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Abstract: The Valley of Death confronts industrial biotechnology with a significant challenge to the
commercialization of products. Fortunately, with the integration of computation, automation and
artificial intelligence (AI) technology, the industrial biotechnology accelerates to cross the Valley
of Death. The Fourth Industrial Revolution (Industry 4.0) has spurred advanced development of
intelligent biomanufacturing, which has evolved the industrial structures in line with the worldwide
trend. To achieve this, intelligent biomanufacturing can be structured into three main parts that
comprise digitalization, modeling and intellectualization, with modeling forming a crucial link
between the other two components. This paper provides an overview of mechanistic models, data-
driven models and their applications in bioprocess development. We provide a detailed elaboration
of the hybrid model and its applications in bioprocess engineering, including strain design, process
control and optimization, as well as bioreactor scale-up. Finally, the challenges and opportunities of
biomanufacturing towards Industry 4.0 are also discussed.

Keywords: bioeconomy; hybrid modeling; intelligent biomanufacturing; machine learning; industrial
biotechnology; mechanistic model; data-driven model

1. Introduction

In the wake of agriculture, industry and information economics, bioeconomy is a new
economic form that promotes sustainable development globally. Integrating biotechnology
and information technology to drive the bioeconomy development is a vital strategy to
achieving the target economy and leading a new round of scientific and technological revo-
lution. According to a Forbes 2020 report, bioeconomy accounts for about USD 1 trillion
of the U.S. economy (about 5% of GDP (Gross Domestic Product)) [1]. In 2018, the OECD
(Organization for Economic Cooperation and Development) released the report—Meeting
Policy Challenges for a Sustainable Bioeconomy. This report pointed out the relevant
polices for the development of bioeconomy. The United States Congress passed the Bioe-
conomy Research and Development Act, which established a National Engineering Biology
Research and Development Initiative to promote pioneering scientific and technological
development. The Chinese government and biological industries are also rapidly devel-
oping the bioeconomy. Statistics from the China Commerce Management Institute show
that China’s bioeconomy is currently worth CNY 32,905 billion and is expected to reach
CNY 50,000 billion by 2025. The bioeconomy places a greater emphasis on coexistence and
sustainable development between humans and the environment. Therefore, green and
smart manufacturing is transforming the biomanufacturing industry in line with the global
goals of green, low-carbon and sustainable development. With the Chinese government’s
proposal for “Made in China 2025” and “carbon peaking and carbon neutrality goals”
in 2020, biomanufacturing in China is expected to accelerate the transformation towards
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green manufacturing, which has great developmental potential. Industrial biotechnology
produces a wide variety of chemicals, drugs and energy through microbial fermentation,
which is an effective mean of solving many of the key problems faced by humanity, includ-
ing energy and environmental issues [2]. However, industrial biotechnology has long been
facing the Valley of Death, where only 1 out of every 5000–10,000 research will successfully
turn into commercialized products [3]. To fill this gap, the combination of industrial biotech-
nology and computation, automation and artificial intelligence has reduced research and
development costs., driving a wave of innovation to help speed up crossing of the valley of
death. The concept of Industry 4.0, a term introduced by the German government in 2011,
is leading to intelligent manufacturing processes, and is fostering profound transformations
in the traditional manufacturing landscape.

