
Citation: Kim, S.Y. Personalized

Explanations for Early Diagnosis of

Alzheimer’s Disease Using

Explainable Graph Neural Networks

with Population Graphs.

Bioengineering 2023, 10, 701.

https://doi.org/10.3390/

bioengineering10060701

Academic Editor: Larbi Boubchir

Received: 22 May 2023

Revised: 5 June 2023

Accepted: 6 June 2023

Published: 8 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Personalized Explanations for Early Diagnosis of Alzheimer’s
Disease Using Explainable Graph Neural Networks with
Population Graphs
So Yeon Kim 1,2

1 Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea; jebi1771@ajou.ac.kr
2 Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea

Abstract: Leveraging recent advances in graph neural networks, our study introduces an application
of graph convolutional networks (GCNs) within a correlation-based population graph, aiming to
enhance Alzheimer’s disease (AD) prognosis and illuminate the intricacies of AD progression. This
methodological approach leverages the inherent structure and correlations in demographic and
neuroimaging data to predict amyloid-beta (Aβ) positivity. To validate our approach, we conducted
extensive performance comparisons with conventional machine learning models and a GCN model
with randomly assigned edges. The results consistently highlighted the superior performance of
the correlation-based GCN model across different sample groups in the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset, suggesting the importance of accurately reflecting the correlation
structure in population graphs for effective pattern recognition and accurate prediction. Furthermore,
our exploration of the model’s decision-making process using GNNExplainer identified unique sets
of biomarkers indicative of Aβ positivity in different groups, shedding light on the heterogeneity of
AD progression. This study underscores the potential of our proposed approach for more nuanced
AD prognoses, potentially informing more personalized and precise therapeutic strategies. Future
research can extend these findings by integrating diverse data sources, employing longitudinal data,
and refining the interpretability of the model, which potentially has broad applicability to other
complex diseases.

Keywords: graph neural networks; alzheimer’s disease; amyloid-beta positivity; population graph;
explainable graph neural networks

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized
by a series of changes in the brain that occur years or even decades before the first symptoms
of cognitive decline become evident [1–4]. Amyloid-beta (Aβ) is a protein that is implicated
in AD, one of the most common forms of dementia. Aβ deposition, which can be observed
via amyloid positron emission tomography (PET) imaging, is one of the earliest detectable
pathological changes and a pathological hallmark of AD. It precedes other biomarkers, such
as tau pathology, neuronal injury or neurodegeneration, and cognitive symptoms [5]. Once
amyloid plaques start to build up, there is a cascade of events, including the accumulation
of tau tangles inside neurons and eventual cell death, leading to brain atrophy, which
can be observed through magnetic resonance imaging (MRI). Detecting the presence or
predicting the onset of Aβ positivity can, therefore, be instrumental in the early diagnosis
and prevention of this debilitating disease.

Numerous studies have employed machine learning and deep learning methodologies
for predicting amyloid pathology and other AD phenotypes [1,6–20], typically classifying
individuals into the categories of cognitively normal (CN), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) [11–14]. Furthermore, several studies have proposed
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machine learning frameworks designed to predict the conversion from MCI to AD [15–19],
highlighting the potential of these methodologies in forecasting AD progression. Despite
these advances, a crucial area of focus remains the early detection of AD pathology, espe-
cially in cognitively unimpaired individuals. Aβ deposition, distinguishable before any
cognitive impairment becomes apparent, serves as a pivotal biomarker for identifying
individuals predisposed to AD. It is noteworthy that cognitively unimpaired individu-
als may not yet demonstrate significant Aβ deposition and are often categorized as Aβ
negatives. However, AD typically harbors an extended preclinical phase where, despite
an absence of overt cognitive symptoms, individuals may already possess considerable
Aβ deposition [21,22]. Thus, predicting Aβ positivity could significantly expedite AD
diagnosis, optimize participant selection for clinical trials of disease-modifying therapies,
and facilitate proactive monitoring and potential early intervention. Many researchers are
increasingly targeting the early stages and the preclinical phase of AD in an attempt to
curtail disease progression [1,8,20,23].

