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Abstract: Bone structure metrics are vital for the evaluation of vertebral bone strength. However,
the gold standard for measuring bone structure metrics, micro-Computed Tomography (micro-CT),
cannot be used in vivo, which hinders the early diagnosis of fragility fractures. This paper used an
unpaired image-to-image translation method to capture the mapping between clinical multidetector
computed tomography (MDCT) and micro-CT images and then generated micro-CT-like images to
measure bone structure metrics. MDCT and micro-CT images were scanned from 75 human lumbar
spine specimens and formed training and testing sets. The generator in the model focused on learning
both the structure and detailed pattern of bone trabeculae and generating micro-CT-like images, and
the discriminator determined whether the generated images were micro-CT images or not. Based
on similarity metrics (i.e., SSIM and FID) and bone structure metrics (i.e., bone volume fraction,
trabecular separation and trabecular thickness), a set of comparisons were performed. The results
show that the proposed method can perform better in terms of both similarity metrics and bone
structure metrics and the improvement is statistically significant. In particular, we compared the
proposed method with the paired image-to-image method and analyzed the pros and cons of the
method used.

Keywords: micro-CT-like images; unpaired image-to-image translation; vertebrae; bone structure

1. Introduction

Bone mineral density (BMD) tests are now internationally recognized as the primary
method of diagnosis for vertebral fragility fractures [1,2]. However, even with standardized
image quality requirements, diagnostic criteria and operating manuals, the rate of under-
diagnosis of fragility fractures remains high [3–9]. A high rate of underdiagnosis means
that patients miss out on the timely treatment of vertebral fractures, which can lead to
height loss, kyphosis, chronic back pain and back-related dysfunction and can significantly
reduce the chance of survival of patients.

Numerous studies [10–13] have found that changes in bone structure decrease bone
quality and increase the risk of fragility fractures, suggesting that bone structure also plays
a key role in bone strength. For example, Taes Y et al. [14] concluded that fractures in adult
men are associated with a smaller cortical bone area and reduced cortical thickness, but
not with bone density. Wehrli FW et al. [15] studied the bone structure of the distal radius
and tibia in postmenopausal women and found that changes in bone structure explained
96% of the change in bone strength, with trabecular volume alone explaining 37–67% of the
change in bone strength. Koester et al. found that increased cortical porosity may lead to a
75% reduction in proximal femur bone strength and that cortical porosity increases with
age [11]. When the trabecular structure deteriorates, the trabeculae decrease in number,
thin or even disappear; gaps widen; and trabeculae transform from plate-like to rod-like;
these changes increase separation and decrease connectivity, which ultimately lead to
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significant changes in structure metrics [10–12]. Bone structure includes the macrostructure
and microstructure of bone [16]. The macrostructure refers to the geometry and topology
of bone, and the microstructure refers to the thickness and spatial distribution of cortical
and trabecular bone. For convenience of expression, “bone structure” in this paper refers to
the microstructure of bone.

Microcomputed tomography (micro-CT) is the gold standard for measuring bone
structure metrics and has a resolution of 10 µm or less. However, it cannot be used to mea-
sure bone structure at anatomical sites such as the spine and hip due to the small aperture
(<10 cm) and high radiation dose. Multidetector computed tomography (MDCT) can be
used routinely for measuring the bone density of human medial bones with calibrated
body models, which has a wide range of clinical applications. However, due to the low
resolution (approximately 200–500 µm), which is much larger than the average thickness
of bone trabeculae, MDCT cannot capture the detailed information of bone trabeculae
and therefore cannot support the accurate measurement of bone structure metrics. If the
relationship between MDCT and micro-CT images can be obtained using deep learning
techniques, it will be possible to generate micro-CT-like images on the basis of MDCT,
which in turn enables the measurement of bone structure metrics.

The generation of micro-CT-like images from MDCT images themselves has logical
self-consistency. Clustering techniques allow us to observe the structural matchings in
MDCT and micro-CT images (as shown in Figure 1). The distribution of bone and bone
marrow tissues has an obvious spatial mapping. Therefore, it is reasonable to assume
that there is also a hidden relationship between low-resolution MDCT and high-resolution
micro-CT images in terms of image structure and detail.
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Figure 1. Example of an inherent mapping relationship between micro-CT (a) and MDCT (b) after
the clustering process. Arrows represent the spatial mapping between MDCT and micro-CT images.

Conditional generative adversarial networks (CGANs) [17–21] are currently popular
image translation and generation methods. Among these methods, the paired-image-based
method has been proven to generate realistic images with sharp details and to have good
quantitative performance [22]. Such methods are trained on a paired-image dataset, where
an image from the source domain already has a corresponding translated image in the
target domain. In the domain of our study, the paired-image-based method requires a large
number of paired MDCT and micro-CT images, and finer results can be obtained when a
sufficient number of paired samples is obtained. However, this paired dataset requirement
imposes a huge practical constraint in the medical field, because micro-CT images can
only be obtained from human cadaver specimens. In contrast, the unpaired-image-based
method can be trained based on unpaired MDCT and micro-CT images, and the method is
less difficult to preprocess than the paired-image-based method.
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This paper utilized a method to generate micro-CT-like images from MDCT images
using FUNIT [23], a few-shot unpaired-image-based method that enables high-resolution
image translation between image domains. This method does not change the clinical
scanning technique and measures bone structure metrics that are highly correlated with
those of micro-CT images without increasing the cost or radiation dose.

The remainder of the article is organized as follows: in Section 2, we review the history
of medical image translations and analyze the need for few-shot unpaired-image-based
learning. In Section 3, we systematically present a series of techniques used to measure
bone structure metrics. In Section 4, we compare the generation results of the selected
method with those of other methods and analyze the properties of unpaired-image-based
learning for micro-CT-like image generation.

