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Abstract: Backgrounds and Objective: Facial palsy is a complex pathophysiological condition
affecting the personal and professional lives of the involved patients. Sudden muscle weakness or
paralysis needs to be rehabilitated to recover a symmetric and expressive face. Computer-aided
decision support systems for facial rehabilitation have been developed. However, there is a lack
of facial muscle baseline data to evaluate the patient states and guide as well as optimize the
rehabilitation strategy. In this present study, we aimed to develop a novel baseline facial muscle
database (static and dynamic behaviors) using the coupling between statistical shape modeling and
in-silico trial approaches. Methods: 10,000 virtual subjects (5000 males and 5000 females) were
generated from a statistical shape modeling (SSM) head model. Skull and muscle networks were
defined so that they statistically fit with the head shapes. Two standard mimics: smiling and kissing
were generated. The muscle strains of the lengths in neutral and mimic positions were computed
and recorded thanks to the muscle insertion and attachment points on the animated head and skull
meshes. For validation, five head and skull meshes were reconstructed from the five computed
tomography (CT) image sets. Skull and muscle networks were then predicted from the reconstructed
head meshes. The predicted skull meshes were compared with the reconstructed skull meshes
based on the mesh-to-mesh distance metrics. The predicted muscle lengths were also compared
with those manually defined on the reconstructed head and skull meshes. Moreover, the computed
muscle lengths and strains were compared with those in our previous studies and the literature.
Results: The skull prediction’s median deviations from the CT-based models were 2.2236 mm,
2.1371 mm, and 2.1277 mm for the skull shape, skull mesh, and muscle attachment point regions,
respectively. The median deviation of the muscle lengths was 4.8940 mm. The computed muscle
strains were compatible with the reported values in our previous Kinect-based method and the
literature. Conclusions: The development of our novel facial muscle database opens new avenues to
accurately evaluate the facial muscle states of facial palsy patients. Based on the evaluated results,
specific types of facial mimic rehabilitation exercises can also be selected optimally to train the target
muscles. In perspective, the database of the computed muscle lengths and strains will be integrated
into our available clinical decision support system for automatically detecting malfunctioning muscles
and proposing patient-specific rehabilitation serious games.

Keywords: facial muscle baseline; statistical shape modeling; in silico trials; facial rehabilitation;
facial muscle quantification; clinical decision-support system
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1. Introduction

Patients with facial palsy have difficulties in their daily activities for interpersonal
communicating and expressing emotions, so facial mimic rehabilitation can enhance the life
quality of the involved patients [1,2]. Facial mimics have resulted from muscle activations
on skin layers [3–5]. The muscle activations were controlled by motor nerves [6]. Some
causes (e.g., strokes and facial transplants) could make these nerves dysfunctioned so
that they cannot activate their target muscles [7]. Consequently, the patients could not
naturally and symmetrically perform some mimics (e.g., smiling and kissing) controlled
by these malfunctioned muscles [8] or have unwanted facial movements in neutral or
dynamic mimics [9]. The recovery procedures for these muscles were complex and needed
long-term treatments [10–15]. Facial rehabilitation exercises can enhance recovery speed
and treatment performances [16]. These exercises include repetitive and simple facial
movements dedicated to specific muscles [8]. Consequently, dysfunctioned facial muscles
must be first analyzed and diagnosed before selecting suitable types of exercises.

Regarding facial paralysis analysis, clinical and non-clinical facial paralysis grading
methods have been employed [17]. Clinical facial paralysis grading, which was mainly
based on the expertise of clinicians, was very subjective and varied among clinicians [17–19].
However, the non-clinical facial paralysis grading, which was mainly based on computer-
aided processes, was objective and not dependent on clinicians [17]. In the literature, most
studies tried to analyze facial mimics by evaluating their external geometrical informa-
tion [20]. This information could be the symmetries between the left and right faces on 2D
images or 3D meshes [21–24]. Moreover, symmetrical movements of 2D and/or 3D face
features could also be employed [25–33]. Some studies also tried to detect and analyze
action units (AUs) of the Facial Action Coding Systems (FACS) [34] through 2D images or
3D point clouds [20,35]. However, facial mimics are deformation results of muscle contrac-
tions on skin layers [3–5], so muscle behaviors should be directly analyzed instead of these
geometrical appearances. In our previous study, we first proposed the concept of using
muscle strains for facial paralysis grading [36]. A muscle network could be statistically
predicted based on the target head shape and a statistics-based predicted skull mesh [37].
During the real-time head animation, we could fast compute muscle strains according to
the vertex movements on the head and skull meshes [36]. However, we lacked standard
values of muscle strains for diagnosing these muscles. Moreover, we only report muscle
lengths and strains of only five subjects (three healthy subjects and two patients), so these
values could not be represented for large populations during the muscle diagnoses [36].

Measuring standard muscle parameters was relatively challenging. In experimental
studies, skeletal muscle measurements of faces could be conducted on cadavers, but the
number of subjects was relatively small (from 1 to 20) [38–40]. These processing procedures
needed much clinical expertise. In in-silico studies, facial muscles could be reconstructed
through magnetic resonance imaging (MRI) data, but segmenting soft tissues in MRI
images is time-consuming and need much clinical expertise [4,5]. Consequently, we could
not reconstruct all facial muscles for a large number of subjects using this MRI-based
method. Using computed tomography (CT) imaging data, although we can reconstruct
both head and skull meshes, the soft tissues are lacking [37]. Moreover, most cadaver,
MRI, or CT datasets were collected from dead subjects, so the measurement cannot be
conducted in different mimics, especially in a dynamic manner [4,5,37–40]. In silico trials
have been popularly employed for fastening novel clinical treatments and experiments. In
in-silico trials, novel medical treatments or experiments were tested on the personalized
virtual human models for fast collecting responses in simulation environments. These
responses were employed for optimizing the treatments before being implemented on the
real human. Consequently, in-silico trials help reduce clinical costs and deal with the lack
of experimental data [41,42].

Recently, the statistical shape modeling (SSM) method has been popularly employed
for modeling the human head and/or face geometries and mimics (i.e., FLAME head
model [43], Basel face model [44], and other 3D morphable models [45]). These models were
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trained on large datasets of human faces both in static and dynamic mimics reconstructed
from accurate depth sensors, so they can be used for representing the shapes and mimics
of large populations [46]. These morphable face/head models were popularly employed
for predicting face head meshes on mono images of large face variations [47]. Although
these SSM models could generate large variations in head shapes and facial mimics, they
still lack internal structures (i.e., skulls and muscle networks). In our previous study, we
could predict internal structures including the skull and muscle network with acceptable
accuracy for both patient and healthy subjects [36,37], but this prediction method has not
been applied to those SSM head models.