Various biomarkers, including demographic traits, genetic factors, and MRI imaging
features, are key tools in predicting Aβ positivity [24,25]. Age, a significant demographic
factor, is intrinsically linked with the risk of developing AD. As age advances, the probabil-
ity of both AD and other dementia forms, as well as Aβ plaque accumulation, increases.
Sex is another demographic characteristic of note, with women statistically more likely to
develop AD compared to men, a fact which is an active area of investigation. Educational
attainment, gauged as years of formal education completed, is associated with AD risk.
Those with higher education levels often exhibit a lower risk of AD, potentially attributed
to a bolstered cognitive reserve, which allows for increased tolerance of brain damage
before dementia symptoms manifest.

Genetic factors, particularly the apolipoprotein E (APOE) ε4 allele, have a significant
role in AD risk prediction [26–28]. Carriers of this allele are at elevated risk of developing
AD and often experience earlier onset of symptoms. This allele is believed to influence
AD by modifying Aβ processing or clearance in the brain. MRI features, including brain
atrophy and other structural changes linked to AD, offer powerful predictive tools for Aβ
positivity [29,30]. Changes such as specific regional brain shrinkage, ventricular expansion,
and alterations in white matter integrity can be detected by MRI. The combined utilization
of these biomarkers offers a comprehensive approach to predicting Aβ positivity. The multi-
faceted strategy facilitates earlier, more precise diagnosis; improved prognostic predictions;
and the potential for personalized treatment plans. It can also guide the design of clinical
trials and the development of new therapeutic interventions, underlining the enhanced
predictive model offered by their combined use.

Effective capture of the collective power of these biomarkers for the efficient diagnosis
and prognosis of AD can be achieved through graph-based machine learning, particularly
graph neural networks (GNNs). GNNs have made significant strides in the healthcare
sector, modeling interactions between biological entities, predicting potential disease-
associated genes, constructing patient similarity networks, and even playing a crucial
role in drug discovery [31–41]. GNNs have been utilized to model intricate correlations
between multiple biomarkers, such as genetic, clinical, and neuroimaging features, offering
valuable insights into the underlying mechanisms of AD progression [42–46]. The strength
of GNNs lies in their ability to interpret the interconnections between brain regions and
the impacts of changes in these regions on AD progression. These capabilities can enhance
understanding of the complex disease trajectory, allowing for more precise prediction of
AD prognosis.

One such tool that has proven to be powerful in graph-based deep learning is the subset
of GNNs known as graph convolutional networks (GCNs) [47]. They extend the concept of
convolutional operations from regular, grid-like structures—typical in images—to irregular
graph structures. Notably, GCNs have been shown to be useful in disease prediction,
particularly for autism spectrum disorder and AD [38]. They operate on a population graph,
where nodes represent individuals and edges symbolize similarity in certain characteristics,
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thereby facilitating the deciphering of population-level patterns and individual variations
in brain images.

Despite these advances, their inherent black-box nature poses a challenge due to
limited transparency. This opacity can hinder understanding of the models’ internal
decision-making processes—a significant concern in the medical field, where model inter-
pretability is crucial. To combat this issue, researchers are turning to explainable artificial
intelligence (XAI) to foster more comprehensible and transparent GNNs. Various tech-
niques, such as GradCAM-based explanation [48,49], PGExplainer [50], PGMExplainer [51],
XGNN [52], and GNNExplainer [53], have been developed to enhance the interpretability of
GNNs. However, the use of explainable GNNs remains largely restricted to medical image
analysis [54–56] and drug discovery [57–60], suggesting a need for broader application and
integration. Moreover, the comprehensive prioritization of personalized biomarkers, crucial
for personalized medicine in AD diagnosis and treatment, is a largely unexplored area.

