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Abstract: Actinic keratosis (AK) is a common precancerous skin lesion with significant harm, and
it is often confused with non-actinic keratoses (NAK). At present, the diagnosis of AK mainly
depends on clinical experience and histopathology. Due to the high difficulty of diagnosis and easy
confusion with other diseases, this article aims to develop a convolutional neural network that can
efficiently, accurately, and automatically diagnose AK. This article improves the MobileNet model
and uses the AK and NAK images in the HAM10000 dataset for training and testing after data
preprocessing, and we performed external independent testing using a separate dataset to validate
our preprocessing approach and to demonstrate the performance and generalization capability of
our model. It further compares common deep learning models in the field of skin diseases (including
the original MobileNet, ResNet, GoogleNet, EfficientNet, and Xception). The results show that the
improved MobileNet has achieved 0.9265 in accuracy and 0.97 in Area Under the ROC Curve (AUC),
which is the best among the comparison models. At the same time, it has the shortest training time,
and the total time of five-fold cross-validation on local devices only takes 821.7 s. Local experiments
show that the method proposed in this article has high accuracy and stability in diagnosing AK. Our
method will help doctors diagnose AK more efficiently and accurately, allowing patients to receive
timely diagnosis and treatment.

Keywords: actinic keratosis; enhanced MobileNet; auxiliary diagnosis; model comparison

1. Introduction

Actinic keratosis (AK) is a skin lesion related to ultraviolet (UV) radiation, mainly
affecting skin areas exposed to sunlight for a long time, such as the face, scalp, neck, fore-
arms, and backs of the hands. The diseased part of the skin shows keratosis proliferation,
presenting symptoms such as rough skin, pigmentation, and scales. AK mainly occurs
in the middle-aged and elderly population, especially Caucasians, and its incidence is
related to multiple factors such as the dose of ultraviolet radiation, genetic factors, and
immune status [1,2]. It is one of the most common precancerous skin lesions, presenting
as reddish-brown or yellow spots or small patches with clear boundaries, and about 10%
of patients may develop into squamous cell carcinoma (SCC). Therefore, early diagnosis
and timely treatment of AK are of great significance [3–5]. The current treatment methods
for AK include cryotherapy, drug therapy, photodynamic therapy, laser therapy, etc. Early
detection and treatment of AK can effectively reduce the risk of cancer in patients and
improve their quality of life [6].
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Currently, the diagnosis of AK is difficult and can easily be confused with other non-
actinic keratoses (NAK) such as seborrheic keratosis and geriatric skin keratosis [7–10].
Traditional diagnostic methods mainly rely on doctors’ naked eye observation, clinical
experience, and pathological examination. These methods are costly and may be traumatic,
and the diagnosis results may be influenced by subjective factors. Therefore, developing an
efficient, automatic, and accurate diagnosis method for AK is of great clinical significance.

Machine learning technology provides a new way for the auxiliary diagnosis of skin
diseases. With the development of computer vision, the application of image recognition
based on deep learning in medical diagnosis is increasing, involving fields such as cancer
recognition, tissue cell classification, and tumor image segmentation. Kawahara et al. [11]
used convolutional neural networks (CNNs) to classify skin pathology images, obtaining
good results. Kaur et al. [12] proved that the classification accuracy of the hybrid deep
learning method in six kinds of skin images is better than that of traditional CNN models.
Ferguson et al. [13] proposed a CNN network structure based on mask regions with high
recognition accuracy. Harangi et al. [14] used the integrated output of the softmax layer
of four different neural architectures for intelligent diagnosis of melanoma. In general,
the mainstream method of using machine learning to recognize skin diseases is deep
CNN. These networks are characterized by long training times and high computational
requirements; thus, they have significant limitations in actual clinical applications.

However, there is very little research specifically targeting keratosis. In fact, the main
research currently is the shallow neural network method AK-DL proposed by Wang L
et al. [15] in 2020. This is a shallow neural network model that has superior performance
in diagnosing keratosis compared with deep neural networks. However, despite the
excellent performance of the model in various indicators, its accuracy needs to be improved.
Therefore, this study aims to develop a high-accuracy, efficient, and low-device-requirement
AK image recognition method based on shallow CNN to improve clinical diagnostic
efficiency and facilitate self-monitoring and prevention of skin cancer.