Consequently, in this study, we aimed to apply our previous biomechanical head
modeling methods [36,37] to the FLAME (Faces Learned with an Articulated Model and
Expressions) head model [43] for computing standard values of muscle lengths and strains
in static and dynamic facial mimics. In particular, the FLAME head model can generate
3D geometrical head models that are the 3D triangulated surface meshes of the head
shapes. The vertices positions of the head meshes are controlled by the parameters of
subject identity, head transforms, and facial mimics. The skull meshes were predicted
based on the head meshes so that their shapes statistically fit with the head shapes. Muscle
networks were defined as the action lines connected from the muscle attachment points
on the skull to the muscle insertion point on the head. The muscle lengths and strains
were finally computed in standard static and dynamics mimics because they are important
to muscle-based facial paralysis diagnosing. These values will be applied in our clinical
decision-support system for facial mimic rehabilitation. In the system, we can compare
the computed static and dynamic muscle strains with the reported baseline values for
automatically detecting malfunctioned facial muscles. In this study, the baseline facial
muscle database is the database of the static and dynamic lengths and strains of the facial
muscles in the kissing and smiling mimics. Moreover, suitable types of facial rehabilitation
games will be proposed to train the detected muscles. The muscle behaviors will also be
scored based on these standard values during playing games for evaluating the recovery
progresses.

In the following sections, we will first describe the methods of head shape and mimic
generations, skull prediction, and muscle network definition. The steps of CT-based
validation will also be presented in the Section 2. The baseline values of muscle lengths
and strains in neutral and other mimics according to their accuracies will also be reported
in the Section 3. The contributions and drawbacks of this study will finally be discussed in
the Sections 4 and 5.

2. Materials and Methods
2.1. Overall Processing Workflow

The overall processing procedure is described in Figure 1. In particular, the processing
steps include (a) head shape generation, (b) skull and muscle network prediction, (c) mimic
performing, and (d) muscle analysis.

(a) Regarding head shape generation, we use the SSM head model, Faces Learned with
an Articulated Model and Expressions (FLAME) [43], for generating variations in
virtual subjects by controlling the FLAME shape parameters. The other parameter
sets including translations, rotations, poses, and expressions were kept all to zeros to
be on the neutral mimic positions. The details of this step are explained in Section 2.2.

(b) Regarding the skull and muscle network prediction, based on the head shape of each
virtual subject, a skull mesh was predicted thanks to our developed SSM-based head-
to-skull prediction method [43]. Moreover, a muscle network including linear and
circle muscles was defined as action lines connected from muscle attachment points
on the skull mesh to the muscle insertion points on the head mesh. The insertion and
attachment points were positioned based on their vertex indices on the head and skull
meshes. This processing step is clearly explained in Section 2.3.
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(c) Regarding mimic performing, we controlled the expression and pose parameters of
the FLAME model to perform smiling and kissing mimics on each virtual subject. In
the static mimics, we set the max values on the smiling and kissing control parameters.
In the dynamic mimics, we set these parameters from zero to their max values with
the step size of 1/200 of these max values. The details are explained in Section 2.4.

(d) Regarding muscle analysis, because the mesh structures of the head and skull meshes
do not change during the non-rigid animations, muscle insertion, and attachment
points were automatically updated according to the motions of head and skull vertices.
Consequently, muscle lengths could also be computed according to the updated
insertion and attachment points. Muscle strains were computed as relative differences
between the muscle lengths in the current mimics and those in the neutral mimics.
In this study, muscle strains of both static and dynamic mimics were computed and
reported. The details are presented in Section 2.4.
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Figure 1. The overall processing procedure for analyzing the facial muscle’s behaviors for both static
and dynamic mimic positions: (a) the shape variations were defined thanks to the statistical shape
model of the head; (b) skulls and muscle networks were defined based on the head shapes; (c) the
static and dynamic mimics were performed by the virtual subjects and drove the skull and muscle
network’s structures; (d) muscle lengths, static and dynamic muscle strains were computed based on
the current muscle movements. Note that the red, green, blue, and yellow colors are represented the
linear muscles, left orbicularis muscle, right orbicularis muscle, and oris muscle.

For validation, we tested the methods on the 5 head and skull meshes reconstructed
from the CT image sets from the New Mexico Decedent Image Database [48]. The predicted
skull meshes were compared with the reconstructed skull meshes based on the mesh-to-
mesh distance metric. Moreover, the predicted muscle networks were also compared with
the pre-defined muscle networks on the CT-based head and skull meshes based on the
point-to-point distance metric. Last but not least, the computed muscle lengths were also
compared with the reported muscle lengths in the literature. Details of the validation are
explained in Section 2.5.

2.2. Subject Identity and Mimic Generation

Faces Learned with an Articulated Model and Expressions (FLAME) head model was
one of the most popular 3DMM (3D Morphable Models) for the human head [43]. The
FLAME model employed the non-animated head mesh of the SMPL (Skinned Multi-Person
Linear) model [49]. The head mesh vertices were formed as Equations (1) and (2).
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In which, J
(→

β

)
are the joint locations of the rotation parts on the head mesh (mouth

mesh, left eye mesh, and right eye mesh), and they were computed from the head vertices.
W are blend weights for linearly smoothing the skin vertices during rotating around the

joints J
(→

β

)
. T is the mean head vertices computed from the training dataset. BS

(→
β ,S

)
is

a shape blend shape function with the shape parameters,
→
β , and orthonormal shape basis,

S. The S was trained from the training dataset using the principal component analysis

(PCA) [50]. BP

(→
θ ,P

)
is a pose blend shape function with the pose parameters,

→
θ , and the

vertex offset from the rest pose, P. BE

(→
ψ , E

)
is the expression blend shape function with

the expression parameters,
→
ψ , and the orthonormal expression basis, E. The E was trained

from the dataset using the PCA.
The training dataset of the FLAME head model includes 3800 scanned heads from

the European CAESAR body scan database [51]. This dataset was scanned by 6 infrared
time-of-flight sensors put around the target body with the circumferential accuracy <±5
mm. A template head mesh was deformed to the head shapes of this dataset to form
the dataset for training the shape blend shape function. Moreover, the face expression
model was also trained on the D3DFACS dataset [52], which contained 3D point cloud
sequences of the face in time series with various standard facial expressions (facial action
units (AUs)) defined in the facial action coding system (FACS) [53]. The template head
meshes with pre-defined shape parameter sets was deformed to each facial to form the
dataset for training the pose and expression blend shape functions. The FLAME head
model was trained separately for males, females, and generic datasets.

Consequently, using the FLAME head model, we can re-generate the head mesh with
various shapes and realistic facial expressions. we re-generated 10,000 virtual subjects
with 10,000 shape parameter sets (5000 for males and 5000 for females). Figure 2a shows
examples of head shape variations in neutral mimics of 10,000 virtual male and female
subjects. To vary the subject identity of the FLAME head mesh, we tried to set the FLAME’s
pose and mimic parameters to zeros so that the head and jaw regions were in the standard
position, and the faces were in the neutral mimic. All shape parameters of the FLAME
were randomly valued from their minimal to maximal (from −2.0 to 2.0). This selection
strategy will guarantee that the regenerated head meshes will cover most variations in the
head shapes on the FLAME’s training dataset. Additionally, two separate male and female
models of the FLAME were employed for re-generating male and female virtual subjects.