2. Literature Reviews

For measuring bone structure metrics, image translation methods are used to find
associations between MDCT and micro-CT images and generate micro-CT-like images.
Such methods have been used and explored in the medical field for numerous applications,
such as replenishing missing images [24], cross-scan mode conversion [25], image resolution
enhancement [26] and creating labeled datasets [27]. Mathematically, the goal of image
translation is to transform the input image xA from the original domain A to the target
domain B, thus acquiring the detailed features of domain B, while preserving features of
the source domain. To achieve this goal, a model GA→B needs to be trained to generate
image xAB ∈ B given the original domain image xA ∈ A. The generated image cannot be
distinguished from the image xB ∈ B of the target domain. This process can be expressed
as follows:

xAB ∈ B : xAB = GA→B(xA) (1)

In early studies, translation models GA→B(A) were implemented via classical image
scaling, including four major categories of interpolation methods, frequency domain anal-
ysis, instance-based methods and nonlinear learning methods [28–30]. The interpolation
methods can be further divided into various specific methods, such as nearest neighbor in-
terpolation [31], bilinear interpolation [31] and bicubic interpolation [32,33]. These methods
translate images by filling pixels based on the inter-relationship of pixels after expanding
the source image to make the image edges and content clear. Frequency domain analysis
methods, such as Fourier sharpening and wavelet denoising, Ref. [34] have also gained
wider application in the clinical field [35] and have been applied in low-dose X-ray image
resolution enhancement. Example-based methods [36] obtain the relationships between
regions to achieve image translation. These methods are good at image translation tasks
with regular content, such as the resolution improvement of architectural pictures. In addi-
tion, nonlinear learning methods, such as dictionary learning [37] and random forest [38],
are used in translating medical images, which are based on features selected by experts.
However, manually selected features are limited in their ability to represent complex im-
age information in medical image translations. The aforementioned methods are mainly
focused on filling in the pixels of the target image (CT or MRI image), which only ensures a
clearer image and makes the boundaries between tissues (i.e., edges or contours) clearer
and does not extend and fill in the content or structure details [31,39]. Deep learning [40,41]
methods can address this problem by automatically learning features.

Deep learning super-resolution methods [42–45] became popular in medical image
translations during 2015 [46]. Convolutional Neural Networks (CNNs) are a dominant
class of method [47–50]. CNNs mimic the way the biological visual cortex works [51]
and can be simply understood as the extraction of the boundaries between neighboring
pixels by using convolutional kernels. Based on these, CNNs were first used for image
translation studies within the same scan pattern. Chen et al. [47] proposed a three-layer
CNN model to generate relatively high-quality images from low-dose, low-quality CT
images of the human body. Chen et al. [48] used a residual CNN model to achieve low-dose
CT image resolution enhancement. These studies provided solutions to effectively reduce
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the radiation dose of CT scans. In the field of MRI, CNN-based image translations have
also been used for image resolution enhancement: Zend et al. [49] used ResNet [52] for
the resolution enhancement of brain MRI. Chaudhari et al. [50] used a similar approach to
study the resolution enhancement of knee MRI images. These studies provided solutions
to effectively reduce the scanning time of MRI and lay the technical foundation for the
implementation of image post-processing techniques such as 3T to 7T. In addition, more
complex CNN models, such as cascaded CNNs [53], have been explored [54] and applied to
more complex medical image mapping tasks. For example, Xiang L et al. [55] investigated
the conversion method of T1-weighted images to CT images in cranial MRI via a CNN.

However, CNNs tend to use deeper and higher-dimensional models to obtain a larger
perceptual field, which makes the model difficult to train and easy to overfit [56]. At the
same time, CNN training aims to minimize the loss function, which tends to focus on
minimizing the reconstruction error, and the results may have a high peak signal-to-noise
ratio and tend to lose high-frequency details [57,58]. This makes CNN-based methods prone
to problems such as blurring and noise on edges and detailed textures, and, in general,
only able to handle lower-resolution images. The emergence of Generative Adversarial
Networks (GANs) [59] and Conditional Generative Adversarial Networks (CGANs) [60]
has provided a new solution for this problem, and these networks have achieved promising
results [61–63]. These models introduce the concept of adversarial learning based on the
powerful feature extraction capability of CNNs and separate the image generation task
from the discriminator task to reduce the overall training difficulty.

CGAN-based image translation [18–20,59,64] focuses more on the acquisition of in-
ternal mapping relationships between different images [19] and the generation of gold-
standard-like images, rather than focusing on simple pixel-based filling or sampling, and
tends to be better at content connecting and filling [20]. After years of development, the
CGAN and its various derivative models have proven suitable for implementation in
image translation and have gained widespread attention [30–34]. These methods have been
used [22,50,65,66] in medical imaging. For example, Nie et al. [67] used a cascade GAN
technique to implement brain and pelvic MRI to generate corresponding CT images and
to accomplish the task of 3T MRI to 7T MRI; Hiasa et al. [68] implemented the process
of mapping T1-weighted imaging from the pelvis to the distal femur to CT images via
CycleGAN. Dar et al. [69] used the pix2pix (a CGAN-derived model) technique [19] to
achieve mapping between T1-weighted images and T2-weighted images.

It is worth noting that CGAN-based image mapping methods can be divided into
paired-image-based methods and unpaired-image-based methods. Paired-image-based
methods [19,22,53,56] aim to train generators and discriminators based on paired-image
training sets to achieve “image-to-image” mapping from the source domain to the target
domain, while unpaired-image-based methods [20,23,70] aim to train generators and
discriminators to achieve “class-to-class” mapping from the source domain to the target
domain based on an unpaired (but containing both the domain and target domain images)
training set. Because of this, paired-image-based methods require complex collection and
preprocessing for images (images from different image domains need to be collected with
the same scan pattern as much as possible, and images need to be paired one by one),
while unpaired-image-based methods have relatively simple preprocessing steps and do
not require pairing.