This study aims to bridge this gap by leveraging GCNs [47] to offer accurate predic-
tions alongside interpretable results, thus contributing to a more holistic understanding of
individual AD prognoses. This study is motivated by the hypothesis that cohorts with anal-
ogous clinical or neuroimaging characteristics may show a correlation that extends beyond
the influence of prevalent biomarkers, such as the APOE genotype. Thus, we can build a
population graph where nodes symbolize individuals at risk and edges depict similarities
in demographic, genetic, and neuroimaging attributes. Our study highlights the utility
of GCNs in predicting Aβ positivity, a crucial early indicator of AD, by demonstrating
our proposed correlation-based population graph of cognitively unimpaired individuals.
Furthermore, we utilize GNNExplainer [53], an explainable GNN model, which optimizes
a subgraph within an individual’s neighborhood and pinpoints a set of crucial features
integral for the prediction. For each individual, we prioritize personalized AD risk factors,
allocating risk scores derived from the average importance values garnered from their
neighbors. This elucidation process further unveils a significant variation in the biomarkers
identified for AD prognosis across different sample groups. The overview of the proposed
model is illustrated in Figure 1. The main contributions of this study include:
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Figure 1. Overview of the proposed model. First, we construct a population graph in which the
vertices represent individuals and are characterized by demographic features (age, sex, years of edu-
cation), genetic information (APOE ε4 status), and MRI imaging features (average cortical thickness
values for 69 brain regions of interest (ROIs). Edges are assigned when there is a high correlation
between a pair of individuals. Next, we employ graph convolutional networks (GCNs) to analyze the
population graph and predict the Aβ positivity for each individual. Finally, GNNExplainer provides
an explanation for each prediction, optimizing a subgraph of the individual’s neighborhood and
identifying a set of crucial features for the prediction. For each individual, we prioritize the top 10
personalized biomarkers by assigning risk scores based on the average importance values obtained
from their neighbors.
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• We demonstrate the effectiveness of using graph neural networks on population
graphs for early AD diagnosis in cognitively unimpaired individuals;

• We provide explanations of graph neural network predictions, offering sample-level
interpretations using demographic and neuroimaging features;

• We prioritized personalized risk factors for AD by explaining graph neural network
predictions, thereby characterizing groups of individuals based on their risk factors in
AD prognosis.

2. Materials and Methods
2.1. Dataset

In this study, we leveraged the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
GO/2 dataset (adni.loni.usc.edu, accessed on 21 May 2023). The ADNI was launched in
2003 as a public–private partnership led by principal investigator Michael W. Weiner, MD.
The primary goal of ADNI is to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org (accessed on 21 May 2023). Our selection targeted
individuals identified as either cognitively normal (CN) or with mild cognitive impairment
(MCI) status. We utilized a total of 506 samples from the ADNI cohort encompassing
214 CN and 292 MCI samples, with each sample characterized by 73 features.

These features included 3 demographic aspects (age, sex, and years of education),
APOE ε4 status, and 69 neuroimaging features derived from MRI scans. The APOE ε4
status, denoted by the count of ε4 alleles (0, 1, or 2), functions as a critical genetic biomarker
associated with elevated AD risk, with two ε4 alleles conferring the highest susceptibility.
The neuroimaging features derived from MRI provide a thorough representation of neu-
roanatomical alterations, encompassing metrics such as cortical thickness. In this study,
we utilized quantitative ADNI MRI data. The quantitative MRI data specifically repre-
sent the cortical thickness from T1-weighted MRI images obtained from the University of
California, San Francisco, and archived at the LONI Image and Data Archive (IDA). We
used average cortical thickness values for each of the 69 brain regions of interest (ROIs). A
comprehensive description of the MRI image data acquisition process can be found here:
https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/ (accessed on 21 May 2023).
As a result, there were 69 distinct numerical MRI features available for each individual.

Our study primarily focuses on predicting Aβ positivity in cognitively unimpaired
individuals. The levels of Aβ were quantified from 18F-florbetapir PET scans, which specifi-
cally bind to Aβ plaques present in the brain. The measurements of Aβ levels were obtained
from the LONI Image and Data Archive (IDA) at the University of California, Berkeley.
The burden of Aβ deposits was evaluated using the averaged value of the standardized
uptake value ratio (SUVR). A detailed description of the PET image analysis method can
be found here: https://adni.loni.usc.edu/methods/pet-analysis-method/ (accessed on
21 May 2023). If the averaged value exceeded a cutoff of 1.11, the individual was classified
as Aβ-positive, indicative of AD pathology [61,62]. The ADNI cohort contained 291 Aβ-
negatives and 215 Aβ-positives. Summary statistics of the clinical features for the CN and
MCI samples are presented in Table 1.