For each virtual subject, we changed the expression parameters of the FLAME to their
maximum values for creating static smiling and kissing mimics, as shown in Figure 2b.
Moreover, dynamic mimics of each type of face movement (smiling and kissing) were also
created by setting the appropriate expression parameters from zeros to their max values, as
described in Figure 2c.
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2.3. Skull and Muscle Network Generation

Even though the FLAME model can be used to generate shapes and mimics for large
populations, they still lack the internal structures for analyzing muscle behaviors in each
mimic. The head-to-skull prediction method was developed in our previous study, but we
just applied it to the CT and Kinect-based head meshes [37]. In this study, we tried to apply
the method to the head meshes generated from the FLAME model. Figure 3 shows the
processing procedure of the FLAME-based head-to-skull prediction. In particular, given
a neutral head-neck mesh generated by the FLAME model, we first generated the head-
only mesh by replacing the vertices of the template head-only mesh with the appropriate
vertices on the FLAME-based head-neck mesh. The head-only mesh was then registered to
the standard head mesh based on the manually selected landmarks. The singular value
decomposition (SVD) [54] and iterative closest point (ICP) registration methods [55] were
employed for minimizing the manual landmark selections. The registered head mesh
was sampled using the sampling rays, which were pre-defined during the head-to-skull
training processes, to result in the head samples. A skull shape was predicted from the head
samples using the partial least squared regression coefficients [56], which were trained in
our previous study [37]. A template skull shape was finally deformed so that its shape
optimally fitted with the generated skull shape.

As shown in Figure 4, a muscle network was defined as action lines connecting from
attachment points on the skull mesh to the attachment points on the head (or skull) mesh.
We defined facial muscle types based on the face’s anatomical structure [57]. The de-
fined linear muscles included the Left/Right Procerus (L/RP), Left/Right Frontal Belly
(L/RFB), Left/Right Corrugator Supperciliary (L/RCS), Left/Right Temporoparietalis
(L/RT), Left/Right Nasalis (L/RN), Left/Right Depressor Septi Nasi (L/RDSN), Left/Right
Zygomaticus Minor (L/RZm), Left/Right Zygomaticus Major (L/RZM), Left/Right Riso-
rius (L/RR), Left/Right Depressor Anguli Oris (L/RDAO), Left/Right Mentalis (L/RM),
Left/Right Levator Labii Superioris (L/RLLS), Left/Right Levator Labii Superioris Alaeque
Nasi (L/RLLSA), Left/Right Levator Anguli Oris (L/RLAO), Left/Right Depressor Labii
Inferioris (L/RDLI), Left/Right Buccinator (L/RB), and Left/Right Masseter (L/RMa).
We also defined circle muscles including Left/Right Orbicularis Oculi and Orbicularis
Oris. The muscle insertion/attachment points were positioned by the vertex indices on
the head and skull meshes. During the animation of the head and skull meshes, the mesh
vertex indices were not changed, so the muscle lengths and perimeters could be updated
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according to their insertion and attachment positions on the animated head and skull
meshes.
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2.4. Muscle-Based Analyses

In this study, we analyze the muscle behaviors in neutral, static mimics, and dynamic
mimics. In neutral mimics, the lengths of linear muscles were computed as distances
between their attachment points and insertion points. The mean and standard deviation
lengths of each muscle throughout all male and female subjects were computed and
reported. In static mimics, for each subject, during performing smiling and kissing, the
length of each muscle was computed for each mimic. Relative differences between their
lengths in the current mimics and those in the neutral mimics were computed as their
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muscle strains. The mean and standard deviation strains of each muscle throughout all
male and female subjects were computed and reported for each mimic. In dynamic mimics,
for each type of mimic (smiling or kissing), the values of expression parameters were
increased from zeros to their max values with the step size of 1/200 of the max values and
set to the FLAME model to generate the mimics. Throughout all male and female subjects,
the mean and standard deviation strains of each muscle were computed and reported for
each small mimic.

2.5. Validation

To evaluate the accuracies of head-to-skull prediction and muscle network definition.
We collected five CT image sets from the New Mexico Decedent Image Database [48]
(males: 3, females: 2, ages (Mean ± SD): 31.2 ± 6.5 years old). The CT image sets were
reconstructed using the 3D Slicer software [58]. The head meshes were reconstructed by
first segmenting both skins and bones in the CT images and then meshing based on the
marching cube methods. Internal structures and neck regions were removed from the
reconstructed meshes, as shown in Figure 5a. The skull meshes were reconstructed by first
segmenting the bone tissue in the CT images and then meshing the segmented regions.
The cervical spines were also removed from the reconstructed skull meshes, as shown
in Figure 5b. Moreover, we also generated skull shapes from the CT-reconstructed skull
meshes for shape validation, as shown in Figure 5c. The details of skull shape generation
from skull meshes were described in our previous study [37]. The muscle networks were
also manually defined by selecting their attachment points and insertion points on the
reconstructed skull meshes and head meshes, as shown in Figure 5d, based on the face
anatomy [57]. We applied our previous head-to-skull prediction method [37] and muscle
network definition method [36] for predicting the skull meshes and muscle networks for
the five CT-reconstructed head meshes. The skull shapes of the predicted skull meshes were
also generated for evaluation. Distances between the predicted skull shapes and the CT-
based skull shapes and between the predicted skull meshes and the CT-reconstructed skull
meshes were computed based on the mesh-to-mesh distance metric. The computed mesh-
to-mesh distances were also evaluated in muscle attachment/insertion point regions on the
skull meshes. Additionally, we also compared the muscle lengths of the manually defined
muscle networks and the predicted muscle networks for evaluating the accuracy of the
muscle network’s prediction using the point-to-point distance metric. The predicted muscle
lengths in neutral mimics and linear muscle strains in smiling and kissing mimics were
also compared with those reported in the literature [5,38–40] and our previous study [36].

2.6. Used Technologies

The head mesh generation, skull prediction, and muscle parameter computing was
programmed in Visual Studio C++ 2019 in the hardware configuration of HP Zbook 17G5
Intel(R) Xeon(R) E-2176M CPU @ 2.70GHz 2.71 GHz, 32.0 GB RAM, 64 bits Microsoft
Windows 11 Pro for Workstations. Mesh processing was supported by LibIGL [59] and VCG
and MeshLab [60]. Point cloud processing was supported by PCL C++ [61] libraries. The
mesh rendering was supported by VTK [62]. The linear matrix operation was supported by
Eigen [63]. The FLAME head model execution was executed on Tensorflow C++ API [64].
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3. Results
3.1. Validation Deviations in Comparison with CT-Reconstructed Data

Figure 6 shows the validation results between the predicted skull meshes and the CT-
reconstructed skull meshes in shape and mesh differences. Overall, as shown in Figure 6a,
the predicted skull meshes (represented in wire-frame rendering) are optimally fitted with
the reconstructed skull meshes (represented in smooth rendering). Regarding the skull
shape comparison, as shown in Figure 6b, most deviations are distributed on the back skull
regions and small regions of interest (i.e., teeth, top nose). Large deviations are distributed
on the back head regions of subject 1 due to the head deformation during the CT image
acquisition. Regarding the skull mesh comparison, as shown in Figure 6c, we can also have
good accuracies on the facial regions of the skull meshes. Deviations also focused on the
back-skull and internal regions of the skull meshes.