In this study, we propose an improved MobileNet for the auxiliary diagnosis of AK.
Based on the traditional MobileNet, we introduce a custom preprocessing function, apply
Lab Space and Contrast Limited Adaptive Histogram equalization to the input image,
modify the network architecture of MobileNet, add custom network layers, and use five-
fold cross-validation to improve the stability and generalization ability of the model. An
essential aspect of our study was the implementation of an external validation strategy,
using a separate dataset from The International Skin Imaging Collaboration (ISIC). This
validation served a dual purpose; to verify the broad applicability of our preprocessing
method and to assess the generalization capability of our model on previously unseen data.
This rigorous validation strategy further solidifies the credibility of our proposed model,
demonstrating its robustness and adaptability to different data contexts. To highlight the
superiority of our model, we compared it with the base model MobileNet and four other
mainstream models (ResNet, GoogleNet, EfficientNet, and Xception). The test results show
that our model is highly accurate and fast and is expected to be applied to clinics in the
future by embedding our model into portable AK devices. The workflow of this study is
shown in Figure 1.

Overall, the highlights of this paper are as follows:

1. We propose and implement an improved MobileNet model. In response to the
characteristics of actinic keratosis, we optimized the network structure of the model
to better capture subtle differences in skin images. At the same time, we introduced
appropriate activation and loss functions to further enhance the performance of
the model.

2. Although there have been some studies exploring deep learning methods for the
diagnosis of skin diseases, there is little research specifically targeting the identification
of actinic keratosis. Against this background, this study helps to fill the gap in the
re-search of actinic keratosis identification, thus improving the effects of recognizing
actinic keratosis.
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3. In the data preprocessing stage, we used the LAB color space to replace the tradi-
tional RGB color space and used other image processing techniques, such as image
enhancement and segmentation, to further improve the performance of the model.

4. We made use of external validation to ascertain the broad adaptability of our data
preprocessing method and the generalization ability of our model. By testing our
model with a distinct dataset, we demonstrated its capability to perform excellently
in the face of unseen data, thus showing the robustness of our model in various
data scenarios. This aligns with the real-world clinical setting, where diverse and
varied data inputs are common. This validation step underscores the potential of our
model for practical deployment and its suitability for integration into future clinical
workflows.
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2. Materials and Methods
2.1. Data Sources

The dataset used in this study comes from the Harvard University Dataverse platform,
with the download link: https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-
ham10000, accessed on 21 September 2018. The dataset, named HAM10000, was jointly
collected and collated by the Department of Dermatology of the University of Vienna,
Austria, and the Cliff Rosendahl Skin Cancer Practice in Queensland, Australia, covering
skin disease images over 20 years. HAM10000 contains 100,015 images of seven common
skin diseases, all strictly confirmed by dermatology experts [16]. In this study, we selected
a part of the data for analysis, including 327 skin images diagnosed as keratosis (AK) and
1099 skin images diagnosed as none-actinic keratoses (NAK). At the same time, based on
the dataset, we collected relevant clinical information and data of the patients, such as
gender, location of onset, and age group of onsets.

To validate the generalizability and novelty of our method, we employed an external
dataset released by ISIC in 2019 (https://challenge.isic-archive.com/data/#2019, accessed
on 16 August 2019) as an external validation set. The dataset comprises 1011 AK images,
of which only 867 were available for use in training data. The remaining images were
unavailable as they were being utilized in live challenges. Similarly, only 2624 out of
the entire Benign Keratosis-like Lesion (BKL) image collection were available due to the

https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://challenge.isic-archive.com/data/#2019
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same circumstances. After removing images that coincided with those in the original
HAM10000 dataset, we used the remaining 540 AK images and 1525 BKL images for
external independent testing. Our use of this external dataset not only strengthens our
model’s robustness but also enhances its credibility by ensuring that our model is evaluated
against unseen, non-overlapping data, thereby effectively demonstrating its real-world
applicability.

To our knowledge, there is a considerable gap in research that only analyzes keratosis
images from the ISIC dataset. Currently, the main research is the binary auxiliary diagnostic
method for actinic keratosis proposed by Wang L et al. in 2020. Therefore, our research is
very necessary.

2.2. Data Preprocessing

In this research, our initial step involved preprocessing the images to optimize model
performance. The process encompassed transformations such as color space conversion,
histogram equalization, and data augmentation. To begin with, we transitioned images
from the RGB color space to the Lab color space, a change intended to extend the color
gamut. Lab space is characterized by a wider range compared with RGB and CMYK color
modes, which aids in rectifying the uneven distribution prevalent in these modes [17].
Additionally, lab space provides the distinct advantage of separating brightness from color,
which simplifies the adjustment process and facilitates easier handling by the computer [18].
Subsequent to this color conversion, we employed the Contrast Limited Adaptive His-
togram Equalization (CLAHE) method to the brightness channel. CLAHE is designed
to enhance the local contrast of the image by constraining the amplification of contrast,
thereby improving the image quality. This method is particularly effective in highlighting
textured areas of keratosis, providing the model with a more discernible identification of
skin cancer image features [19,20].