Generally, paired-image-based methods can obtain results with high similarity to the
gold standard if the training dataset is sufficient [56]. However, the image translation
studied in this paper requires in vitro data samples, which are generally collected through
cadaver specimens for training and testing. It is difficult to collect large-scale data from
various aspects, such as policies, regulations and costs. In addition, a large amount of the
CT image pairing work itself is costly, which further hinders the scaling up of paired-image-
based methods.

Thus, we need a few-shot unpaired-image-based method that can discover the relation-
ships between MDCT and micro-CT images to capture the overall and local multi-resolution
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features and achieve the accurate generation of vertebral structure and bone trabecular
details in a way that supports the measurement of bone metrics. This is still a challenge for
imaging methods with large differences and large image sizes such as MDCT and micro-CT.

3. Methodology

Based on the above discussion, a series of techniques related to image translation
were designed in this paper based on a few-shot unpaired-image-based method, and
FUNIT [23] was applied as the core. To demonstrate the effectiveness of the chosen
method, the unpaired-image-based StarGAN [70] and CycleGAN [20] and paired-image-
based pix2pixHD [22,56] methods were selected as the control methods. SSIM and FID
metrics and vertebral bone structure metrics, including bone volume fraction (BV/TV),
trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp), were measured to demonstrate
the feasibility of measuring vertebrae bone structure metrics using MDCT images. The
framework of the methodology is shown in Figure 2.
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This study was an applied basic research study based on scanned images of human
cadaveric lumbar spine specimens. The specimens used were from the Department of
Anatomy and Research, Faculty of Medicine, Peking University. All donors signed an
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agreement related to the donation of human remains and agreed that the remains would be
used for clinical medical education and research. The study protocol was approved by the
Medical Science Research Ethics Committee of Peking University Third Hospital; the ethics
number is IRB00006761-M2021179.

3.1. Specimens

In this study, a total of 75 lumbar vertebrae, comprising 15 sets of lumbar spines (L1
to L5), were obtained from 15 formalin-fixed human cadavers (9 males and 6 females;
mean age 73 years; age range 62–88 years). These donors had bequeathed their bodies
to the local Institute of Anatomy for educational and research purposes, adhering to the
relevant institutional and legislative guidelines. Lumbar vertebrae that showed significant
compression fractures, bone neoplasms or other substantial bone destruction were excluded
from the study. Consequently, all 75 specimens were incorporated into the experiment. The
lumbar spine, along with the surrounding muscle, was sectioned into individual segments
using a band saw, ensuring the preservation of the pedicle and appendix structures to
the greatest extent possible. To minimize trapped gas, the samples were submerged in a
phosphate-buffered saline (PBS) solution at 4 ◦C for a duration of 24 h prior to scanning.
The study protocol underwent review and received approval from the local institutional
review boards.

3.2. Imaging Techniques

The specimens underwent scanning using both micro-CT (Inveon, Siemens, Erlangen,
Germany) and MDCT (SOMATOM Definition Flash, Siemens, Erlangen, Germany) imaging
techniques. For micro-CT imaging, the parameters were set at 80 kVp/500 mAs, with a
field of view on the x − y plane measuring 80 × 80 mm2. A standard matrix size of
1536× 1536 pixels was employed, along with 1024 slices at an effective pixel size of 52 µm.
The exposure time for each of the 360 rotational steps was 1500 ms. In contrast, the MDCT
imaging parameters included 120 kVp/250 mAs, a field of view of 100× 100 mm2, a slice
thickness of 0.6 mm, a slice spacing of 0.1 mm, a pitch of 0.8 and a standard matrix size of
512× 512 pixels. After excluding images with incomplete, upper and lower endplate views,
for all lumbar spine specimens, axial images were captured 1.25 cm above and below the
center of the vertebral body. Given that the slice spacing for micro-CT was approximately
0.05 mm and the MDCT slice spacing was approximately 0.1 mm, 500 micro-CT images
and 250 MDCT images were captured for each vertebra.

3.3. Few-Shot Unpaired-Image-Based Translation Model for Generating Micro-CT-like Images

The few-shot unpaired-image-based model, FUNIT [23], learns image mapping rela-
tionships from unpaired MDCT and micro-CT images. The model simultaneously learns
geometric characteristics, internal structures and the distribution of light and dark regions
from MDCT images, as well as the detailed texture of bone structures from micro-CT
images. After training, the model can generate high-resolution micro-CT-like images with
MDCT images as input.

The model mainly consists of two core modules, namely, (1) a structured detail-filled
generator G and (2) a multitask adversarial discriminator D. The generator G can extract
micro-structure information and generate gold-standard-like images by filling textures,
while the discriminator D can discriminate whether the generated image belongs to the
target domain. As an unpaired-image-based learning model, the model is designed to
translate among multiple types of images. Mathematically, the generator G takes x and K
mapping targets {y1, · · · , yK} as inputs and outputs generated images x with features of
K targets.

x = G(x, {y1, · · · , yK}) (2)

The low-resolution MDCT is considered to be the input image x. Some high-resolution
images such as HR-pQCT [71], micro-CT [72–74], etc., can be treated as the mapping targets
{y1, · · · , yK}. In this paper, we only consider generating micro-CT-like images, so we
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set K = 1, and the micro-CT image is the only y. Thus, Equation (2) can be written as
Equation (3).

x = G(x, y) (3)

In Equation (3), the generator G is designed to have the ability to generate micro-CT-
like images from MDCT. It consists of three sub-networks, namely, the content encoder Ex,
class encoder Ey and decoder Fx, as shown in Figure 3a.
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The content encoder Ex is designed to extract texture-independent positional and
structural region information, such as the extraction of the vertebral geometry and trabecu-
lar layout of the bone. Ex consists of two-dimensional convolutional layers and residual
blocks [52,75], and each convolutional layer has normalized functions and ReLU nonlinear
functions. The feature maps are scaled by a factor of 2 in each spatial dimension using the
nearest-neighbor up-sampling method. The input MDCT image is mapped into a spatial
feature map zx by a 3-stride-2 down-sampling operation.