Figure 7 illustrates the deviations between the predicted skulls and the reconstructed
skulls. In particular, mesh-to-mesh distances between the predicted skull shapes and the
reconstructed skull shapes have a median of 2.2236 mm (Mean ± SD: 2.9917 ± 2.5117 mm).
The median mesh-to-mesh distance between the predicted skull meshes and the recon-
structed skull meshes is 2.1371 mm (Mean ± SD: 2.8694 ± 2.2194 mm). The median devia-
tion in the muscle attachment points is 2.2177 mm (Mean ± SD: 2.9114 ± 2.2849 mm). The
muscle length deviations have a median of 4.8940 mm (Mean ± SD: 6.1515 ± 5.1011 mm).
This median deviation of the muscle lengths is within the experimental deviations of the
muscle length (D ≈ 6 mm) as reported in the literature [65].
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3.2. Muscle Lengths in Neutral Mimics

Table 1 shows the means and standard deviations of all muscle lengths of the 10,000
male and female subjects in this study. Overall, the mean muscle lengths of the male
subjects are larger than those of the female subjects. The computed muscle lengths of the
healthy subjects in our previous study are in the order of magnitude as those of the virtual
subjects in this study. The average standard deviation of all muscle lengths is 2.7 mm,
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which agrees with the experimental perturbation values of the muscle insertion/attachment
points (R ≈ 3 mm) as reported in the literature [65].

Table 1. Muscle lengths and perimeters of linear and circle muscles in neutral mimics of male and
female subjects in this study and our previous study.

Left/Rights Muscle Types Muscle IDs *

Action Line Lengths of Facial Muscles in
Neutral Position (l0) (Mean ± SD ** mm)

Males Females

Left
Procerus

LP 27.76 ± 2.41 27.56 ± 2.26
Right RP 26.58 ± 2.33 26.63 ± 2.26

Left Frontal Belly LFB 33.06 ± 1.84 32.07 ± 1.77
Right RFB 32.60 ± 1.78 31.74 ± 1.79

Left Temporoparietalis LT 30.69 ± 1.73 30.10 ± 1.70
Right RT 22.89 ± 1.77 22.28 ± 1.79

Left Corrugator
Supperciliary

LCS 29.83 ± 1.64 29.55 ± 1.67
Right RCS 28.45 ± 1.69 28.26 ± 1.84

Left
Nasalis

LNa 28.22 ± 1.94 27.56 ± 2.09
Right RNa 29.05 ± 1.92 28.25 ± 2.12

Left Depressor Septi Nasi LDSN 17.12 ± 2.66 16.39 ± 2.31
Right RDSN 13.29 ± 2.38 13.11 ± 2.35

Left Zygomaticus Minor LZm 59.21 ± 2.82 55.88 ± 2.74
Right RZm 54.73 ± 2.89 52.25 ± 2.85

Left Left Zygomaticus Major LZM 67.29 ± 2.71 63.70 ± 2.62
Right RZM 62.93 ± 2.71 59.81 ± 2.68

Left
Risorius

LR 36.84 ± 2.05 37.19 ± 1.98
Right RR 36.04 ± 2.05 36.75 ± 1.88

Left Depressor Anguli Oris LDAO 31.19 ± 3.17 30.19 ± 2.17
Right RDAO 32.39 ± 3.64 31.47 ± 2.65

Left
Mentalis

LMe 26.49 ± 3.23 26.76 ± 2.63
Right RMe 29.07 ± 3.14 29.00 ± 2.60

Left Levator Labii Superioris LLLS 50.28 ± 3.01 47.05 ± 2.87
Right RLLS 46.54 ± 2.75 44.01 ± 2.82

Left Levator Labii Superioris
Alaeque Nasi

LLLSAN 60.39 ± 2.83 57.16 ± 2.81
Right RLLSAN 59.65 ± 2.74 56.63 ± 2.82

Left Levator Anguli Oris LLAO 38.14 ± 2.87 34.96 ± 2.82
Right RLAO 34.49 ± 2.80 31.76 ± 2.76

Left Depressor Labii
Inferioris

LDLI 37.39 ± 2.20 37.33 ± 2.19
Right RDLI 35.99 ± 2.65 35.52 ± 2.22

Left
Buccinator

LB 55.65 ± 3.03 53.54 ± 3.05
Right RB 52.32 ± 3.09 50.55 ± 2.94

Left
Masseter

LMa 49.45 ± 2.38 47.02 ± 2.20
Right RMa 52.14 ± 2.56 49.68 ± 2.23

Left
Orbicularis Oculi

LOO 153.60 ± 5.01 150.45 ± 5.25
Right ROO 148.66 ± 4.70 144.12 ± 4.81

Orbicularis Oris OO 176.43 ± 7.94 165.76 ± 6.36
* ID: Identification; ** SD: Standard Deviation.

3.3. Static Muscle Analysis

Table 2 lists the standard strain values of the linear and circle muscles in smiling,
kissing, and o-pronouncing mimics of all male and female subjects. Overall, the behaviors
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of the muscle strains can be used for describing and evaluating the quality of different
facial mimics.

Table 2. Muscle strains of males and females subjects in static mimics: smiling and kissing.

Muscle IDs
Muscle Strains in Positions ( l−l0

l0
) (Mean ± SD %)

