvantage of
PCA is that it assumes a Gaussian distribution of the underlying data, which may not
always be the case in practice. A final disadvantage of PCA is that it focuses on data with
maximum variance. For functional movements, these data are unlikely to reflect the subtle
features that support the identification of primitives. In contrast, our approach is based on
models that are explicitly trained to focus on these subtle motion features, which in turn
allows the models to flag subtle motion anomalies.

To handle the higher dimensionality and nonlinearity of human motion data, inves-
tigators have turned to machine learning (ML). To date, studies have largely focused on
training ML models to directly predict clinical assessment scores (e.g., FMA, WMFT) or
athletic level from kinematic data. These data are often acquired from the administration
of the clinical assessments themselves [62–66], robotic platforms [67], or movement batter-
ies [68,69], which require expert assessors, extra time, and/or specialized setups. Feature
engineering must also be undertaken to support ML-based analysis. In addition, directly
predicting an impairment score using ML-based models is not optimal, because a large
and diverse dataset is required to train a robust ML model. In most practical scenarios, the
number of subjects available to train such a model is limited to 50–100. This can lead to
model overfitting and a lack of generalizability, where the model may perform well on the
training data but fail to generalize to new, unseen data.

We used DL models because they can handle the complex, nonlinear, and multivariable
data generated by human UE motion. DL models automatically learn relevant features
and relationships directly from the data. Hence, they potentially improve performance
while reducing the domain expertise needed for data preselection, feature engineering, or
dimensionality reduction. This capacity allows us to evaluate all available kinematic data
without introducing human bias. Importantly, our goal is to move beyond the ordinal and
relatively coarse grading systems of the FMA, WMFT, and ARAT. Prediction probabilities offer
continuous read-outs, which may provide a more nuanced capture of movement abnormality.

4.2. Practical Considerations

We endeavored to make the measurement approach as practical as possible. Donning
and calibrating the wearable sensors, performing the functional activity, and processing
the data can be expected to take 20–25 min, which offers nominal time savings over
administering the FMA directly (30–45 min). However, we devised this approach to
piggyback on the sensor setup used for our rehabilitation dose-measurement pipeline [38].
With sensors already in place, measuring movement abnormality requires 5–10 min to
administer the functional tabletop task. This task uses a simple target array, a common
object (toilet paper), and non-expert administration, making its deployment feasible.

We expect that the proposed method will work best if the DL models are trained
and tested on motion data from the same motion capture system. Here, our models were
trained on 76 data streams generated by a commercial system. If these trained DL models
were to be applied to data from a different motion capture system or to data from grossly
mispositioned sensors, classification performance is likely to suffer. With diminished
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classification performance, model confidence is also likely to decrease. Whether decreased
confidence still has sufficient range to distinguish between subject groups and impairment
levels would need to be examined. However, the particular motion capture system that
is used with this approach is unlikely to matter as much as having the same data streams
available for training and testing.

4.3. Limitations and Future Directions

We note limitations in our study that offer future investigative directions. We used the
functional activity to generate unconstrained, unassisted, 3D UE movements in and out of
flexion synergy, which effectively samples motor performance and segmental control [70].
Although the tabletop activity is more naturalistic and functionally based than the FMA, it
is still semi-structured and necessitates stand-alone administration. In the future, expand-
ing OOD detection to less structured activities practiced during rehabilitation (e.g., feeding,
grooming, cooking, etc.) would support the simultaneous measurement of movement
abnormality during therapy delivery. We previously showed that the five classes of func-
tional primitives account for all motions/minimal motions used in several rehabilitation
activities [36]. This suggests that leveraging primitive classification to examine model
uncertainty could work for other functional activities, although the extent to which the five
classes of primitives constitute all ADLs has not yet been examined.

We also showed that model confidence was highly influenced by inputs from the
paretic UE—shoulder flexion and abduction, elbow flexion, and arm acceleration—to
perform the tabletop task. Although this analysis allowed us to determine the location of
movement abnormality in this functional activity, these locations may not drive abnormality
readings for other activities. Explainable artificial intelligence approaches that are based on
backpropagation could be used to identify the input locations that drive model predictions,
which may be quite different from human expectations [71]. Identifying these locations
provides an opportunity to intervene on abnormalities that have not been considered for
the execution of normal movement.

Finally, we demonstrated the convergent validity of prediction probabilities with the
FMA but have not yet established other important clinimetric properties, namely reliability
and responsiveness to clinical change. Identifying these properties will be important
for the interpretation and usability of prediction probabilities as a metric of movement
abnormality [11,72].

5. Conclusions

We present a novel approach that uses OOD detection to identify abnormal UE move-
ment in individuals with stroke. Our approach, employing IMU-based motion capture and
DL-based functional primitive classification, uses prediction probabilities to flag motion
data that deviate from healthy patterns. We demonstrate that model confidence reflects
clinically relevant movement abnormality in subjects with chronic stroke. With our ap-
proach, we address both the practical and functional limitations of previous impairment
measurement approaches, leveraging a motion capture setup to quantity movement abnor-
mality. In the future, measuring movement abnormality during rehabilitation could enable
clinicians to track response to therapy and adapt treatment strategy in real time.
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