The class encoder Ey mainly extracts detailed characteristics such as bone trabeculae
texture and alignment. It consists of several two-dimensional convolutional layers, which
are then averaged along the sampling axis. Ey maps the micro-CT images to a class latent
code for describing the texture characteristics of bone trabeculae. This process uses a
VGG [57] network to map each input class image to a class latent code zy. Afterwards,
the class latent code is fed to the decoder Fx through the AdaIN layer, where Ey can
control detailed characteristics (e.g., texture) and Ex can determine regional characteristics
(e.g., the location of regions with different trabecular characteristics). This enables the
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generation of bone structure details on the basis of reasonable correspondence between
MDCT and micro-CT.

The decoder Fx takes latent code zy as input and obtains a set of mean and variance(
µi, σ2

i
)
i = 1, 2 through two fully connected networks. These values are then used as affine

transformation parameters in the AdaIN residual block, where the σ2
i s are the scaling factors

and the µis are the biases [76]. For each residual block, the same affine transformation is
applied to each spatial location in the feature map. The affine transformation is spatially
invariant and therefore can only be used to obtain global appearance information, which
controls how the content is potentially encoded for decoding to generate the output image.

According to the above design, the generator G can map the input MDCT image x to
the output micro-CT-like image x such that x looks like an image belonging to the class cy
of gold-standard micro-CT images, and x and x have structural similarity.

The chosen discriminator D is a patch discriminator [19]. This discriminator applies
a Leaky ReLU nonlinear activation function and consists of a convolutional layer and 10
activated residual blocks without normalization [77]. The architecture of the discriminator
is shown in Figure 3b. It consists of Conv-64→ ResBlk-128→ ResBlk-128→ AvgPool2x2
→ ResBlk-256→ ResBlk-256→ AvgPool2x2→ ResBlk-512→ ResBlk-512→ AvgPool2x2
→ ResBlk-1024→ ResBlk-1024→ AvgPool2x2→ ResBlk-1024→ ResBlk-1024→ Conv-
‖S‖, where ResBlk-X denotes the residual block of output size X× X [52] and ‖S‖ is the
number of mapped target image classes, which is two in this study, namely, MDCT and
micro-CT images.

3.4. Training and Testing
3.4.1. Training Process

The training process of the FUNIT model is a process of solving the minmax optimiza-
tion problem with the objective function of:

min
G

max
D

ℒGAN(D, G) + λRℒR(G)+λFℒF(G) (4)

where ℒGAN , ℒR and ℒF are the GAN loss function, the loss function of the reconstructed
input image with the original input domain and the feature matching loss function, respec-
tively. These functions are defined as follows:

ℒGAN(D, G) = Ex[logDcx (x)] +Ex,{y1}[log(1− Dcy(G(x, {y1}) = x))] (5)

where D(x) is a discriminant probability distribution of a discriminator expressing the
probability of classifying x as a target gold-standard image, rather than a generated gold-
standard-like image, and the superscript indicates the type of target discriminated. That
is, Dcx (x) expresses the ability to discriminate the input image as an MDCT image, while
Dcy(x) is the ability to discriminate the generated gold-standard-like image as a micro-CT
image, and 1−Dcy(x) expresses the ability to discriminate the generated gold-standard-like
image and not discriminate it as a micro-CT image.

Thus, ℒGAN(D, G) expresses the ability of the model to discriminate the input image
as an MDCT image and the generated class image as not a micro-CT image. For the
discriminator D, the input should be discriminated as an MDCT image and the generated
gold-standard-like image should be discriminated as not a micro-CT image as much as
possible, so this ability is as large as possible and is taken as max; meanwhile, for the
generator G, this ability is as small as possible and is therefore taken as min.

In addition, ℒR can help train the generator G model for image mapping. Specifically,
when using the same MDCT image as the input image and the mapped target image (in this
case, K = 1), this loss function encourages G to produce an output image that is identical
to the input MDCT.

ℒR(G) = Ex

[
‖x− G(x, {x})‖1

1

]
(6)
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The ℒF provides a normalization ability to the training. By removing the last layer of
the discriminator D, a feature extractor D f is obtained. Using D f to extract features from
the class micro-CT image x and micro-CT image {y1}, respectively, and minimize their
differences, we have:

ℒF(G) = Ex,{y1,··· ,yK}

[∥∥∥D f (x)−∑k
D f (yk)

K

∥∥∥1

1

]
(7)

The proposed model was trained on a Windows 10 workstation equipped with two
Nvidia A6000 GPUs. In the training process, the discriminator G randomly draws two
images cx, cy ∈ S and cx 6= cy from different classes of source images (MDCT and micro-CT)
and performs mapping training to finally obtain the ability to generate micro-CT-like and
MDCT-like images. We used the default hyper-parameters of FUNIT for training but
changed the image sizes to fit MDCT and micro-CT images.

3.4.2. Image Pairing Method for Testing

In order to test the performance of the model, a ground-truth image pair set was
needed. The scheme for preparing the ground-truth image pair set is as follows:

1. Image matching: The scale invariant feature transform (SIFT) algorithm [78] was
used to find coupling key points in MDCT and micro-CT images. We calculated the
Euclidean distance between key points and set the mean value to be the distance
between MDCT and micro-CT images (Figure 4). Based on this, we compared MDCT
and micro-CT images one by one and constructed the matrix of distances between all
MDCT and micro-CT images. The best matched image pair could be obtained via the
dynamic time warping (DTW) algorithm [79].