Smiling Kissing
Males Females Males Females

LP 3.06 ± 0.34 3.00 ± 0.26 −3.05 ± 0.34 −3.00 ± 0.26
RP 3.39 ± 0.38 3.30 ± 0.30 −3.38 ± 0.38 −3.30 ± 0.30
LFB 2.88 ± 0.21 2.87 ± 0.21 −2.84 ± 0.21 −2.84 ± 0.21
RFB 2.52 ± 0.17 2.56 ± 0.16 −2.49 ± 0.17 −2.53 ± 0.16
LT 2.50 ± 0.20 2.46 ± 0.19 −2.47 ± 0.20 −2.44 ± 0.19
RT 3.05 ± 0.29 3.07 ± 0.27 −3.02 ± 0.28 −3.05 ± 0.26
LCS −0.26 ± 0.30 −0.05 ± 0.26 0.35 ± 0.30 0.14 ± 0.26
RCS −0.50 ± 0.44 −0.19 ± 0.38 0.63 ± 0.44 0.32 ± 0.38
LNa −9.69 ± 1.03 −9.40 ± 0.95 10.44 ± 1.10 10.08 ± 1.01
RNa −6.72 ± 0.77 −6.97 ± 0.72 7.74 ± 0.80 7.86 ± 0.78
LDSN −22.40 ± 4.18 −22.76 ± 3.70 22.88 ± 4.49 23.12 ± 3.78
RDSN −21.63 ± 3.86 −22.83 ± 3.85 25.41 ± 4.43 25.95 ± 4.37
LZm −10.50 ± 0.48 −10.41 ± 0.47 10.64 ± 0.48 10.62 ± 0.48
RZm −11.49 ± 0.60 −11.32 ± 0.57 11.69 ± 0.61 11.63 ± 0.59
LZM −12.34 ± 0.50 −12.34 ± 0.52 12.66 ± 0.50 12.75 ± 0.52
RZM −12.78 ± 0.60 −12.74 ± 0.60 13.23 ± 0.59 13.31 ± 0.60
LR −12.17 ± 1.72 −12.92 ± 1.63 13.88 ± 1.64 14.55 ± 1.63
RR −10.57 ± 2.02 −11.49 ± 1.72 12.76 ± 2.00 13.55 ± 1.76
LDAO 5.23 ± 2.53 4.33 ± 3.09 1.32 ± 2.78 3.47 ± 2.98
RDAO 9.91 ± 3.01 9.92 ± 3.34 −5.18 ± 2.23 −3.95 ± 2.61
LMe −0.14 ± 1.46 −0.79 ± 1.87 2.82 ± 2.04 4.03 ± 2.29
RMe 1.31 ± 1.14 0.90 ± 1.59 0.88 ± 1.12 1.77 ± 1.46
LLLS −11.76 ± 0.77 −11.57 ± 0.75 12.13 ± 0.77 12.08 ± 0.75
RLLS −12.24 ± 0.95 −11.96 ± 0.90 12.87 ± 0.96 12.74 ± 0.91
LLLSAN −8.05 ± 0.45 −7.77 ± 0.51 8.65 ± 0.46 8.48 ± 0.50
RLLSAN −7.44 ± 0.47 −7.21 ± 0.51 8.17 ± 0.47 8.03 ± 0.49
LLAO −22.01 ± 1.86 −22.67 ± 2.01 22.82 ± 1.86 23.66 ± 2.05
RLAO −19.84 ± 2.20 −20.62 ± 2.19 22.23 ± 2.38 23.14 ± 2.34
LDLI −7.46 ± 1.30 −8.20 ± 1.27 8.25 ± 1.30 8.98 ± 1.29
RDLI −6.55 ± 1.68 −7.82 ± 1.57 7.76 ± 1.77 9.04 ± 1.67
LB −12.89 ± 0.79 −13.46 ± 0.89 13.57 ± 0.82 14.10 ± 0.95
RB −12.21 ± 0.78 −12.77 ± 0.83 13.14 ± 0.84 13.66 ± 0.91
LMa 0.22 ± 0.49 −1.16 ± 0.58 0.02 ± 0.45 0.86 ± 0.54
RMa −0.65 ± 0.48 −0.25 ± 0.57 0.74 ± 0.46 0.14 ± 0.57
LOO −2.14 ± 0.10 −2.16 ± 0.11 2.27 ± 0.11 2.29 ± 0.11
ROO −2.31 ± 0.10 −2.39 ± 0.11 2.46 ± 0.10 2.54 ± 0.12
OO 13.18 ± 0.68 14.46 ± 0.66 −11.31 ± 0.64 −12.44 ± 0.61

Regarding the smiling mimics, which the LZm, RZm, LZM, and RZM are mainly
responsible for [53], the standard strain values (%) of the LZm, RZm, LZM, and RZM
are −10.50 ± 0.48, −11.49 ± 0.60, −12.34 ± 0.50, and −12.78 ± 0.60, respectively, for
males and −10.41 ± 0.47, −11.32 ± 0.57, −12.34 ± 0.52, and −12.74 ± 0.60, for females.
Based on these strain values, the left and right Zm and ZM muscles are all shortened
during the smiling mimics. This behavior is in agreement with the left and right Zm and
ZM’s smiling behaviors reported in the literature [4,5]. Moreover, these strain values are
relatively symmetrical between the left and right sides. These symmetrical and standard
strain values could be used for evaluating the smiling mimics for healthy subjects, which
usually have symmetrical and strong smiling mimics [4,5], and facial palsy patients, which
usually have asymmetrical and weak smiling mimics [18]. For instance, in our previous
study [36], for healthy subject 3, the strain values of the LZm, RZm, LZM, and RZM
muscles were −9.93%, −9.93, −21.32%, and −19.72%, respectively. For patient subject
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1, these values were −0.40%, −3.12%, −6.76%, and −9.53%, respectively. We can have a
conclusion that the muscle strains of the healthy subject are stronger and more symmetrical
than those of the patient subject when compared with the standard muscle strain values.
Regarding the kissing mimics, for which the LZm, RZm, LZM, and RZM muscles are
mainly responsible [53]. In the kissing mimic, these muscles must be elongated [4,5]. In this
study, the standard strain values are 10.64%± 0.48%, 11.69%± 0.61%, 12.66%± 0.50%, and
13.23% ± 0.59% for the LZm, RZm, LZM, and RZM muscle, respectively. Consequently,
these values are all larger than zero and can show the elongating behavior during the
kissing mimic. Moreover, we can see the symmetrical strain values of Zm and ZM muscles
on the left and right sides. Consequently, these characteristics of the standard kissing strain
values could also be used for evaluating the muscles in kissing mimics.

3.4. Dynamic Muscle Analysis

Besides the muscle evaluation in static mimics, this study also reported the dynamic
muscle strain values supporting the muscle movement control diagnosis in smiling and
kissing mimics.

Figure 8 shows the dynamic behaviors of the LZm, RZm, LZM, and RZM muscles
while performing the smiling mimics. Overall, these muscles are all shortening linearly
when the mimic is performing from neutral to the max smiling range. This shortening
behavior is suitable with the reported behaviors of the left and right ZM(m) muscles in
smiling mimics [4,5,53]. The strain values in the left and right ZM(m) of the male and
female subjects are relatively the same as each other during performing the smiling mimics.
Moreover, the standard deviations of the muscle strains tend to increase when the mean
shortening strain increase. Especially, the lengths of the left and right ZM muscles shorten
faster than those of the left and right Zm muscles. For example, for the male subjects, at the
time-step 0, the mean strains of the left and right ZM muscles and those of the left and right
Zm muscles are all 0s. At the time-step 200, the strains of the left and right ZM muscles are
−12.34% ± 0.50% and −12.78% ± 0.60%, which are all smaller than those of the left and
right Zm muscles (−10.50 ± 0.48 and −11.49 ± 0.60, respectively). Additionally, from the
time-step 0 to 200, the dynamic strains of the left and right ZM(m) muscles are relatively
symmetrical to each other.

Figure 9 shows the dynamic behaviors of the LZm, RZm, LZM, and RZM muscles
while performing the kissing mimics. As reported in the literature, during the kissing
mimics, these muscles should be elongated proportionally to the kissing intensity [4,5,53].
This behavior is met with our computed strain values. In particular, the strains (%) of
the left and right ZM muscles increase linearly from 0 s to 12.66 ± 0.50 and 13.23 ± 0.59,
respectively, for males (12.75 ± 0.52 and 13.31 ± 0.60, respectively, for females) when the
kissing mimics increase from the neutral to the max intensity. The left and right Zm muscles
also increase linearly from 0 s to 10.64% ± 0.48% and 11.69% ± 0.61%, respectively, for
males (10.62% ± 0.48% and 11.63% ± 0.59%, respectively, for females) during this kissing
intensity range. It is important to note that the left and right ZM muscles elongate faster
than the left and right Zm muscles during the kissing performing mimics, and the standard
deviations of the elongation tend to be larger in higher strain values. Moreover, the left and
right ZM(m) muscles also elongate symmetrically during the kissing.