For the biomanufacturing industry, there are three main stages to achieve intelligence
in manufacturing: digitalization, modeling and intellectualization, as shown in Figure 1.
Digitalization is the foundation to achieve intellectualization. Computer, information
and communication technologies have been rapidly developed after the third industrial
revolution. These advanced devices and digital platforms provide new strategies for big
data collection, sharing and analytics during production processes. Data quality is the
most important criterion for digitalization. Many methods have been established to im-
prove the quality and amount of data acquisition. For instance, sensor devices enabling
real-time monitoring of metabolic transitions of cells during cultivation; rich information
resources in public databases such as the NCBI (National Center for Biotechnology In-
formation, https://www.ncbi.nlm.nih.gov/ (accessed on 18 June 2023)) and the KEGG
(Kyoto Encyclopedia of Genes and Genomes, https://www.genome.jp/kegg/ (accessed
on 18 June 2023)) allow the researcher to design microbial cell factories more precisely
and efficiently; continuing advances in multi-omics analytics provide a deep insight into
the cellular regulation mechanisms. Modeling is a necessary tool to establish intelligent
systems for automating production tasks. Bioprocess models of engineering problems can
be established to derive the optimal combination of bioprocess parameters in real-time.
Nowadays, many models are available for industrial-scale processes. For example, Monte
Carlo tree search (MCTS) is utilized to predict and optimize retrosynthetic routes to guide
pathway design in metabolic engineering [4]; computational fluid dynamics (CFD) is a
powerful tool to simulate the geometrical and structural properties in the design and
optimization of bioreactors [5]; mechanistic models can be established to predict the key
process parameters or quality indicators in real-time and thus guide the operations in fer-
mentation processes [6]. Intellectualization is the main feature of automation in production
and biomanufacturing, and is also the direction of digital transformation. It aims to achieve
automated operation by collecting massive process data in industrial biological processes
and analyzing them to monitor and control industrial processes. In this case, researchers
can permit timely decision making and effective intervention, and optimize the operations
of the equipment within short time periods.

In the last few years, the Internet of Things (IoT) has become increasingly popular in
the biomanufacturing industry. The data management and analysis of making informed
decisions and optimizing biomanufacturing processes is the main bottleneck. In the digiti-
zation process, some data is redundant and disordered. Omics data can represent cellular
changes in biological processes at various levels, such as transcriptional regulation, protein
expression, and metabolic regulation. However, there are few studies that have combined
multi-omics data with production operations to analyze metabolic changes comprehen-
sively across multiple scales. Furthermore, industrial bioprocess data are sparse and
high-dimensional, so it is important to use dimensionality reduction to tackle problems on
the premise of guaranteeing the data quality. In the modeling process, different models
have been constructed to cater to the practical needs of different engineering problems.
Genome-scale metabolic models (GEMs) are well proven tools for the in silico analysis of
microbial physiology for designing and optimizing metabolic flux distributions in genetic
engineering by flux balance analysis (FBA). Unfortunately, due to a lack of capacity to
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capture the full annotation of omics datasets, the applications of GEMs are limited in guid-
ing cell engineering [7]. Kinetic models, mathematical descriptions of dynamic metabolic
systems, aim to estimate the key process parameters in industrial production [8]. However,
the construction of kinetic models requires a large amount of process data and detailed
biochemical process mechanism of the engineering object, which is the reason that the
workload of the construction of mechanistic model is high. Additionally, the structural and
quantitative uncertainty surrounding kinetic representations is also a key challenge due
to incomplete knowledge of regulatory interactions and the high dimensionality of rate
laws [9]. By contrast, data-driven models have outstanding ability in dealing with large
and complex data in industrial production through machine learning methods. These kinds
of models can be used to simulate the link between cellular metabolism and bioreactor
operations without a comprehensive knowledge of related mechanisms [10]. However,
data-driven models rely on the quality of historical data and lack the interpretation of
biochemical mechanisms, so large deviations will be formed when the raw data are noisy.
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Figure 1. The workflow for biomanufacturing towards Industry 4.0. Digitization: data are obtained
through various sources, such as public databases, omics analytics, real-time sensor. Then, these data
are integrated to support the construction of models of bioprocess production. Modeling: rational
models, which combine artificial intelligence methods with mechanistic models at various spatial
scales, are constructed to simulate the bioprocess production based on big data in biological processes.
Intellectualization: a digital twin to simulate the industrial biological production process is built
based on the big data in biological process and multi-scale hybrid models to improve the production
efficiency with automated equipment and finally establish a smart biomanufacturing factory.
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Hybrid models are models that combine mechanistic models and machine learning
algorithms (data-driven models) with bioprocess information at multi-spatial and temporal
scales. Such hybrid models can compensate for the lack of biological mechanisms in
data-driven models and the large workload of mechanistic models. Interestingly, machine
learning is a kind of artificial intelligence with a wide range of applications, such as natural
language understanding [11], image recognition [12], autonomous driving [13] and medical
diagnosis [14], as well as the bioprocess engineering industry. For example, deep neural
networks accelerate the design-build-test-learning (DBTL) cycle in metabolic engineering
by predicting and optimizing targeted pathways [15]. This method makes progress by
developing new cell factories that meet the economic requirements for industrial scale
production. Furthermore, the computational fluid dynamics (CFD) models coupled with
convolutional neural networks (CNN) can help optimize the configuration of bioreactor
operations and reduce computational costs from months to days [16].