2. MDCT image amplification and image pair generation: Due to the different layer
spacing between the two scanning methods, MDCT images and micro-CT images of
the same specimen are not equal in overall number, and approximately two layers
of micro-CT images correspond to one layer of MDCT images. Therefore, the MDCT
images of each vertebra needed to be replicated (250× 2) according to the matching
relationship to obtain one-to-one paired-image pairs of MDCT and micro-CT images,
i.e., 500 image pairs were generated for each vertebral specimen. Applying the above
method to all 25 vertebrae in the test set, a total of 25× 500 = 12,500 image pairs
could be obtained.
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Figure 4. Image matching for micro-CT and MDCT. (a) is the micro-CT image, (b) is the MDCT image,
and the similarity between all micro-CT and MDCT images can be calculated using the average
distance of coupling key points. Different colored lines indicate the coupling relationship between
key points.

3.5. Assessment Methods
3.5.1. Similarity Metrics

To evaluate the similarity between two images, this study employed the structural
similarity (SSIM) [80] and Fréchet inception distance (FID) [81] metrics. The SSIM is
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designed to evaluate similarity with respect to structure, where a higher SSIM value
signifies greater similarity between images [82]. Conversely, the FID metric focuses on
evaluating similarity in terms of details, with a lower FID value indicating a higher degree
of similarity between images [83]. The definitions of SSIM and FID can be found in the
research [22].

3.5.2. Born Structure Metrics

The trabecular microstructure analysis in micro-CT and micro-CT-like images was
conducted by employing the BoneJ plug-in [83] within the Fiji (Version 1.53t) software [83].
Utilizing Fiji, which represents a distribution of ImageJ2 developed by the National In-
stitutes of Health [84,85], both micro-CT and micro-CT-like images of vertebrae were
processed as 8 bit stack maps. Then, the gray-level images from micro-CT and micro-CT-
like sources were binarized into bone and marrow phases by implementing the IsoData
algorithm [86], a global thresholding technique. Following this binarization, metrics were
computed, including bone volume fraction (BV/TV), trabecular thickness (Tb.Th) and
trabecular spacing (Tb.Sp). BV/TV was derived via simple voxel counting, whereby all
the foreground voxels were counted and assumed to represent bone and then compared
to the total number of voxels in the image. Tb.Th and Tb.Sp were calculated without
model assumptions and measured directly by taking foreground voxels as trabeculae and
background voxels as spacing [87].

Continuous axial images were required to form a cylindrical volume of interest (VOI)
to measure the bone structure metrics. After training the model, all original MDCT images
of the 25 vertebrae from the test set were inputted into the model to obtain continuous micro-
CT-like images. Subsequently, two cylindrical VOIs (approximately 15 mm in diameter and
5 mm in height) for each vertebra were selected in both the micro-CT and micro-CT-like
images. The positioning of the VOI can be found in Figure 5. Identical VOI settings were
applied to the MDCT images in order to measure bone structure metrics to serve as a
control group.
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Figure 5. Cylindrical volume of interest (VOI) selection method. (a) The sagittal position of the VOI
is shown on the vertebral body micro-CT sagittal image via the two areas located 5 mm above and
5 mm below each of the vertebral body sagittal midline. (b) The axial position of the VOI is shown
on the vertebral body micro-CT axial image. Line A denotes the centerline of the short axis of the
vertebral body axial map, line B is perpendicular to line A and the intersection of line A and line
B is located 5 mm within the intersection of line A and the anterior edge of the vertebral body. A
cylindrical VOI with a diameter of 15 mm was taken with the intersection of line A and line B as the
tangent point.

4. Results
4.1. Training Results

Figure 6 shows the process of training by showing metrics of one slice of vertebra in
different epochs. After approximately 8000 epochs of learning, the change in the image
metrics slowed and stabilized. The figure shows several representative points in the training
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process, which can be used to observe the learning process of the model for generating
micro-CT-like images. The model first learns the contour information of MDCT, starts from
the range area, gradually adds the bone cancellous and bone cortical information, and
gradually fills in the details of the internal trabecular structure. In the initial stage of the
generation process, there are vacant areas, and as the training epoch increases, the vacant
areas are gradually reduced and the details of the images are gradually clarified.
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Figure 6. The training effect of the FUNIT model of one slice of vertebra in different epochs. The
biaxial line graph at the top of the figure shows the trends of the SSIM value and FID value dur-
ing training, and the vertebral body images at the bottom are the vertebral micro-CT-like images
corresponding to the learning epoch.

After training, MDCT images from the test set were input into the unpaired-image-
based model to obtain micro-CT-like images. Figures 7 and 8 show examples of micro-CT-
like images.
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Figure 8. Example of a FUNIT-generated micro-CT-like image.

Although the micro-CT-like images have sufficient similarity with gold-standard
images, the micro-CT like images have some shortcomings: (1) there is an obvious “double-
border phenomenon” in the bone cortex, i.e., the phenomenon of bone cortex delamination;
(2) there is a lack of bone cortex on the surface of the vertebral canal; (3) there is a localized
trabecular texture in the peripheral soft tissue of the vertebral body; (4) there is a dense area
of bone trabeculae in the cancellous bone, and there is an overfilling of bone trabeculae.