Table 1. Demographic and neuroimaging characteristics of cognitively normal (CN) and mild cogni-
tive impairment (MCI) groups from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.

CN (N = 214) MCI (N = 292)

Age 74.18 ± 6.14 73.14 ± 7.48
Sex 96 F/118 M 173 F/119 M

Education (years) 16.7 ± 2.54 16.13 ± 2.64
APOE ε4 144 neg/70 pos 173 neg/119 pos

Aβ positivity 139 neg/75 pos 152 neg/140 pos
N: Number of samples; F: Female; M: Male; pos: Positive; neg: Negative

adni.loni.usc.edu
www.adni-info.org
https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/
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2.2. Population Graph Construction

In our study, we constructed a graph denoted by G = (V , E), where the vertex set
V = (v1, . . . , vn) signifies the collection of individuals. Each vertex vi is associated with
the i-th individual and is characterized by a feature vector xvi , which is composed of
demographic and neuroimaging features. Specifically, for each individual, we concatenate
features such as age, sex, years of education, APOE ε4 status (0, 1, or 2), and quantitative
MRI imaging features (average cortical thickness values for 69 brain ROIs), resulting in a
73-feature vector. The set E denotes the collection of undirected edges linking the vertices
in V .

Pearson’s correlation coefficient and associated p-values are computed for each vertex
pair’s feature vectors xv and xw. These metrics elucidate the magnitude, direction, and
statistical significance of the linear relationship between the data linked to each vertex
pair. Following this calculation, we rank all vertex pairs using two criteria: the absolute
correlation coefficient value (in descending order) and the p-value (in ascending order).
We identify the top M pairs, those exhibiting the highest absolute correlation and lowest
p-values, and assign them edges, evw = (v, w) ∈ E . These assigned edges signify the most
statistically significant and the strongest correlations within our population graph.

We introduced the proposed model, which employs GCNs and was termed GCN-
corr, to this correlation-based population graph. Its performance was contrasted with an
equivalently sized graph but with edges assigned randomly termed GCN-random. This
comparison elucidated the advantages of utilizing a correlation-based graph for predicting
Aβ positivity in cognitively unimpaired individuals as opposed to a graph with randomly
assigned edges. In the GCN-corr model, edges mirror the correlations between individual
nodes, thus enabling more precise prediction congruent with the population structure.

Through an ablation study, we ascertained the optimal number of edges (M) by
manipulating the network density. This density, calculated as 2M

N(N−1) , represents the
proportion of actual edges compared to the maximum possible in a fully connected network
of N nodes. We varied the density from a sparse 1% connectivity network to a maximally
interconnected network (100% connectivity), with each increment representing a 10%
increase. This methodology aids in striking an equilibrium between network complexity
and predictive accuracy, thereby refining the graph’s structure for enhanced prediction
efficacy using the GCN model. Additional discussions on the ablation study are expounded
upon in the Supplementary Materials.

2.3. Graph Convolutional Networks

In this study, we leveraged graph convolutional networks (GCNs), which were pro-
posed by [47], with a population graph G to discern the connections between the demo-
graphic and neuroimaging features of individuals. This study addresses the problem of
predicting Aβ positivity as a node (individual)-level prediction task within the GCN model.
An adjacency matrix A ∈ [0, 1]N×N representing pairwise correlations between nodes in a
population graph G, a feature matrix X ∈ RN×p, and labels y ∈ [0, 1]N (Aβ positivity) are
used as input to train the model.