Acknowledging the existing imbalance in our dataset, we implemented data augmen-
tation to bolster the model’s robustness and foster its generalization capability, effectively
reducing the risk of overfitting [21]. Utilizing the ImageDataGenerator class, we performed
operations including rotation, translation, scaling, horizontal flipping, and vertical flipping
on the images [22]. These manipulations enabled us to generate novel image variants
from the existing data, thereby supplementing our training dataset. Furthermore, each
parameter involved in the data augmentation process can be adjusted as needed, paving
the way for optimal model performance. In summary, our preprocessing method pro-
vides a robust foundation for enhancing the model’s ability to accurately classify skin
cancer images.

We were conscious of potential issues related to the application of our preprocessing
steps on specific data, which may not operate correctly when extended to other datasets.
To address this, we sought to verify the efficacy and compatibility of our preprocessing
methodology with external data.

2.3. Model Architecture
2.3.1. Our Model—Enhanced MobileNet

In this study, we adopted MobileNet as the base model and made improvements on it.
MobileNet is an efficient deep neural network designed for mobile devices and embedded
visual applications, and its core is based on depthwise separable convolution, including
28 convolution layers. Compared with traditional convolution layers, depthwise separable
convolution significantly reduces computational complexity and the number of parameters,
thus achieving a more compact model architecture and shorter training time, making it very
suitable for deployment on resource-limited devices [23]. However, due to the limitations
of MobileNet, such as relatively low accuracy and limited robustness to changes in input
data [24], it is urgent to develop an improved method to overcome these limitations while
maintaining efficiency.
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To enhance the performance of MobileNet, we made a series of modifications to
its original architecture. First, we introduced custom data preprocessing, applying Lab
Space and Contrast Limited Adaptive Histogram Equalization (CLAHE) to the input
images to enhance image contrast and detail performance, thereby helping the model
learn and recognize features more easily. Our model accepts input images of size (224,
224, 3). We adapted the original 28-layer MobileNet architecture to a more compact and
efficient 15-layer structure, where each layer employs depthwise separable convolution
followed by Batch Normalization and a ReLU activation function. This modification
substantially reduces the complexity of the model, greatly improves the computation speed,
and mitigates the risk of overfitting. Traditional CNN models have certain deficiencies in
generalization ability, leading to overfitting in the case of insufficient data. Considering
the relatively small number of keratosis images, we introduced a dropout layer to prevent
overfitting. During training, dropout can discard some neurons in the hidden layer with
a certain probability, causing changes in the network structure. The entire process of
dropout is equivalent to averaging multiple different neural networks. To some extent,
it can also reduce the complex mutual adaptation between neurons, thus achieving a
regularization effect. After several tests, we found that dropout set to 0.25 performed best.
The final output layer is a fully connected layer with 2 output units and a softmax activation
function, corresponding to the two categories of our problem: “AK” and “NAK”. This is
used to highly purify the features extracted by the convolution layer, thereby mapping the
distributed features to the sample space. Our model architecture is shown in Figure 2.
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To improve the stability and generalization ability of the model, we also used 5-fold
cross-validation. During training, we used the Adam optimizer with a learning rate of
0.01 and a categorical cross-entropy loss function. At the same time, we monitored some
key performance indicators, including classification accuracy, precision, recall, and the Area
Under the ROC Curve (AUC). During training, we adjusted the learning rate according
to the accuracy on the validation set through defining a callback mechanism. Whenever
the learning rate reached a stable level, we reduced it by half. In addition, we also used
the ModelCheckpoint callback to save the model weights corresponding to the highest
validation accuracy. After debugging, this model used the softmax function as the acti-
vation function. It can convert the output into a probability distribution, and each node
in the output layer corresponds to the probability of a category. At the same time, com-
pared with the sigmoid and ReLU functions, the softmax function has better gradient
stability during backpropagation, thus reducing the problem of gradient vanishing or
explosion. Moreover, although the softmax function involves exponential operations, the
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range of values involved in the calculation is relatively small, so the computational cost is
relatively low.

2.3.2. Comparative Models

In this paper, the improved model is compared with the base model MobileNet and
four mainstream models (CPU: Intel Xeon E5-2680v3, USA, Motherboard: ASUS X99 server
motherboard, China).

To address issues such as gradient vanishing or gradient explosion brought by the
continuous deepening of the network, He and others [25] from Microsoft Research Asia
proposed the Residual Network (ResNet) in 2015.