This review summarizes the recent developments of mechanistic and data-driven
models, and their applications in bioprocess engineering. We mainly focus on the applica-
tions of hybrid models in bioprocess development, including the design and optimization
of engineered strains, monitoring and control of biological production processes and simu-
lation and design of bioreactors. In addition, we will also discuss the current challenges
and future perspectives for the development in biomanufacturing.

2. Development of Modeling
2.1. Mechanistic Models

Mechanistic models are mathematical models established based on the mechanisms of
the production host and its production process. Mechanistic models describe the dynamic
process using mass and energy balances [8]. Mechanistic models play an important role
in comprehensively exploring the reasons for changes in cell growth and production
across multiple scales, from genetic to cellular to bioreactor levels, as shown in Figure 2.
Broadly, the mechanistic models can be divided into two main categories: unstructured
cell models and structured cell models. An unstructured cell model is regarded as a
“black box” as it describes cellular growth and production using a single state without
considering intracellular metabolic events. A structured cell model considers the reactions
between intracellular states and environments. Mechanistic models can also be classified
as unsegregated and segregated models. An unsegregated model describes the behavior
of cells as an average behavior in bulk while a segregated model considers heterogeneity
among the cell population. In this section, we mainly focus on kinetic models, GEMs and
CFD models.

2.1.1. Unstructured Unsegregated Models

Unstructured kinetic models can describe changes in main state parameters such as
biomass, substrates and products to predict optimum process conditions for production.
In 1913, Michaelis and Menten proposed a hyperbolic relationship between the enzyme-
catalyzed reaction rates and the concentration of the substrate, which was regarded as the
Michaelis–Menten equation [17]. Michaelis investigated the effect on enzyme-catalyzed
reaction rates of temperature and pH [18]. In 1942, Monod, the founder of cellular growth
kinetics, proposed a hyperbolic relationship between the concentration of substrate and cell
growth kinetics (i.e., the Monod model, see Equation (1)) [18]. The Monod kinetic model
describes the growth kinetics of cells through thousands of enzymes, which is the most
widely used unstructured kinetic model [19]. For example, Pau et al. described the uptake
rates of the substrates, glucose and xylose, and the inhibitors using a Monod-type kinetic
model in the lignocellulosic fermentation [20]. However, the Monod model cannot assess
the relationship between specific growth rate and substrate utilization with an excess of
substrate. At a high substrate concentration, the specific growth rate may be hindered by
the presence of toxic substrate. Another limitation of the Monod model is that it does not
take into account the lag and death phase during the growth phase. In the past few decades,
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many kinetic models have been developed to address the limitations of the Monod model.
For instance, the Haldane model (see Equation (2)) introduced an inhibition constant (KI)
to deal with specific growth rate inhibition at low and high substrate concentration; the
Aiba-Edward model (see Equation (3)) is capable of describing the lag and death phase [21].
More information about the development of unstructured kinetic models can be found in
the following references [9,21,22].

µ = µmax
S

KS+S (1)

µ = µmax
S

KS+S+ S2
KI

(2)

µ = µmax
S

KS+S exp
(
− S

KI

)
(3)
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Figure 2. Spatial–temporal multiscale modeling. The three spatial scales are depicted as reactor level,
population level, and cell level. The modeling at reactor level mainly focuses on the overall dynamic
behavior including mass transfer, flow characterizations, bubble and particle behavior by CFD models.
The modeling at population level considers growth and competition among individuals and the
interactions between individuals and environment. At the cell level, the intracellular biological
process, such as metabolic networks, signal transduction pathways and gene regulation mechanisms
are predicted by metabolic models.