GCNs are designed to learn robust node representations by aggregating information
from the local neighborhoods within the graph [47]. The core operation in GCNs, graph con-
volution, operates as a message-passing mechanism that facilitates information exchange
between adjacent nodes. Within each GCN layer, nodes gather, process messages from
their neighbors, and subsequently transform this information using a learnable weight
matrix. Diverging from the convolution concept used in convolutional neural networks
(CNNs), which apply a filter to localized input data segments, GCNs redefine convolution
as the process of aggregation of neighboring node information. This notion retains the
integral principle of incorporating local information, a concept fundamental to CNNs, thus
justifying its appellation as graph convolution. Within a single GCN layer, the operation
can be denoted as:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(1)
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In this equation, H(l) and H(l+1) represent the feature matrices at the l-th and (l + 1)-th
layers, respectively, each encapsulating node representations. The matrix Ã, derived by
adding the identity matrix I (representing self-loops, which are edges from nodes to
themselves) to the original adjacency matrix A, is referred to as a self-loop inclusive
adjacency matrix. The degree matrix of Ã, D̃, is a diagonal matrix representing the degree
(number of connections) of each node. The learnable weight matrix at the l-th layer, W(l),
serves to transform the aggregated neighbor node information. σ signifies the activation
function; in this study, a rectified linear unit (ReLU).

The model is then trained to minimize the loss L using the ADAM optimizer and
learn the optimal parameters for the prediction task. The loss L represents a cross-entropy
function, which is computed as follows:

L = −(wy0 y log(h) + wy1(1− y) log(1− h)) (2)

In this equation, h denotes the model’s prediction output following softmax activation,
and y represents the ground-truth label. Given the higher number of Aβ-negative samples
in the cognitively unimpaired individuals dataset, the model could be impacted by class
imbalance. To address this issue, we assigned rescaling weights during model training,
which are inversely proportional to class frequencies as follows:

wyc =
N

2Nyc

(3)

Here, N represents the total number of samples, while Nyc denotes the number of
samples belonging to class c.

2.4. Interpretation with GNNExplainer

GNNExplainer [53] is a model-agnostic method specially designed to elucidate the
predictions made by graph neural networks (GNNs), including the GCN model. The
primary goal of GNNExplainer is to offer insights into the model’s decision-making process,
highlight significant features and relationships within the graph, and foster trust in the
model’s predictions.

The GNNExplainer method works by learning to extract a concise subgraph from
the original input graph. This subgraph is optimized to best explain the GNN model’s
prediction for a specific target node or graph. This is accomplished by formulating an
optimization problem where the objective is to minimize the difference between the original
GNN model’s prediction and the prediction made using the extracted subgraph. This
optimization process involves the use of a binary mask for nodes, edges, and features.
This mask determines whether to include or exclude graph elements, contingent on their
contribution to the prediction.

In this research, we employed GNNExplainer to provide interpretable explanations for
the predictions generated by our GCN model. This tool allowed us to explore individual
biomarkers that significantly contribute to the prediction of Aβ positivity. Additionally,
we identified distinct groups of individuals who share common biomarkers yet contain
unique prioritized features that differentiate them from other groups. We also detailed the
characteristics of each group based on their significant biomarkers.

2.5. Performance Evaluation

In this study, we formulated a supervised node classification problem, where our
objective was to predict the Aβ positivity for each individual within the test sets. We
assessed the classification performance by employing stratified five-fold cross-validation
repeated 10 times. This method ensured that the ratio of Aβ-positive to Aβ-negative
samples was maintained across all sets. During each iteration, we set aside one fold as the
test set, while the remaining four folds were randomly divided into an 80% training set and
a 20% validation set. We carried out this stratified partitioning to optimize and validate our
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model. Consequently, the data were split into a 64% training set, a 16% validation set, and
a 20% test set. We report the final classification performance as the mean area under the
curve (AUC) values over a total of 50 iterations.