The core idea is to pass features skip-level to retain all original information, thereby
reducing a large number of network parameters and improving network efficiency and
performance [26]. In this study, we used the pre-trained ResNet50 model, removed the top
fully connected layer, set the size of the input image to 224 × 224, and then added a global
average pooling layer, a dropout layer, and a fully connected layer for classification at the
output end of the ResNet50 model. The number of parameters is about 23.5 million. The
GoogleNet model has a modular unit, Inception, which can increase the depth and width
of the network without increasing computational complexity [27].

In this study, we used the pre-trained InceptionV3 network and made similar modifi-
cations to the top layer. GoogleNet has fewer parameters, mainly because it uses a large
number of 1 × 1 convolution kernels in its design, reducing the number of parameters.

To highlight the superiority of this improved model, we also included the traditional
unimproved MobileNet in the comparative model.

MobileNet is an efficient deep neural network designed for mobile devices and
embedded vision applications. Its core is depthwise separable convolution, including
28 convolutional layers. Compared with traditional convolutional layers, depthwise sep-
arable convolution significantly reduces computational complexity and the number of
parameters, resulting in a more compact model architecture and shorter training time,
making it very suitable for deployment on resource-limited devices. EfficientNet is a model
developed by Google that can automatically adjust the network structure.

By adjusting the depth, width, and resolution of the network, it can effectively reduce
the complexity and computational load of the model while maintaining accuracy [28]. In
this study, we used the pre-trained EfficientNet model and made similar modifications to
the top. The Xception model is an improved model based on the Inception architecture.

Its core idea is to separate the spatial convolution and cross-channel convolution in
the convolutional layer. This separation can improve the performance and efficiency of the
model while reducing the number of parameters [29].

2.4. Experiment

In this study, we meticulously crafted an internal and external validation strategy
to robustly assess the performance of our model. For internal validation, we utilized a
dataset consisting of 327 actinic keratosis (AK) images and 1099 BKL images. We adopted a
five-fold cross-validation method for this process. In five-fold cross-validation, the original
sample is randomly partitioned into five equal-sized subsamples. Of the five subsamples, a
single subsample is retained as the validation data for testing the model, and the remaining
four subsamples are used as training data. The cross-validation process is then repeated
five times, with each of the five subsamples used exactly once as the validation data. The
advantage of this method over repeated random sub-sampling is that all observations are
used for both training and validation, and each observation is used for validation exactly
once. This process is beneficial in mitigating overfitting, offering a more generalized model
performance. For external validation, we used a separate dataset from ISIC. This dataset
consisted of 540 AK images and 1525 BKL images (removed images that coincided with
those in the original HAM10000 dataset). This was carried out to ensure our model’s
effectiveness and adaptability on an unseen, independent dataset. External validation
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is crucial as it verifies the model’s applicability to real-world, previously unseen data.
Moreover, data augmentation techniques such as random rotation, translation, scaling, and
flipping were utilized to prevent overfitting. We used tensorflow’s ImageDataGenerator
for data augmentation to obtain a more accurate model performance evaluation.

During the modeling phase, we took MobileNet as the base model and made im-
provements. MobileNet is an effective lightweight deep convolutional neural network that
primarily uses depthwise separable convolution to minimize computational costs, allowing
the model to achieve high accuracy at a lower computational cost. Improvements include
adding a global average pooling layer, a dropout layer, and a fully connected layer, using
a softmax activation function, and conducting experimental tests to retain only the first
15 layers of the MobileNet model, tailoring it to best suit our task. During the training
phase, we used the Adam optimizer and the cross-entropy loss function, set the initial
learning rate to 0.01, and used the learning rate callback function ReduceLROnPlateau to
dynamically adjust the learning rate. In selecting the optimal learning rate for the Adam
optimizer during our model’s training phase, we deviated from conventional recommen-
dations and opted for an initial learning rate of 0.01 rather than the typically suggested
0.001. This decision was not made lightly but was a consequence of numerous preliminary
experiments and gradient tests that demonstrated the superiority of a 0.01 learning rate
in our specific experimental context and with our particular dataset. A 0.01 learning rate
facilitated a more efficient learning process, promoting faster convergence while maintain-
ing stability. We fully appreciate the profound influence of learning rate selection on the
accuracy of neural network classifiers, and as such, we conducted extensive experiments
during the model development process to establish the ideal learning rate. In our trials, a
learning rate of 0.01 enabled rapid initial descent in our model’s training phase, while also
allowing for a judicious deceleration of learning speed as the solution neared optimality,
thereby mitigating the risks of gradient vanishing and overfitting. When the model’s
validation accuracy did not improve for 2 consecutive epochs, the learning rate was halved
until it was reduced to 0.00001. This allowed the model to converge quickly in the initial
stage of training and optimize the model parameters more meticulously in the later stage
of training.