Based on the above analyses of the LZm, RZm, LZM, and RZM muscles in dynamic
smiling and kissing mimics, we can employ the computed muscle strains for scoring the
movement of muscles responsible for specific dynamic mimics. Figures 8 and 9 only show
the analyzed results of the four muscles responsible for smiling and kissing mimics, but, in
our dataset, we also reported strain values of the 37 muscles, as listed in Table 1, for these
mimics.
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4. Discussion

Facial paralysis grading is the first requirement for personalizing and enhancing
facial mimic rehabilitation treatments [66]. Currently, non-clinical grading methods have
been promisingly employed in this issue due to their stable and objective outcomes [17].
However, most studies just tried to analyze facial mimics based on their visual deformation
on facial skin [20]. Facial mimics are the deformation results of muscle contractions on skin
layers [3–5], so they should be directly analyzed and graded. Analyzing facial muscles
during facial movements is relatively challenging because internal structures cannot be
easily examined on living objects [36]. For example, surface scanning sensors (i.e., camera
and time-of-flight sensors) cannot acquire internal structures [67–69]. Reconstruction of soft
tissue from the MRI datasets is time-consuming and needs too much clinical expertise [4,5],
and we cannot build face muscles from CT images [36]. Experimental processing on the
decedent is limited and cannot acquire data on their facial mimics [38–40]. Recently, in
our previous study, we proposed a novel method for analyzing facial muscles in real time
based only on visual facial mimics supporting facial paralysis grading [36]. However,
we lack the baseline datasets for automatically diagnosing the predicted muscles in static
and dynamic facial mimics. Consequently, such standard parameters of facial muscles in
different mimics are particularly necessary. Especially, in silico trials have been popularly
applied for collecting large variations in datasets [41,42]. Consequently, in the present
study, we developed a novel baseline muscle database using in silico trial approach to
provide the first reference database for facial muscle evaluation.

More precisely, we first applied our head-to-skull and muscle prediction methods to a
3DMM head model [43], for providing its meshed skull and muscle networks throughout
large shape- and expression parameter sets with acceptable accuracy for facial muscle
analyses. The FLAME head model [43] was trained on a large database of 3800 scanned
heads from the European CAESAR body scan database [51] and 3D face scans D3DFACS in
various facial mimics [52]. Consequently, the FLAME model can be used for re-generating
standard heads with mimics of the public. Statistical shape modeling was successfully
employed to reduce the diversities of the training datasets and can deal with the lack
of training data [70]. Therefore, with the small number of shape parameters, we could
regenerate virtual head shapes, which represented the public head shapes. However, the
model lacks internal structures. In this study, we first applied our novel head-to-skull
prediction for inferring skull structures based on the head geometrical structures and
predicting their muscle networks for analyzing muscle strains according to the FLAME
head’s animations. After validating with 5 CT subjects, the muscle length deviations have
a median of 4.8940 mm. These deviations are within the error range of the facial muscle
lengths reported in the literature (D ≈ 6 mm). Moreover, the computed muscle length
values in neutral mimics are compatible with the reported values in our previous study
and the literature, as shown in Table 3. Particularly, in the literature, all experimental
studies just computed the muscle lengths of a limited number of subjects (from 1 to 20). In
our study, by using the SSM of the head, we could analyze the muscle lengths of a large
number of subjects (males: 5000 and females: 5000). Consequently, our computed muscle
lengths could be the reference values for muscle length diagnosing in neutral mimics. The
computed muscle strains in smiling and kissing mimics are also well-matched with those
computed using the accurate FE-based facial models and the Kinect-based head model. In
particular, in smiling mimics of the FE-based model, the strain value of the left and right
ZM muscles was reported as −6.82%. In the smiling mimic of the Kinect-based model, the
strain values of the left and right ZM muscles of the healthy subject were −17.46% ± 3.87%
and −14.43% ± 5.30%, respectively. In this study, as listed in Table 2, the strains of the
left and right ZMs are −12.34% ± 0.50% and −12.78% ± 0.60%, respectively, for males
(−12.34% ± 0.52% and −12.74% ± 0.60%, respectively, for females). In the kissing mimics,
as reported in the FE-based models, the ZM strain values were 24% [4] and 22% [5] when
the subject made the [o]-sound, which is relatively similar to the kissing mimic [53]. In
the Kinect-based model, these strain values were 14.84% ± 2.56% for the left and right
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ZMs of the healthy subjects. In this study, the kissing strain values of the left and right
ZMs are 12.66% ± 0.50% and 13.23% ± 0.59%, respectively, for males (12.75% ± 0.52% and
13.31% ± 0.60%, respectively, for females). With the acceptable accuracy of the muscle
behavior analyses in this study, we first proposed to use the reported values of muscle
lengths and strains for facial muscle diagnosis in facial paralysis grading. By using our
previous patient-specific real-time head animation, head-to-skull prediction, and muscle
network definition methods, the strain of each muscle could be computed in real-time. The
static or dynamic muscle strains recorded during performing the smiling or kissing mimic
will be compared with the standard static or dynamic muscle strain values of the smiling
or kissing mimic for muscle diagnosis. Moreover, as listed in Table 2, we found that the
standard deviations of the muscle strain in smiling and kissing mimics are relatively small
among various subjects. This means that we can use the report values for evaluating the
muscles of the large population during their mimic performance. Additionally, as shown in
Figures 8 and 9, standard deviations of the muscle strains tend to increase when increasing
the intensity of smiling or kissing mimics. This information is important for evaluating
muscle synkinesis while performing mimics [8].

In addition, we provided a large database supporting facial paralysis grading and
facial muscle diagnosis. This database includes 10,000 FLAME-based head meshes and
10,000 skull meshes predicted from the head meshes. This dataset could be used for
studying relations between the FLAME head shape parameters and the skull structures.
Moreover, muscle lengths can be straightforwardly computed from the FLAME head and
skull meshes by directly changing the expression parameters of the FLAME model. Muscle
lengths can, therefore, be analyzed according to the FLAME expression parameters. We also
provided muscle lengths of all muscles of all 10,000 analyzed subjects in neutral mimics.
Muscle strains of all muscles in smiling and kissing mimics were also provided for all
subjects. Means and standard deviations of muscle lengths, smiling strains, and kissing
strains were also reported separately for all males and females. The database could be
downloaded via the link [71].