3. Results
3.1. Experimental Setting

In the experiments, we assessed the performance of our proposed correlation-based
population graph model (GCN-corr) and compared it with an equivalently sized graph
but with edges assigned randomly (GCN-random). Furthermore, to provide a broader
perspective on the efficacy of GCN models applied to population graphs, our comparison
was not limited to GCN-random and GCN-corr. We expanded our analysis to include a
comparison with traditional machine learning algorithms. These encompassed the support
vector machine (SVM) using a radial basis function (RBF) kernel, the random forest (RF)
classifier, logistic regression (LR) with the L2 penalty (also known as ridge regularization),
and the multi-layer perceptron (MLP).

To achieve optimal performance in our analyses, we set certain hyperparameters
empirically for both the GCN and the MLP models. The GCN model was structured as
a two-layer network, which included a hidden layer comprising 32 units. The model
underwent training for a maximum of 550 epochs, with a learning rate set at 0.005. The L2
loss was set to 5× 10−10 , and a dropout rate of 0.5 was employed to prevent overfitting
and enhance generalization. Simultaneously, the MLP model was set up with the same
hyperparameters as the GCN model for a fair comparison.

Due to the predominance of Aβ-negative samples in our dataset, we utilized class
weights as outlined in Equation (3) to balance the classes. For fairness in comparison,
the same rescaling weights were applied to the conventional machine learning models
previously mentioned. This adjustment in weights ensured a balanced evaluation of each
model’s performance, despite the unequal sample sizes between the Aβ-positive and
Aβ-negative groups.

It is worth noting that, although we employed stratified cross-validation, a technique
which guarantees a proportionate class distribution across all validation folds, it did not
directly influence the model’s learning process. Conversely, class weights were incorpo-
rated during model training, conferring more emphasis to the less represented class and
thereby ameliorating the effects of imbalanced data. Therefore, these two methodologies,
while serving distinct roles, complement each other: stratified cross-validation augments
the accuracy of performance estimation, while class weighting refines the model’s capacity
to learn from imbalanced datasets.

3.2. Performance of Prediction of Aβ Positivity

We evaluated the performance in predicting Aβ positivity with comparative analyses
conducted across three distinct groups: cognitively normal (CN) individuals, individuals
with mild cognitive impairment (MCI), and a combined group of both CN and MCI
individuals. The performances for each model were evaluated across these sample groups
and are comprehensively displayed in Table 2 and Figure 2.

Upon analysis, we observed that the GCN models, when applied to the population
graph constructed in this study, consistently outperformed the conventional machine
learning models across all sample groups. Moreover, the correlation-based population
graph model (GCN-corr) consistently demonstrated superior performance compared to
the GCN model with randomly assigned edges (GCN-random). The GCN-corr model
outperformed all other models across all groups, achieving the highest mean AUCs of
0.8851, 0.8741, and 0.8632 for the CN, MCI, and CN + MCI groups, respectively. This was
particularly evident in the combined CN + MCI group, where the performance of the GCN-
random model showed a significant drop (0.7160 ± 0.0135), not just in comparison to the
GCN-corr model but also against most of the conventional machine learning models. This
suggests the potential of GCN models in significantly enhancing the predictive accuracy for
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Aβ positivity when used with well-crafted population graphs, affirming their proficiency
in handling complex biological data.

CN (n=214) MCI (n=292) CN+MCI (n=506)

A
U

C

SVM      RF        LR      MLP  GCN- GCN-
random    corr

SVM      RF      LR       MLP  GCN- GCN-
random    corr

SVM      RF      LR      MLP  GCN- GCN-
random    corr

Figure 2. Comparison of the performance of each model (represented in x-axis and different colors)
in predicting Aβ positivity across three sample groups: cognitively normal (CN) individuals, those
with mild cognitive impairment (MCI), and a combined group (CN + MCI). The performance was
measured with the area under the ROC curve (AUC) derived from 10 repetitions of five-fold cross-
validation. The compared models are support vector machine using a radial basis function kernel
(SVM), random forest (RF) classifier, logistic regression with ridge regularization (LR), multi-layer
perceptron (MLP), GCN model on a graph with randomly assigned edges (GCN-random), and GCN
model on a correlation-based population graph (GCN-corr).