2.1.2. Structured Unsegregated Models

The structural kinetic models investigate the dynamic changes in the specific metabolic
pathways (such as the glycolysis pathway) in response to the culture conditions. For in-
stance, Cronwright et al. constructed a kinetic model of glycerol synthesis via glycerol
3-phosphate, presenting details on the kinetics of the enzyme-catalyzed reactions by
metabolic control analysis [23]. This model might shed some light on the inherent ca-
pacities of the pathway and guide controlled glycerol synthesis by S. cerevisiae in industrial
production [23]. In penicillin production, Tang et al. developed a 9-pool metabolic model
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by lumping the most important intracellular metabolites into five pools and four intracel-
lular enzyme pools [24]. This model can describe the dynamics of cell growth, penicillin
productivity and intracellular metabolite pools under a periodic glucose feast-famine cycle
experiment at time scales from minutes to days [24]. The construction of kinetic models
requires determinations of the basic kinetic parameters from a set of ordinary differential
equations (ODE) by existing software tools such as Systems Biology toolbox [25], a MAT-
LAB software toolbox. Relevant kinetic, thermodynamic, and stoichiometric information
also need to be integrated. To simulate the structure and parameters of the kinetic model
more accurately, researchers rely on public databases like BRENDA [26] and SABIO-RK [27],
combined with multi-omics data and a wealth of phenotype data [28–32]. As a leading
example, Cotton et al. determined the reaction direction and crucial kinetic parameters
in the model with proteomic, metabolomic and thermodynamic data, leading to a more
accurate estimation of the growth and metabolic fluxes of the central carbon metabolism in
Escherichia coli [33].

Motivated by the development of these models, methods to construct large-scale
kinetic models of metabolism have started to emerge. Genome-scale metabolic models
(GEMs) provide valuable insights into the functioning of metabolic networks and mech-
anisms associated with cell growth and product formation, aiding in the construction of
large-scale kinetic metabolic models.

The GEMs transform the relationship among genes, enzymes and metabolites in the
process of cell growth and metabolism into a set of mathematical equations based on a
stoichiometric matrix to simulate the metabolic fluxes [34]. Nowadays, GEMs have become
well-proven tools for in silico analysis of cellular metabolism. GEMs have been widely
used in various industries such as pharmacy, food and chemistry to explore metabolic
phenotypes, analyze metabolic mechanisms and guide metabolic design [35]. Since the first
GEM of Haemophilus influenzae Rd was reported in 1999, the reconstructions of GEMs for
6239 organisms (5897 bacteria, 127 archaea, and 215 eukaryotes) have been built, including
various industrial model organisms such as Escherichia coli, Saccharomyces cerevisiae and
CHO cells [36–40].

Flux balance analysis (FBA) has been widely used to explore cell growth in steady
state by GEMs, while dynamic flux balance analysis (DFBA) has been further developed
to simulate cellular phenotypes in dynamic state [41,42]. The development of automated
tools such as ModelSEED [43], MetaMerge [44] and MEMOTE [45]; integrated tools such as
COBRA TOOLBOX [46] and Raven [47]; and rich resources available in public databases
such as BRENDA [26], KEGG [48] and MetaCyc [49] has greatly aided the constructing of
multi-scale constraint-based GEM. For example, O’Brien et al. constructed a ME-Model
for Escherichia coli (ME-MG1655), computing ~80% of the functional proteome to predict
multi-scale phenotypes and mimic the transcription and translation capabilities of cells
in a given steady-state environment [50]. The cellular metabolism depends not only on
the gene-protein-reaction (GPR) relationship, but also is influenced by the external en-
vironment. Thus, the constrained metabolic models (CBMs) based on the typical GEMs
improve the accuracy of predictions of the cellular phenotypes effectively. Metabolic reac-
tions inside the cell conform to the laws of thermodynamics, so the direction of metabolic
reactions is determined according to the change in the Gibbs free energy. For example,
Henry et al. improved the accuracy of the estimation of kinetic parameters in the iJR904
genome-scale metabolic model of E. coli based on the group contribution method that
determined the thermodynamic feasibility of the reactions [51]. Moreover, the kinetics of
the functional enzyme is also important for cellular metabolism. Many tools have been
built to establish enzyme-constrained GEMs that integrated proteomic data to explore
the effect of the enzyme usage on phenotypes in the metabolic process. For example,
a novel metabolic network-based approach, Metabolic Modeling with Enzyme kinetics
(MOMENT), predicts metabolic flux rate and growth rate through enzyme turnover rates
(kcat) and enzyme molecular weights [52]. GECKO (a method that enhances a GEM with
Enzymatic Constraints using Kinetic and Omics data) integrates enzyme kinetics (kcat) and
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quantitative proteomics (protein abundances) to constrain a GEM, correctly representing
capacity constraints on fluxes [53]. This approach provides insights into the enzyme us-
age of each metabolic reaction, and has confirmed its good performance in S. cerevisiae,
significantly resulting in a decrease in flux variability. Subsequently, the GECKO tool-
box was updated in its 2.0 and 3.0 version with the improvement of its parameterization
procedure to ensure high coverage of kinetic constraints, expanding its use for building
enzyme-constrained models (ecModels) for more organisms [53,54]. Nevertheless, enzyme-
constrained models cannot simulate cellular growth under environmental perturbations,
while imposing kinetic constraints to GEMs (kinetic constraint GEMs) captures the change
of kinetic parameters of enzymes under environmental perturbations, delving deeper into
the variations of metabolic phenotypes [55]. Towards this aim, toolkits have been devel-
oped for constructing such kinetic constrained GEMs, such as structural kinetic modeling
(SKM), the mass action stoichiometric simulation (MASS), optimization and risk analysis
of complex living entities (ORACLE), ensemble modeling (EM) and approximate Bayesian
computation-general reaction assembly and sampling platform (ABC-GRASP) [34]. An
in silico approach to reduction of characterization in uncertainty in the kinetic models of
genome-scale metabolic network (iSCHRUNK) based on the ORACLE framework was
further developed to identify the key enzymes in the metabolic network and quantify the
kinetic parameters to increase the accuracy of the model [56]. In addition, owing to the com-
plex metabolic mechanism, a comprehensive analysis of multi-omics data from different
scales allows in-depth understanding of the metabolic mechanisms that regulate cellular
growth and production. For example, Huang et al. integrated time-series transcriptomic
data into GEMs of CHO cells, comparing various growth stages of different cell lines and
using datasets from one cell line to leverage cell growth condition in other cell lines [57].