2.5. Experiment Evaluation

This paper employs a five-fold cross-validation approach to assess the model’s per-
formance. In this approach, the dataset is partitioned into five equal parts. The model is
trained on four parts (or ‘folds’), and the remaining part is used to validate the model. This
process is repeated five times, with each of the five parts used exactly once for validation.
The results of the five evaluations are then averaged to produce a single estimation. The
results are also expressed as the mean value plus or minus the 95% confidence interval,
providing an interval estimate of the model’s performance. This measure of uncertainty is
significant because it conveys the statistical accuracy of the estimate.

The performance metrics employed in this paper include accuracy, loss value, AUC,
sensitivity, specificity, and Matthews Correlation Coefficient (MCC). Each of these metrics
measures different aspects of the model’s performance: Accuracy is the proportion of true
results (both true positives and true negatives) in the total number of cases examined. It
measures the overall correctness of the model. Loss Value is a measure of how well the
model’s predictions match the actual values. Lower loss values indicate better performance.
The AUC of the Receiver Operating Characteristic (ROC) curve is a comprehensive metric
for evaluating binary classification models. An AUC of 1 represents a perfect model, while
an AUC of 0.5 represents a model that is no better than random guessing. Sensitivity (also
known as recall or true positive rate) measures the proportion of actual positive cases
that are correctly identified by the model. Specificity (also known as true negative rate)
measures the proportion of actual negative cases that are correctly identified by the model.
MCC is a measure of the quality of binary classifications. It takes into account true and
false positives and negatives and is generally regarded as a balanced measure which can
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be used even if the classes are of very different sizes. The MCC is in essence a correlation
coefficient between the observed and predicted binary classifications; it returns a value
between −1 and +1. A coefficient of +1 represents a perfect prediction, 0 represents no
better than random prediction, and −1 indicates total disagreement between prediction and
observation. These metrics together provide a holistic view of the model’s performance,
each adding a unique perspective on the strengths and potential weaknesses of the model.
By considering all these metrics, we can make a comprehensive and robust assessment of the
model’s performance. The following is the calculation formula of each performance index.

Acc =
TN + TP

TN + TP + FN + FP
(1)

Loss = −(y × log p + (1 − y) log(1 − p) (2)

Sens =
TP

TP + FN
(3)

Spec =
TN

TN + FP
(4)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

3. Results
3.1. Dataset Visualization and Its Preprocessing

In this study, we first preprocessed the images. Figure 3 is the visualization of the
images after preprocessing. In the first row, A–C are the original images of AK, and D–F
are the original images of NAK. In the second row, A–C are the AK images after data
augmentation, and D–F are the NAK images after data augmentation. In the third row,
A–C are the AK images after image spatial transformation, and D–F are the NAK images
after image spatial transformation. Each image indicates its original number. The above
processing not only improves the generalization ability of the model, mitigates overfitting,
but also separates brightness from color, making it simple and easy for computer processing.

Upon applying our preprocessing methods to the external dataset, we found that
our methods could be effectively implemented. The images preprocessed from the ISIC
2019 dataset exhibited enhanced contrast, with features of skin lesions being noticeably
highlighted, and thus easier for the model to identify. This validation with the ISIC
dataset not only corroborates the effectiveness of our preprocessing methodology, but also
underscores its adaptability to other datasets, hence enhancing its overall applicability in
skin cancer detection tasks. Figure 4 depicts the enhancement in the image quality post our
preprocessing steps.
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3.2. Model Result

In this study, we proposed a deep learning model based on MobileNet for the iden-
tification of two different types of skin cancer: AK and NAK. The model demonstrated
excellent accuracy and stability in a five-fold cross-validation, specifically an accuracy of
0.9265 ± 0.0336, loss value of 0.1732 ± 0.0041, and an AUC value of 10.97 ± 0.02, demon-
strating stable performance across different thresholds. Notably, the model’s sensitivity
and specificity were also quite high, reaching 0.9205 and 0.9242, respectively, indicating a
strong ability to correctly identify both true positives and true negatives. Moreover, the
model’s MCC value was 0.8840, a comprehensive metric considering true positives, true
negatives, false positives, and false negatives, indicating superior performance in binary
classification tasks.