4.2. Comparison of SSIMs and FIDs for Generated Images

Statistical methods were used to more rigorously determine whether the metrics were
significantly different. The normality of all continuous variables was verified using the
Kolmogorov–Smirnov test, and chi-squaredness was verified using the Levene test. The
Friedman test was used to compare the differences in SSIM and FID values between the
images generated using FUNIT, StarGAN and CycleGAN, the original MDCT images and
the gold-standard micro-CT images. The Mann–Whitney U test was used to compare the
SSIM and FID differences between the FUNIT model and the pix2pixHD model for the
micro-CT-like images. The differences in bone structure metrics between the FUNIT micro-
CT-like and gold-standard micro-CT images were analyzed using paired t-test datasets.
Linear regression was used to analyze the correlation between bone structure metrics
between the FUNIT micro-CT-like and gold-standard micro-CT images. The Z-test was used
to compare differences in correlation coefficients between bone structure metrics between
FUNIT micro-CT-like, pix2pixHD micro-CT-like images [22] and micro-CT and MDCT
images. Intraclass correlation coefficients (ICCs) were used to analyze the consistency
between bone structure metrics between FUNIT micro-CT-like and gold-standard micro-CT
images. The above statistical analyses were performed using SPSS 26.0 (SPSS Inc., Chicago,
IL, USA) and MedCalcv10.002 (Ostend, Belgium) software, and differences were considered
statistically significant if the two-sided p value < 0.05. Since the vertebral body consists of
cancellous and cortical bone, both of which are of interest for bone strength, we compared
the quality of generated images by considering the overall image and local cancellous bone
image separately.

4.2.1. Comparing Generated Micro-CT-like Images with MDCT Images

In terms of overall images, using the micro-CT image as the gold standard, the mean
values of SSIM between gold-standard images and the micro-CT-like images generated by
using three unpaired-image-based models (i.e., FUNIT, StarGAN and CylceGAN) were
greater than the SSIM values between the gold-standard and MDCT images, and the
differences were statistically significant (p < 0.001). Similarly, using micro-CT as the gold



Bioengineering 2023, 10, 716 13 of 23

standard, the FID values of the generated images were all smaller than the FID values
of MDCT. The differences were statistically significant (p < 0.001), and these results are
shown in Table 1 and Figure 9. Based on these, we found that the micro-CT-like images
generated using the three unpaired-image-based models were more similar to the gold-
standard images than the original MDCT images in terms of macro-structure and detailed
micro-structure. Among the three unpaired-image-based models, the metrics (both SSIM
and FID) of the micro-CT-like images generated using FUNIT were better than those of the
other two comparison models, and the differences were statistically significant (p < 0.001).

Table 1. SSIM and FID values of the four sets of images and the gold-standard micro-CT images.

Scale Metrics MDCT FUNIT StarGAN CycleGAN p-Value †

Overall image SSIM 0.238 ± 0.031 0.519 ± 0.030 0.437 ± 0.025 0.377 ± 0.035 <0.001 ***
FID 453.425 ± 39.081 201.737 ± 15.031 289.503 ± 18.037 347.311 ± 25.051 <0.001 ***

Localized cancellous
bone images

SSIM 0.213 ± 0.052 0.714 ± 0.023 0.589 ± 0.031 0.508 ± 0.037 <0.001 ***
FID 495.024 ± 54.435 83.696 ± 11.022 175.531 ± 17.035 219.559 ± 16.033 <0.001 ***

Note: † The Friedman test was used to test the differences in metrics among the four sets of images; *** indicates
the corresponding image quality evaluation indicators compared between groups have p < 0.001.
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Figure 9. SSIM and FID values of the MDCT and three generated images. The Friedman test was
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In terms of localized cancellous bone images, the mean values of SSIM and FID of
generated micro-CT like images generated by the three unpaired-image-based models
improved compared with the values of the overall image. Additionally, FUNIT performed
better than the other two methods in SSIM and FID, with statistically significant differences
(p < 0.001).
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4.2.2. Comparison of Micro-CT-like Images Generated Using Unpaired-Image-Based
FUNIT Model and Paired-Image-Based pix2pixHD Model

In terms of both the overall image and the local cancellous bone image, the SSIM
and FID values of the FUNIT-generated micro-CT-like images were better than the correla-
tion values of the pix2pixHD-generated micro-CT-like images, and the differences were
statistically significant (p < 0.001). These results are shown in Table 2 and Figure 10.

Table 2. Comparison of the micro-CT-like images generated using the FUNIT model and
pix2pixHD model.

Scale Metrics FUNIT pix2pixHD [22] p-Value †

Overall image SSIM 0.519 ± 0.030 0.804 ± 0.037 <0.001 ***
FID 201.737 ± 15.031 43.598 ± 9.108 <0.001 ***

Localized cancellous
bone images

SSIM 0.714 ± 0.023 0.849 ± 0.021 <0.001 ***
FID 83.696 ± 11.022 31.724 ± 10.021 <0.001 ***

Note: † The Mann–Whitney U test was used to verify the differences in metrics between micro-CT-like images
generated using FUINT and pix2pixHD. *** indicates p < 0.001.
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Figure 10. SSIM and FID values of the generated images of paired-image-based pix2pixHD and
unpaired-image-based FUNIT. The Mann–Whitney U test was used to test the differences in metrics
between the images. *** represents p < 0.001.

4.3. Correlation and Consistency of Bone Structure Metrics between Generated Micro-CT-like and
Gold-Standard Micro-CT Images
4.3.1. Correlation of Bone Structure between FUNIT-Generated Micro-CT-like and
Gold-Standard Micro-CT Images

The bone structure metrics of FUNIT-generated micro-CT-like and gold-standard
micro-CT images with their correlations are shown in Table 3. The correlation values of
BV/TV and Tb.Th of FUNIT-generated micro-CT-like images were smaller than those of
the gold standard, while the Tb.Sp was larger than that of the gold standard, and the
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difference was statistically significant (p < 0.001). Linear regression equations for bone
structure metrics of FUNIT-generated micro-CT-like and micro-CT images were: BV/TV:
y = 0.935x − 0.025; Th.Th: y = 1.078x − 0.076 and Tb.Sp: y = 1.029x + 0.182, with
R2
(FUNIT), and the F values are shown in Table 3. The BV/TV, Tb.Th and Tb.Sp values

of FUNIT-generated micro-CT-like images were highly correlated with those of the gold
standard, and the correlation was significant (p < 0.001).