Table 2. Summary of the performance of each model in predicting Aβ positivity across three sample
groups: cognitively normal (CN) individuals, those with mild cognitive impairment (MCI), and a
combined group (CN + MCI). The performance metrics were computed as the mean area under the
ROC curve (AUC), along with a 95% confidence interval, derived from 10 repetitions of five-fold
cross-validation. The highest performing result for each sample group is highlighted in bold text.

AUC (Mean ± 95% CI)

Model CN MCI CN + MCI

SVM (RBF) 0.7515 ± 0.0131 0.7531 ± 0.0137 0.7537 ± 0.0129
RF 0.7205 ± 0.0143 0.7226 ± 0.0140 0.7238 ± 0.0134
LR (ridge) 0.7490 ± 0.0129 0.7480 ± 0.0112 0.7500 ± 0.0144
MLP 0.7009 ± 0.0158 0.7013 ± 0.0137 0.7009 ± 0.0159
GCN-random 0.8110 ± 0.0185 0.7768 ± 0.0153 0.7160 ± 0.0135
GCN-corr 0.8851 ± 0.0154 0.8741 ± 0.0114 0.8632 ± 0.0115

To further illustrate the proficiency of the GCN model in accurately classifying Aβ-
positive and -negative samples within a population graph, we offer a visualization of the
final embedding of each GCN model in Figure 3. Notably, the GCN model with randomly
assigned edges (GCN-random) demonstrated difficulty differentiating between the two
classes across all three groups: cognitively normal (CN), mild cognitive impairment (MCI),
and the combined CN + MCI group.

In contrast, the correlation-based population graph model (GCN-corr) effectively
distinguished between the two classes across all sample groups, emphasizing the significant
contribution of our proposed correlation-based population graph to the enhancement of
Aβ positivity prediction using the GCN model.

The strength of these findings lends considerable support to our research hypothe-
sis. It suggests the existence of shared biomarkers within groups of individuals whose
demographic and neuroimaging features strongly correlate, thus positively influencing
Aβ positivity prediction and enriching our understanding of AD prognosis. These results
also suggest variability in AD risk factors across different individual groups, hinting at the
potential benefits of tailoring prediction models and preventative strategies.
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CN (v=214) MCI (v=292) CN+MCI (v=506)

GCN-corr

GCN-random

Group

Figure 3. Visual representation of the final node embedding of the GCN-random and GCN-corr
models across three groups: cognitively normal (CN), mild cognitive impairment (MCI), and a
combined CN + MCI group. Nodes representing Aβ-positive samples are colored blue, while those
representing Aβ-negative samples are in red. v represents the number of vertices (individuals).

3.3. Interpreting Predictions of Graph Neural Networks

In our endeavor to understand the intricate interplay between demographic and neu-
roimaging features, we utilized GNNExplainer. This tool helped us identify key biomarkers
that significantly contribute to the prediction of Aβ positivity within GCN models. This
investigation deepens our understanding of the model’s decision-making process and
bolsters our confidence in its predictive capabilities.

Figure 4 offers a visual representation of these prioritized biomarkers and their associ-
ated importance scores for each individual. For an improved visualization, we randomly
selected 50 individuals from the test set that delivered the most accurate predictions across
all cross-validation splits. Notably, these samples were correctly classified, which facilitated
the identification of the most influential biomarkers for accurate predictions. To further
enhance data interpretability, we employed both feature-wise and sample-wise clustering.
This analysis led to the identification of four distinct groups (A, B, C, and D), each distin-
guished by the significance of their biomarkers. We delineated the top 10 biomarkers based
on their averaged importance scores, uncovering unique patterns of significance across the
four groups, as detailed in Table S1.