To compare the performance of our model with other mainstream models, we com-
pared it with ResNet, GoogleNet, EfficientNet, Unmodified MobileNet, and XceptionNet.
Our Modified MobileNet exhibited clear superiority, with performance indicators such as
sensitivity, specificity, and MCC all surpassing those of the comparative models (Table 1),
further validating its superiority in the task of skin cancer recognition. For instance, our
model achieved an AUC value of 0.97, significantly higher than other models, demonstrat-
ing superior classification performance at different thresholds (the corresponding ROC
curves are shown in Figure 5). Furthermore, our model showed a significant advantage
in training time, totaling only 821.74 s, far less than the other models. For example, the
training time of the slowest model, ResNet reached 3757.08 s, and the fastest comparative
model, Unmodified MobileNet, required 1140.91 s. This implies that our model can achieve
higher performance in a shorter time, making it more suitable for deployment in clinical
applications, assisting physicians in faster and more accurate diagnosis of skin cancer,
thereby improving patient treatment outcomes.

Table 1. Comparison of improved MobileNet and mainstream machine learning algorithms.

Models Accuracy
(Mean ± 95% CI) Sensitivity Specificity MCC Training

Time (s)

Modified MobileNet 0.9265 ± 0.0336 0.9205 ± 0.0389 0.9242 ± 0.0621 0.8694 ± 0.0472 821.7351
Unmodified-
MobileNet 0.8443 ± 0.0818 0.8133 ± 0.0912 0.8270 ± 0.0708 0.7912 ± 0.0564 1140.9066

ResNet 0.7008 ± 0.0912 0.6514 ± 0.0455 0.8465 ± 0.0931 0.6130 ± 0.0715 3757.0801
GoogleNet 0.8408 ± 0.0348 0.8448 ± 0.0759 0.7703 ± 0.0511 0.8241 ± 0.0956 2918.7124
EfficientNet 0.8536 ± 0.0575 0.9233 ± 0.0508 0.7586 ± 0.0689 0.7967 ± 0.0539 3269.5909

Xception 0.8325 ± 0.0710 0.8317 ± 0.0794 0.7624 ± 0.0690 0.7862 ± 0.0626 2525.3332



Bioengineering 2023, 10, 732 10 of 15

Bioengineering 2023, 10, x FOR PEER REVIEW 10 of 15 
 

Our Modified MobileNet exhibited clear superiority, with performance indicators such as 

sensitivity, specificity, and MCC all surpassing those of the comparative models (Table 1), 

further validating its superiority in the task of skin cancer recognition. For instance, our 

model achieved an AUC value of 0.97, significantly higher than other models, demonstrat-

ing superior classification performance at different thresholds (the corresponding ROC 

curves are shown in Figure 5). Furthermore, our model showed a significant advantage in 

training time, totaling only 821.74 s, far less than the other models. For example, the train-

ing time of the slowest model, ResNet reached 3757.08 s, and the fastest comparative 

model, Unmodified MobileNet, required 1140.91 s. This implies that our model can 

achieve higher performance in a shorter time, making it more suitable for deployment in 

clinical applications, assisting physicians in faster and more accurate diagnosis of skin 

cancer, thereby improving patient treatment outcomes. 

Table 1. Comparison of improved MobileNet and mainstream machine learning algorithms. 

Models 
Accuracy 

(Mean ± 95% CI) 
Sensitivity Specificity MCC Training Time (s) 

Modified MobileNet 0.9265 ± 0.0336 0.9205 ± 0.0389 0.9242 ± 0.0621 0.8694 ± 0.0472 821.7351 

Unmodified- 

MobileNet 
0.8443 ± 0.0818 0.8133 ± 0.0912 0.8270 ± 0.0708 0.7912 ± 0.0564 1140.9066 

ResNet 0.7008 ± 0.0912 0.6514 ± 0.0455 0.8465 ± 0.0931 0.6130 ± 0.0715 3757.0801 

GoogleNet 0.8408 ± 0.0348 0.8448 ± 0.0759 0.7703 ± 0.0511 0.8241 ± 0.0956 2918.7124 

EfficientNet 0.8536 ± 0.0575 0.9233 ± 0.0508 0.7586 ± 0.0689 0.7967 ± 0.0539 3269.5909 

Xception 0.8325 ± 0.0710 0.8317 ± 0.0794 0.7624 ± 0.0690 0.7862 ± 0.0626 2525.3332 

 

Figure 5. ROC curves of improved MobileNet and mainstream machine learning algorithms. 

Building upon our successful results, we also aimed to evaluate the performance of 

our model in an external independent testing environment, an integral aspect of validat-

ing its practical applicability and its capability to generalize. In this regard, we utilized an 

external dataset for this independent validation. The results of the external independent 

Figure 5. ROC curves of improved MobileNet and mainstream machine learning algorithms.