Table 3. Bone structure metric values and correlation between FUNIT-generated micro-CT-like and
micro-CT images.

N=50 FUNIT
Micro-CT-like Micro-CT p-Value † R2 F-Value p-Value ‡

BV/TV (%) 0.143 ± 0.018 0.180 ± 0.016 <0.001 *** 0.667 96.102 <0.001 ***
Tb.Th (mm) 0.158 ± 0.021 0.218 ± 0.015 <0.001 *** 0.613 78.69 <0.001 ***
Tb.Sp (mm) 1.144 ± 0.166 0.934 ± 0.126 <0.001 *** 0.603 75.573 <0.001 ***

Note: † Paired t-test was used to compare the difference between the two groups of bone structure metrics,
*** represents p < 0.001. ‡ Linear regression was used to analyze the correlation between the two groups of bone
structure metrics, *** represents p < 0.001.

4.3.2. Consistency between Bone Structure Metrics of FUNIT Micro-CT-like and
Gold-Standard Micro-CT Images

The ICC values of the bone structure metrics of FUNIT-generated micro-CT-like and
gold-standard micro-CT images are shown in Table 4. The FUNIT-generated micro-CT-like
bone structure metrics are highly consistent with those of the gold standard.

Table 4. ICC values of bone structure metrics of FUNIT-generated micro-CT-like and gold-standard
micro-CT images.

Bone Structure Metrics ICC 95% CI p-Value

micro-CT-like
(FUNIT). vs.

micro-CT

BV/TV 0.809 0.887~0.686 <0.001
Tb.Th 0.752 0.852~0.601 <0.001
Tb.Sp 0.753 0.852~0.603 <0.001

4.4. Discussion
4.4.1. Characterization of the Proposed Method

From both the overall image and the local cancellous bone image, the SSIM values
of the micro-CT-like images generated using the three unpaired-image-based methods
were greater than those of MDCT, and the FID values were smaller than those of MDCT
(p < 0.001). The micro-CT-like images generated using the unpaired-image-based methods
had more obvious improvements in structure and details than the original MDCT images,
and the generated micro-CT-like images were more similar to the gold-standard images.
Comparing the results of three unpaired-image-based models, we found that the FUNIT
method had larger SSIM values and smaller FID values than the other two unpaired-
image-based models (p < 0.001), indicating that the FUNIT method had the best model
performance in the image mapping process among the three groups of models.

FUNIT focuses on generating structured images and uses a more systematic generator
design, which consists of three main parts: a content encoder and a class encoder and
decoder. The content encoder extracts information from MDCT that is not related to detailed
texture but highly relevant to the location and regional structure, such as the structure of
each region in cancellous bone and the macro layout of bone trabeculae. Then, a content
feature code is generated after extraction. The class encoder learns location-independent
bone trabeculae detail information from micro-CT, including texture, alignment, etc. The
class specific features are generated after extraction [23]. The model simultaneously learns
the mapping relationship between MDCT and micro-CT and finally fuses the class features
with the content features on the decoder to form micro-CT-like images. Thus, hidden
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information such as bone material and bone marrow distribution in MDCT is extracted,
and bone trabeculae texture is attached to form micro-CT-like images. By the judgment
of the discriminator, the formed micro-CT-like image will have the characteristics of the
bone trabecular structure in micro-CT. For this reason, FUNIT can perform better in the
environment studied in this paper and generate micro-CT-like images that exceed those of
other unpaired-image-based methods in quality.

Although the FUNIT model used can generate micro-CT-like images that are more
similar to the gold standard than the other two methods, the generated images still have
deficiencies. From the results, the SSIM value of the image of the cancellous bone portion of
FUNIT-generated micro-CT-like was improved compared to the overall image, indicating
that the cancellous bone region was more similar to the gold standard, while there were
some problems in the outer contour of the vertebral body, i.e., the bone cortex. Figure 11
shows an example of FUNIT-generated micro-CT-like images, and the problems with the
images are shown specifically in the red box in Figure 12. First, there is a clear “double-
border phenomenon” in the bone cortex, where the originally compact bone cortex is filled
with two or more layers of thin linear bone cortex. The possible reason for this phenomenon
is that the model focuses on cancellous bone features when generating the images, and the
whole image is filled with the structural pattern of bone trabeculae, so the bone cortex on
the MDCT image is replaced by multiple near-parallel bone trabeculae textures.

Additionally, there is a problem of loss of bone cortex in specific areas, especially in
the vertebral canal surface where the bone cortex is prone to defects and disruption of
continuity, which in turn leads to a situation where the boundary between the bone tissue
and the surrounding soft tissue is unclear.

Furthermore, short trabecular texture-like shadows of bone trabeculae appear within
the peripheral soft tissues of the vertebral body. This is due to texture within the soft tissues
being mistaken for bone trabeculae in MDCT: soft tissues with discrepancies in CT values
may be misidentified as bone tissue and then filled. However, this phenomenon is not
widespread and does not have an impact on bone structure studies.
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Finally, in the case of vertebral cancellous bone, if there are relatively dense areas in
the cancellous bone, FUNIT will overfill the relatively dense areas to a certain extent during
the mapping process, as shown by the local thickening of the trabeculae. In contrast, the
relatively sparse areas are underfilled, which is reflected by the local absence and thinning
of trabeculae.

Although there are some issues in the micro-CT-like images generated via FUNIT,
none of them are distributed in core regions of cancellous bone. This is the reason why the
localized SSIM and FID values were better than the overall SSIM and FID values. Since
cancellous bone is important for the diagnosis of osteoporosis, it can be assumed that the
studied FUNIT method meets the requirements of bone structure analysis.