Although the GEMs have been widely used to simulate complex metabolic events, the
dynamic environment experienced by the cells in the large-scale bioreactor also induces
metabolic heterogeneity. Hence, taking into account the cellular heterogeneity caused by
the changing environment in the bioreactor, computational fluid dynamics (CFD) models
are a vital tool to analyze the effects of cellular metabolic characteristics and the external
environment [58].

2.1.3. Segregated Models

CFD models have played a significant role in the design, optimization and process
scale-up, providing detailed flow field information in the bioreactors. The main methods
for CFD modeling of multiphase flow are divided into Euler-Euler (EE) modeling and Euler-
Lagrange (EL) modeling. Due to its low computational cost, the EE method has been widely
applied to study the effect of operating conditions and geometry on the flow field structure
and substance concentration distribution in industrial production [59]. The EL approach
tracks the movement trajectory of each cell particle in the flow field, so it can reproduce
how the bioreactor environmental heterogeneity affects the cellular metabolism [60]. For
example, the gas-liquid mass transfer in the stirred bioreactors was simulated to analyze the
effect of the size and shape of the gas bubbles and oxygen mass transfer on the utilization
of oxygen in aerobic biological fermentation process [61]. Sarkar et al. studied the effects of
stirring paddle speed and ventilation rate on bubble coalescence and rupture [62]. They
finally found the optimal stirring and ventilation strategy of the bioreactor in the process of
monoclonal antibody production in animal cell culture [62].

The population balance model (PBM) is a segregated model that describes the growth
and distribution of cells, as well as the differentiation of cells caused by environmental
changes. Morchain et al. used the two-phase Euler-Euler method and the PBM model
based on the cell-specific growth rate to simulate the gas-liquid mixing and cell distribution
in the laboratory scale and industrial scale production [63]. They discovered that the main
bottleneck of scale-up was the spatial heterogeneity of the specific substrate consumption
rate and specific growth rate of cell subsets [63]. Similarly, Pigou et al. combined PBM and
metabolic models to explore the relationship between the environmental changes and the
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heterogeneity of E. coli cells [64]. The researchers found that due to poor mixing in the
industrial bioreactors, a glucose concentration gradient formed and induced the differences
in acetate production and consumption levels in different regions of the reactor [64]. They
successfully explored the reasons of yield declines and by-product formation in large-scale
production [64]. The agent-based model (ABM) considers cells as individuals which move
constantly in a heterogeneous environment, capturing the interaction between individ-
ual cells and the environment. The ABM model aids in identifying the structure of cell
populations, understanding the metabolic heterogeneity. The ABM model can be used to
simulate the spatiotemporal dynamic changes of cell populations under disturbance at dif-
ferent times and spatial scales [65]. Lapin et al., firstly, researched the dynamic response of
S. cerevisiae cells under glucose disturbance with the combination of the cell motion trajec-
tory and the flow field [60]. They finally successfully simulated the dynamic interaction
between yeast cells and the spatial heterogeneous environment in a laboratory-scale reactor
by Euler-Lagrange method [60]. Then, the researchers studied the effect of different glucose
concentrations on the metabolism of E. coli in a 900 L bioreactor using this method [66].