Building upon our successful results, we also aimed to evaluate the performance of
our model in an external independent testing environment, an integral aspect of validating
its practical applicability and its capability to generalize. In this regard, we utilized an
external dataset for this independent validation. The results of the external independent test
reaffirmed the superior performance of our Modified MobileNet model. With an accuracy
of 0.9197, sensitivity of 0.9088, specificity of 0.9246, and a MCC of 0.8575, our model
convincingly outperformed other mainstream models such as Unmodified MobileNet,
ResNet, GoogleNet, EfficientNet, and Xception, as can be observed in Table 2. Additionally,
the corresponding ROC curves are shown in Figure 6.

The results of this independent testing clearly demonstrated the robustness and adapt-
ability of our Modified MobileNet model, substantiating its high performance not only
on our initial dataset but also when exposed to novel, external data. Consequently, these
findings suggest promising potential for the model’s implementation in real-world clinical
settings, aiding in the quick and accurate diagnosis of skin cancer.

Table 2. Comparison of improved MobileNet and mainstream machine learning algorithms on the
external validation.

Models Accuracy Sensitivity Specificity MCC

Modified MobileNet 0.9197 0.9088 0.9246 0.8575
Unmodified MobileNet 0.7411 0.6433 0.8465 0.6041

ResNet 0.6986 0.7642 0.6514 0.6249
GoogleNet 0.8400 0.8304 0.7592 0.8312
EfficientNet 0.8763 0.9180 0.7909 0.8277

Xception 0.7631 0.8159 0.6924 0.7363
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4. Discussion

This study is dedicated to developing an efficient, accurate, and automatic method
for the diagnosis of actinic keratosis (AK). We improved the lightweight convolutional
neural network, MobileNet, and the improved model achieved an accuracy and AUC of
0.9625 and 0.97, respectively, with the shortest training time of only 821 s. This may be
related to the characteristics of actinic keratosis. Compared with pathological images of
patients with breast cancer, lung cancer, and colorectal cancer, the texture features of skin
keratosis are relatively simple. In the feature extraction based on special images with
sample textures, large-scale deep CNN models with more convolutional layers tend to
overfit when the image dataset is relatively small. Among these models, our model requires
less time and cost, making it more favorable for deployment in a clinical environment and
promising for better diagnosis of actinic keratosis in the future.

Actinic keratosis is a precancerous skin lesion with a high degree of harm and is easily
confused with non-actinic keratosis. Currently, the diagnosis of actinic keratosis mainly
relies on doctors’ clinical experience and histopathology, but the diagnosis is difficult and
easily confused with other diseases. Therefore, our research results have significant clinical
implications. Through our model, doctors can accurately diagnose actinic keratosis in a
shorter time, thus starting treatment as soon as possible and reducing the possibility of
deterioration of the condition.

The conventional diagnostic modalities for actinic keratosis primarily rest on visual
inspection, clinical acumen, and histopathological analysis. These established methods,
although efficacious, come with their unique set of challenges. One key issue is that visual
inspection is heavily reliant on clinician’s expertise and is prone to individual variances in
judgement. The diagnostic complexity is intensified by the fact that actinic keratosis can be
readily mistaken for other skin conditions.

The histopathological examination, considered the definitive gold standard for di-
agnosis, is inherently invasive, potentially causing discomfort to patients. Moreover, it
is labor-intensive and time-consuming, requiring sophisticated laboratory resources and
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specialized personnel. Such factors contribute to substantial healthcare costs and can
potentially restrict diagnostic accessibility in resource-limited settings.

Both visual inspection and histopathological evaluation are subject to numerous subjec-
tive factors, including clinician’s experience, patient’s symptomatology, and interpretation
of pathological images. The cumulative effect of these constraints may lead to diagnostic
delays or inaccuracies, thereby posing a risk to patient outcomes.

Our improved MobileNet model addresses many of these concerns, providing a
non-invasive, cost-efficient, and objective alternative for actinic keratosis diagnosis. Capi-
talizing on the capabilities of machine learning, our method enhances diagnostic precision,
efficiency, and accessibility.

Despite the considerable advancements made with the model in this study, it is crucial
to contextualize our findings within the wider landscape of deep learning in dermatological
diagnostics. As there are few related studies on using deep learning algorithms to diagnose
AK, we compared the results of our study with some recent studies of other skin diseases.
For instance, Li et al. [30] utilized the deep CNN Inception-V3, achieving an AUC of
0.8000 on 2000 melanoma images, while Codella et al. [31], using a fusion of deep CNNs,
sparse coding, and SVM, garnered an accuracy, sensitivity, and specificity of 0.7390, 0.7380,
and 0.7430, respectively, on 2624 samples. Despite these successes, deep CNNs have not
universally triumphed in skin disease recognition. Mirunalini et al. [32]’s employment of
GoogleNet transfer learning on a 2000-sample melanoma dataset from ISIC only yielded
an overall accuracy of 0.6580. To further validate our model’s merit, we compared it
with studies utilizing traditional machine learning algorithms. Vasconcelos et al. [33]’s
color evaluation method, which incorporated feature selection and machine learning
classification, achieved identification accuracies of 0.7775 and 0.8138 on two smaller public
datasets. Similarly, Ohki et al. [34] employed the traditional RF classifier model, reaching a
sensitivity and specificity of 0.7980 and 0.8070 on 1148 skin images.