This study also contains some drawbacks. We only analyzed and report muscle strain
values on static and dynamic smiling and kissing mimics. However, the method can
be applied to analyze the muscle in any mimics by controlling the expression and pose
parameters of the FLAME model. Moreover, our muscle-based analyzing method has not
supported mimics with mandible movements. In perspective, we will enhance the muscle-
based facial analysis so that it can support the facial mimics with mandible movement
by studying the relation between the mouth movements and the mandible motions. The
enhanced method will be used for analyzing the muscle of all Action Units (AUs) in
the Facial Action Coding System (FACS). We will also implement the method into our
clinical decision-support system [72] for automatically detecting malfunctioning muscles
while performing each AU of FACS. Based on the diagnosed results, we will propose
suitable serious games for training the target muscle. It is also important to note that the
statistical shape modeling methods were employed for building the FLAME and head-to-
skull prediction models. In these statistical models, geometrical deformations of the meshes
were computed as linear combinations of the principal components, so they cannot handle
complex geometrical structures of the head and skull meshes. More advanced statistical
shape modeling methods (e.g., Gaussian-based PCA [73]), geometric deep learning [74],
and Generative Adversarial Networks (e.g., SP-GAN [75]) can be employed to solve these
issues. In further works, we will implement the computed muscle strains as the baseline
values for diagnosing facial muscle behaviors. In particular, in our previous study, we
could compute patient-specific muscle strains in real-time. For diagnosing, clinicians will
then ask the patient to perform smiling and kissing mimics. Strains of all muscles were
computed in those mimics. The failed muscles are those having computed strain values
different from the baseline strain values of these muscles. The facial mimic rehabilitation
exercises will then be selected to train the failed muscles.
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Table 3. Comparison between the muscle lengths computed in this study and our previous study and the literature.

Muscle
IDs

Lengths of Facial Muscles in Neutral Mimics Reported in the Literature

This Study * Nguyen et al., 2021 [36] Freilinger et al., 1987 [38] Happak et al., 1997 [39] Bernington et al., 1999
[40]

Fan et al., 2017
[4]

Dao et al., 2018
[5]

Subjects: 5000 M, 5000 F
Ages: 29–49 Years
Status: In Silico

Subjects: 2 M, 3 F
Ages: 29–49

Status: 3 H, 2 P
Weight: 52–71 Kg

Height: 1.65–1.77 m
BMI: 18–26 kg/m2

Subjects: 20
Ages: 62–94

Status: Cadavers

Subject: 11
Ages: 53–73 Years
Status: Cadavers

Subjects: 4 M, 6 F
Ages: 15–31

Status: Patients

Subject: 1 F
Ages: 24

Status: Healthy
Height: 1.5 m
Weight: 57 kgMales Females

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Value Value

LZm 59.21 2.82 55.88 2.74 51.05 3.82 - - 51.8 7.4 - - - -
RZm 54.73 2.89 52.25 2.85 53.90 2.05 - - 51.8 7.4 - - - -

LZM 67.29 2.71 63.70 2.62 58.45 3.85 M: 0.67
F: 69.50

6.32
6.58 65.6 3.8 - - 43.65 52

RZM 62.93 2.71 59.81 2.68 61.23 3.05 M: 0.67
F: 69.50

6.32
6.58 65.6 3.8 - - 43.65 52

LDAO 31.19 3.17 30.19 2.17 36.69 3.23 M: 37.83
F: 38.33

4.38
8.02 48 5.1 - - - -

RDAO 32.39 3.64 31.47 2.65 31.86 3.35 M: 37.83
F: 38.33

4.38
8.02 48 5.1 - - - -

LLLS 50.28 3.01 47.05 2.87 46.26 3.00 M: 33.67
F: 35.50

4.13
6.69 47 7.5 - - 29.3 -

RLLS 46.54 2.75 44.01 2.82 48.59 2.14 M: 33.67
F: 35.50

4.13
6.69 47 7.5 - - 29.3 -

LLLSAN 60.39 2.83 57.16 2.81 58.06 3.65 - - 61.6 7.6 - - - -
RLLSAN 59.65 2.74 56.63 2.82 59.46 2.81 - - 61.6 7.6 - - - -
LLAO 38.14 2.87 34.96 2.82 34.30 2.53 - - 42 2.5 - - 27.4 -
RLAO 34.49 2.80 31.76 2.76 35.51 2.30 - - 42 2.5 - - 27.4 -
LDLI 37.39 2.20 37.33 2.19 36.73 4.39 - - 29 4.9 - - - -
RDLI 35.99 2.65 35.52 2.22 37.01 4.16 - - 29 4.9 - - - -

LB 55.65 3.03 53.54 3.05 56.35 3.35 - - 56 7.4 - - - -
RB 52.32 3.09 50.55 2.94 55.18 2.01 - - 56 7.4 - - - -

LMa 49.45 2.38 47.02 2.20 44.93 2.35 - - - - M: 45.9
F: 39.1

5.8
8.2 - -
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Table 3. Cont.

Muscle
IDs

Lengths of Facial Muscles in Neutral Mimics Reported in the Literature

This Study * Nguyen et al., 2021 [36] Freilinger et al., 1987 [38] Happak et al., 1997 [39] Bernington et al., 1999
[40]

Fan et al., 2017
[4]

Dao et al., 2018
[5]

Subjects: 5000 M, 5000 F
Ages: 29–49 Years
Status: In Silico

Subjects: 2 M, 3 F
Ages: 29–49

Status: 3 H, 2 P
Weight: 52–71 Kg

Height: 1.65–1.77 m
BMI: 18–26 kg/m2

Subjects: 20
Ages: 62–94

Status: Cadavers

Subject: 11
Ages: 53–73 Years
Status: Cadavers

Subjects: 4 M, 6 F
Ages: 15–31

Status: Patients

Subject: 1 F
Ages: 24

Status: Healthy
Height: 1.5 m
Weight: 57 kgMales Females

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Value Value

RMa 52.14 2.56 49.68 2.23 45.03 2.57 - - - - M: 45.9
F: 39.1

5.8
8.2 - -

VLOO 51.81 1.92 50.46 2.03 40.70 2.99 - - 60 9.6 - - -
VROO 46.72 1.63 45.29 1.93 41.62 2.13 - - 60 9.6 - - -
HLOO 36.47 1.73 35.68 1.67 56.53 3.23 - - 65 5.6 - - -
HROO 36.48 1.75 35.82 1.78 56.92 2.85 - - 65 5.6 - - -

* M: Male; F: Female; Ages: Min–Max (Years Old).
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5. Conclusions

Facial paralysis grading is important for personalizing facial mimic rehabilitation
treatments. Muscle-based facial grading method has recently been proposed in the liter-
ature, but there is still a lack of facial muscle baseline data to evaluate the patient states
and guide as well as optimize the rehabilitation strategy. In this present study, we aimed
to develop a novel baseline facial muscle database (static and dynamic behaviors) using
the coupling between statistical shape modeling and in-silico trial approaches. We applied
our original head-to-skull and muscle network prediction method to the FLAME model,
which can be represented for the standard head shapes and facial mimics, for computing
the standard muscle strains in both static and dynamic smiling and kissing facial mimics.
In perspective, this data will be integrated into our available clinical decision support
system for automatically detecting malfunctioning muscles and proposing patient-specific
rehabilitation serious games.
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50. Maćkiewicz, A.; Ratajczak, W. Principal Components Analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [CrossRef]
51. Robinette, K.M.; Daanen, H.A.M. Precision of the CAESAR Scan-Extracted Measurements. Appl. Ergon. 2006, 37, 259–265.