The BV/TV and Tb.Th of FUNIT-generated micro-CT-like images were smaller than
those of the gold standard, and the differences were statistically significant (p < 0.001). The
Tb.Sp of FUNIT-generated micro-CT-like images was greater than that of the gold standard,
and the difference was statistically significant (p < 0.001). All measured bone structural
metrics were moderately correlated with the gold standard (BV/TV: R2

(FUNIT) = 0.667,

Th.Th: R2
(FUNIT) = 0.613, Tb.Sp: R2

(FUNIT) = 0.603), the correlation was higher than that

of MDCT (BV/TV: R2
(MDCT) = 0.367, Th.Th: R2

(MDCT) = 0.275, Tb.Sp: R2
(MDCT) = 0.283)

and the differences were statistically significant. The ICC results showed that acceptable
consistency existed between the generated images and the gold standard. However, the
smaller BV/TV and Tb.Th and larger Tb.Sp imply that the trabeculae are broken, missing,
or unfilled during the mapping process, resulting in wider spacing and a relative decrease
in bone volume fraction. This situation may occur because FUNIT is obtained by finding
structures in MDCT and later adding details similar to those in micro-CT images to obtain
micro-CT-like images. If the structure in MDCT is not very obvious, details are easily
missed and the results of its generated images will be biased toward conservatism. On the
other hand, the unpaired-image-based method learns the structure in MDCT corresponding
to the texture feature in the micro-CT image, and this feature is not learned one-to-one,
meaning that unreasonable bone trabeculae orientation, etc., may occur when filling the
details. This result may lead to a reduction in predicted bone strength compared to actual
bone strength when FUNIT-generated micro-CT-like images are eventually used to predict
bone strength, which in turn may lead to an increased false-positive rate in fracture risk
prediction. The further optimization of model parameters and increased sample diversity
are needed in subsequent studies to remedy this deficiency.

4.4.2. Paired-Image-Based pix2pixHD Model versus Unpaired-Image-Based FUNIT Model

By comparing the SSIM with the FID index, as well as the direct sample shown in
Figure 13, we found that the pix2pixHD-micro-CT-like images were more similar to the gold
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standard than the FUNIT-micro-CT-like images. FUNIT generates less of the bone cortex
and is prone to problems such as the “double-border phenomenon” on the bone cortex,
missing bone cortex and trabecular texture in the soft tissue. In contrast, the bone cortex
of pix2pixHD-generated images is more similar to that of the micro-CT gold standard,
with a tighter and more continuous bone cortex and a clear boundary with the soft tissues.
As analyzed, this is related to the training mechanism of FUNIT and pix2pixHD, which
adopts a “class-to-class” learning model and has a certain tendency to “imagine” in the
filling process, i.e., it uses the local information of MDCT for generation. In contrast, the
pix2pixHD method adopts an “image-to-image” learning mode, and its “imagination”
capability is more convergent; consequently, the mapping results are more realistic, which
is one of the advantages of paired-image training. However, pix2pixHD-generated micro-
CT-like images also have the problem of overfilling and noise formation in dense and
complex bone areas such as attachments. Although there are still some shortcomings in
the texture details of both methods, such as reduced local trabecular definition and less
natural alignment, which make the measured bone structure metrics not fully consistent
with those of the gold standard, there is sufficient correlation between the bone structure
metrics and those of the gold standard.
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Unpaired-image-based learning does not require paired images due to its learning
mechanism, and it has a greater ability to generalize. The model can find the structural
features embedded in MDCT images and find their mapping relationships with micro-CT
images to make certain associations and add detailed textures. This property allows the
model to transform images to a limited degree even when it encounters MDCT input data of
a vertebra type that has not appeared before, making the trained model somewhat robust.



Bioengineering 2023, 10, 716 19 of 23

5. Conclusions

As the population ages and life expectancy continues to increase, the incidence of
fragility fractures has increased significantly. Therefore, the early identification of fragility
fracture risk is critical. In addition, as the age of the population treated with spinal
instrumentation increases, clinicians need to pay more attention to bone strength profiles
to develop individualized surgical plans and reduce the probability of postoperative
complications. BMD cannot fully explain changes in bone strength alone, so it is extremely
important to analyze a diversity of bone structure metrics. The primary focus of this
study is to investigate the possibility of measuring vertebrae bone structure metrics using
MDCT images, of which the core task is establishing a mapping relationship between
vertebral MDCT images and micro-CT images using deep learning methods to generate
micro-CT-like images based on MDCT images.

From the perspective of computer image science, mapping two images with vastly
different resolutions, such as MDCT and micro-CT images, remains an open research
challenge. The emergence of CGANs and their derived models has made this feasible [17].
In this study, the above image mapping task was achieved by finding nonlinear feature
associations between vertebral MDCT and micro-CT images through the unpaired-image-
based FUNIT method.

The bone structure metrics measured using micro-CT-like images are highly correlated
with those obtained from the gold standard of micro-CT images. The used method can fully
utilize the potential of MDCT images and provides a technical methodological possibility
to realize in vivo vertebral bone structure measurement. In terms of image translation, this
paper discusses the presence of some phenomena (e.g., the double-border phenomenon),
but it mainly focuses on the qualitative discussion. Quantitative description methods of
these phenomena should be explored in depth in the future. In terms of model training,
although it is currently in the preliminary exploratory stage using a small sample of in vitro
vertebral specimens, the deep learning model can be further optimized, and its gener-
alization capability can be improved in the future through measures such as expanding
the sample size, increasing sample diversity, and simulating in vivo environments. More
detailed and systemic clinical evaluations should be conducted in the future.
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