In group A, the left precentral gyrus, known for its involvement in motor function,
emerged as the most significant biomarker with an average score of 0.9954. Additional no-
table biomarkers included the right precentral gyrus, the APOEe4 gene variant—associated
with an increased risk of AD—and the left caudal middle frontal gyrus, all scoring above
0.89. In group B, the left precentral gyrus was also the top biomarker. However, the
demographic feature of age was highlighted, receiving an average score of 0.7768. This
underlines the well-established link between advancing age and increased risk of AD. In
group C, the left precuneus, a brain region involved in episodic memory, stood out as the
most significant biomarker with a score of 0.7137. This group also prioritized demographic
features, such as the level of education (years) and the individual’s sex, with scores of 0.6725
and 0.6160, respectively. These results may indicate a potential influence of educational
attainment and biological sex on the disease’s onset and progression. Group D highlighted
the value of education (years) as the top biomarker, scoring a near-perfect 0.9970. This
aligns with the cognitive reserve theory, which suggests that higher levels of education
may offer a protective effect against cognitive decline. Neuroimaging biomarkers, such as
the right precuneus and left pars orbitalis, also held high priority in this group.
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Taken together, these findings underscore the complex interaction between structural
brain changes and demographic factors in predicting Aβ positivity. They shed light on the
heterogeneity of the disease, revealing different progression patterns across unique groups.

Figure 4. Heatmap visualization of the prioritized biomarkers derived from the GCN model with a
correlation-based population graph. Each row represents an individual, and each column represents
a biomarker. The color intensity indicates the importance score of each biomarker for Aβ-positivity
prediction. The individuals and biomarkers are clustered feature-wise and sample-wise, revealing
four distinct groups (A, B, C, and D) based on their important biomarkers.

4. Discussion

Our study illuminates the potential value of applying GCNs within a correlation-based
population graph for enhanced AD prognosis. The superior performance of this model
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underscores the efficacy of harnessing the inherent structure and correlations in the data to
augment predictive accuracy.

Our findings comprehensively demonstrate that a population graph built on correla-
tions rather than random assignment can significantly elevate the model’s ability to discern
patterns and predict accurately. This suggests that the interplay between demographic and
neuroimaging features is not random; instead, it exhibits a specific correlation structure
that is instrumental for the prediction task.

Moreover, the improved performance lends credence to the hypothesis of the existence
of common biomarkers among groups of individuals who exhibit high correlations in their
demographic and neuroimaging features. This implies that different groups may possess
distinctive sets of biomarkers that are particularly indicative of Aβ positivity, thereby
illuminating the heterogeneity of AD progression.

Thus, our research underscores the potential of utilizing correlation-based population
graphs in tandem with GCN models for a more nuanced and effective AD prognosis.
This approach could potentially inform the development of more personalized, precise
therapeutic strategies.

Future research could build upon our findings and explore several promising direc-
tions. This could include enriching the GCN model by incorporating diverse data sources,
such as genetic, proteomic, and lifestyle factors, alongside demographic and neuroimaging
features, to enhance the predictive performance. Transitioning from a cross-sectional model
to one that exploits longitudinal data could offer a more dynamic understanding of AD
progression. A deeper exploration of model interpretability and biomarker validation
could provide greater transparency for the decision-making process, ensuring the identi-
fied biomarkers’ relevance. Understanding the unique contributions of biomarkers to AD
progression in different groups could inform the development of personalized treatment
strategies. Lastly, the proposed framework in this study could be expanded to other neuro-
logical disorders or complex diseases, potentially offering valuable insights into disease
mechanisms and therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering10060701/s1, Figure S1: Performances of
the GCN-corr and GCN-random models as network density varies from a sparse 1% connectivity to a
fully connected 100% connectivity in increments of 10%. Performance metrics were calculated as the
mean area under the ROC curve (AUC), with a 95% confidence interval, derived from 10 repetitions of
five-fold cross-validation. The confidence interval’s upper and lower bounds are visually represented
as a shaded area surrounding the line; Figure S2: Visual representation of the final node embedding
of the GCN-random and GCN-corr models at selected network densities of 1%, 10%, and 50%. These
densities were chosen to provide a clear comparison across varying levels of network densities.
Nodes representing Aβ-positive samples are colored blue, while those representing Aβ-negative
samples are in red; Table S1: The top 10 prioritized biomarkers from demographic and neuroimaging
features, along with their corresponding averaged feature importance scores, listed in descending
order. The biomarkers are divided into four groups (A–D) based on the results of heatmap clustering.
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