[CrossRef]
52. Cosker, D.; Krumhuber, E.; Hilton, A. A FACS Valid 3D Dynamic Action Unit Database with Applications to 3D Dynamic

Morphable Facial Modeling. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13
November 2011; pp. 2296–2303.

53. Ekman, P.; Friesen, W.V. Facial Action Coding System. Environmental Psychology and Nonverbal Behavior; Kluwer Academic
Publishers-Human Sciences Press: Dordrecht, The Netherlands, 1978.

54. Henry, E.R.; Hofrichter, J. Singular Value Decomposition: Application to Analysis of Experimental Data; Academic Press: Cambridge,
MA, USA, 1992; pp. 129–192.

55. Jost, T.; Hügli, H. Fast ICP Algorithms for Shape Registration. In Proceedings of the 24th DAGM Symposium, Zurich, Switzerland,
16–18 September 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 91–99.

56. Geladi, P.; Kowalski, B.R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17. [CrossRef]
57. Prendergast, P.M. Facial Anatomy. Adv. Surg. Facial Rejuvenation Art Clin. Pract. 2012, 9783642178, 3–14. [CrossRef]
58. Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.;

et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341.
[CrossRef]

59. Jacobson, A.; Panozzo, D.; Schüller, C.; Diamanti, O.; Zhou, Q.; Pietroni, N. Libigl: A Simple C++ Geometry Processing Library
2018. Available online: http://hdl.handle.net/10453/167463 (accessed on 19 November 2022).

60. Cignoni, P.; Ranzuglia, G.; Callieri, M.; Corsini, M.; Ganovelli, F.; Pietroni, N.; Tarini, M. MeshLab. 2011. Available online:
https://air.unimi.it/handle/2434/625490 (accessed on 19 November 2022).

61. Rusu, R.B.; Cousins, S. 3D Is Here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4.

62. Schroeder, W.J.; Avila, L.S.; Hoffman, W. Visualizing with VTK: A Tutorial. IEEE Comput. Graph. Appl. 2000, 20, 20–27. [CrossRef]
63. Guennebaud, G.; Jacob, B. Eigen V3 2010. Available online: http://eigen.tuxfamily.org (accessed on 19 November 2022).
64. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2016, arXiv:1603.04467.
65. Dao, T.T.; Pouletaut, P.; Lazáry, Á.; Tho, M.C.H.B. Multimodal Medical Imaging Fusion for Patient-Specific Musculoskeletal

Modeling of the Lumbar Spine System in Functional Posture. J. Med. Biol. Eng. 2017, 37, 739–749. [CrossRef]
66. Robinson, M.W.; Baiungo, J. Facial Rehabilitation: Evaluation and Treatment Strategies for the Patient with Facial Palsy. Otolaryn-

gol. Clin. N. Am. 2018, 51, 1151–1167. [CrossRef] [PubMed]
67. Marcos, S.; Gómez-García-Bermejo, J.; Zalama, E. A Realistic, Virtual Head for Human-Computer Interaction. Interact. Comput.

2010, 22, 176–192. [CrossRef]
68. Matsuoka, A.; Yoshioka, F.; Ozawa, S.; Takebe, J. Development of Three-Dimensional Facial Expression Models Using Morphing

Methods for Fabricating Facial Prostheses. J. Prosthodont. Res. 2019, 63, 66–72. [CrossRef] [PubMed]
69. Turban, L.; Girard, D.; Kose, N.; Dugelay, J.L. From Kinect Video to Realistic and Animatable MPEG-4 Face Model: A Complete

Framework. In Proceedings of the 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Turin, Italy,
30 July 2015; pp. 1–6. [CrossRef]

70. Liu, H.; Rashid, T.; Habes, M. Cerebral Microbleed Detection Via Fourier Descriptor with Dual Domain Distribution Modeling. In
Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), Iowa City, IA,
USA, 4 April 2020; pp. 20–23. [CrossRef]

71. Nguyen, T.-N. FLAME Based Head and Skull Predictions. Available online: https://drive.google.com/file/d/1ma6
_PrRUucGhmg3a4-syKrIpAgTt1-zd/view?usp=share_link (accessed on 19 November 2022).

72. Nguyen, T.-N. Clinical Decision Support System for Facial Mimic Rehabilitation. Ph.D. Thesis, University of Technology of
Compiegne, Compiègne, France, 2020.

https://doi.org/10.1145/3130800.3130813
https://doi.org/10.1007/s00371-016-1332-y
https://doi.org/10.1016/j.fri.2021.200436
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1016/0098-3004(93)90090-R
https://doi.org/10.1016/j.apergo.2005.07.009
https://doi.org/10.1016/0003-2670(86)80028-9
https://doi.org/10.1007/978-3-642-17838-2_1
https://doi.org/10.1016/j.mri.2012.05.001
http://hdl.handle.net/10453/167463
https://air.unimi.it/handle/2434/625490
https://doi.org/10.1109/38.865875
http://eigen.tuxfamily.org
https://doi.org/10.1007/s40846-017-0243-3
https://doi.org/10.1016/j.otc.2018.07.011
https://www.ncbi.nlm.nih.gov/pubmed/30262166
https://doi.org/10.1016/j.intcom.2009.12.002
https://doi.org/10.1016/j.jpor.2018.08.003
https://www.ncbi.nlm.nih.gov/pubmed/30220620
https://doi.org/10.1109/ICMEW.2015.7169783
https://doi.org/10.1109/ISBIWorkshops50223.2020.9153365
https://drive.google.com/file/d/1ma6_PrRUucGhmg3a4-syKrIpAgTt1-zd/view?usp=share_link
https://drive.google.com/file/d/1ma6_PrRUucGhmg3a4-syKrIpAgTt1-zd/view?usp=share_link


Bioengineering 2023, 10, 737 22 of 22

73. Luthi, M.; Gerig, T.; Jud, C.; Vetter, T. Gaussian Process Morphable Models. IEEE Trans. Pattern Anal. Mach. Intell. 2018,
40, 1860–1873. [CrossRef] [PubMed]

74. Abbas, A.; Rafiee, A.; Haase, M.; Malcolm, A. Geometrical Deep Learning for Performance Prediction of High-Speed Craft. Ocean
Eng. 2022, 258, 111716. [CrossRef]

75. Li, R.; Li, X.; Hui, K.-H.; Fu, C.-W. SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation. ACM Trans. Graph. 2021,
40, 1–12. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2017.2739743
https://www.ncbi.nlm.nih.gov/pubmed/28816655
https://doi.org/10.1016/j.oceaneng.2022.111716
https://doi.org/10.1145/3450626.3459766

	Introduction 
	Materials and Methods 
	Overall Processing Workflow 
	Subject Identity and Mimic Generation 
	Skull and Muscle Network Generation 
	Muscle-Based Analyses 
	Validation 
	Used Technologies 

	Results 
	Validation Deviations in Comparison with CT-Reconstructed Data 
	Muscle Lengths in Neutral Mimics 
	Static Muscle Analysis 
	Dynamic Muscle Analysis 

	Discussion 
	Conclusions 
	References