Our model, drawing inspiration from Wang L et al.’s shallow neural network method,
AK-DL (2020), elevates this pioneering framework which prioritized keratosis diagnosis.
Their model represented a critical stride in the application of shallow neural networks in
dermatology, demonstrating superior performance over deep neural networks. Despite
its notable accuracy of 92.5%, the model had room for improvement. This current study
introduces an innovative model that offers both computational efficiency and a balanced
approach towards diagnostic accuracy and computational cost. Outperforming the AK-DL
model and comparable deep learning methods with an accuracy and AUC of 0.9265 and
0.97, our model presents a significant advancement in the field. Our model is improved
based on MobileNet, combining the advantages of lightweight convolutional neural net-
works, including high computational efficiency and low model complexity. At the same
time, we made some special designs and optimizations for the characteristics of actinic
keratosis. Specifically, we made meticulous adjustments to the structure and parameters
of the model to better adapt to the diagnostic task of AK. For example, we optimized the
network structure of the model to better adapt to our classification diagnostic task. After
parameter debugging, we found the activation function and loss function suitable for this
task to further improve the performance of the model. These improvements made our
model achieve excellent results in the diagnosis of actinic keratosis.

Training time is one of the important indicators for evaluating model performance. Our
model, while maintaining high accuracy, has a training time of only 821 s, much lower than
other deep learning models. This is thanks to the lightweight design of MobileNet, whose
depthwise separable convolution greatly reduces the computational complexity of the
model. In addition, the number of model parameters has also been greatly reduced, making
the model easier to deploy on devices. This lightweight model is of great significance for
future applications, especially considering embedded devices such as bracelets. With the
trend of medical device portability, embedding the model into portable devices can help
doctors and patients monitor skin lesions in real time, thereby discovering and treating
actinic keratosis earlier.
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Despite the excellent performance of our model in recognizing actinic keratosis, there
are some limitations in the research. First, our model was trained and tested based on the
publicly available HAM10000 dataset, which may limit the generalization ability of the
model. In the future, we need to collect more data, including skin images of different races,
different age groups, and different stages of lesions to further improve the generalization
performance of the model. Secondly, although the training time of our model has been
greatly reduced, the training cost needs to be further reduced. We will continue to optimize
the model structure, further lightweight the model, and improve the accuracy of the model.
These optimizations will make the model more suitable for running on resource-limited
devices. Finally, although our research mainly focuses on the development of algorithms,
using convolutional layers to extract image details of end-to-end recognition patterns
is beneficial for frontend system development, but to apply this technology to actual
clinical environments, a lot of system development and deployment work needs to be
performed. This includes integration with existing medical devices and systems, as well as
compliance with various regulations and requirements in the medical industry. In addition,
we also need to work closely with doctors and patients to ensure that our system can meet
their needs.

In summary, although our research achieved some initial success, there is much work
to be performed. Recently, various novel methods have been developed for the diagnosis
of AK, such as Markov chain models [35], Antera 3D technology [36,37], in vivo or in vitro
Reflective Confocal Microscopy (RCM) [38,39], and dermatoscope analysis has begun to be
used for the diagnosis and post-treatment monitoring of skin diseases. The detection effect
of the above methods has been relatively effectively verified in practical applications, but
their equipment and technical costs are high. We look forward to further improving the
performance of the model, expanding the coverage of the dataset, reducing training costs,
and successfully deploying our model in actual clinical environments.

5. Conclusions

In this study, we aimed to develop an efficient, automated, and accurate method for
diagnosing actinic keratosis. An improved model was developed based on MobileNet,
incorporating custom preprocessing features such as Lab Space and Contrast Limited
Adaptive Histogram Equalization, and the last few layers of the network structure were
modified to suit our auxiliary diagnostic task. At the same time, we used five-fold cross-
validation to enhance the stability and generalization ability of the model. Comparative
results with other mainstream models demonstrate that our model has higher accuracy
and faster speed, which is of significant clinical relevance: This research work contributes
to precise, efficient, and automatic auxiliary diagnosis of actinic keratosis. The method
has the potential to be embedded in portable medical devices, representing high clinical
translational value.
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