Considering the interaction between cells and the flow field environment, the kinetic
models with cell dynamics information and the metabolic network model should be com-
bined in order to simulate the actual fermentation process. Du et al. combined CFD and
kinetic models to simulate the biomass growth, lipid accumulation and the flow field
environment during the production of docosahexaenoic acid (DHA) by fission yeast [67].
They explored the optimal process conditions and validated the DHA production perfor-
mance in a 35 m3-scale bioreactor [67]. The results served to propose an efficient industrial
bioprocess scale-up strategy [67]. Liu et al. discovered that by combining CFD with cell
death kinetics the maximum shear stress and shear frequency (SSF) parameter could effec-
tively reflect the relationship between shear environment and cell death rate during the
scale-up of Carthamus tinctorius L. cells in a 15 L STR bioreactor [68]. Haringa et al. coupled
the 9-pool metabolic model of Penicillium chrysogenum with CFD to track the movement
trajectory of cells in a large-scale production and evaluate the impact of flow field changes
on yield [69]. Moreover, Haringa et al. considered the compartment model and tracked
the intracellular response to extracellular changes during production using a stochastic
parcel tracking approach [70]. This greatly reduced the calculation time of the model and
effectively improved the computing capacity [70].

Currently, the main bottleneck of the hybrid models is the large computational cost
required for the simulation of the large-scale microbial metabolism and the long-term
production processes. Forms like lattice Boltzmann (LB) and dynamic large-eddy simu-
lation (LES) have been developed to reduce the computation times [71]. Haringa et al.
validated the performance of lattice Boltzmann large-eddy simulations (LB-LES) in the
bioreactor when resolving substrate gradients in the penicillin production, which provided
guidance for rational design and scale-down of the large-scale bioreactors [72]. Witz et al.
simulated the flow fields and bubble movements by the lattice Boltzmann method (LBM)
and Lagrange approach, where the distribution of bubbles in 40 m3 bioreactors provided
importance clues for designing bioreactors at an industrial scale [73]. Nevertheless, for
complex production processes at an industrial scale, the computational time may still reach
one week or even longer. In such scenarios, data-driven models that use machine learning
methods and are efficient in data processing can enhance the accuracy of CFD models in a
more efficient way.

2.2. Data-Driven Modeling

Data-driven models are based on big data and collect information from multiple
sources, including omics data, state variables of fermentation processes sampled by online
sensors and other resources from public databases. Data-driven models approximate the
input–output relationship without considering the underlying mechanisms of biological
processes, treated as black boxes. Data-driven models make full use of big data gathered in
the historical fermentation process to guide the operations in the industrial scale production,
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as shown in Figure 3. Data-driven models have become a research hotspot compared
to mechanistic models due to their simpler structure and fewer parameters. A quick
search of the literature was undertaken using the search words “Machine learning” and
“fermentation” on Web of Science. A total of 65 research articles primarily published
from 2000 to 2022 have been selected. By analyzing these publications, the most popular
machine learning methods are artificial neural networks (124), support vector machines (98),
multivariate statistical analysis (59) and random forest (43). In this section, we focus on the
introduction of these most widely used machine learning methods, support vector machines
(SVM), artificial neural networks (ANN), Gaussian process (GP) and reinforcement learning
(RL), and their respective characteristics as well as application scenarios are discussed
(Table 1).
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Figure 3. Workflow of the construction of data-driven models. It consists of 4 steps including data
collection, data preprocessing, modeling and visualization. Data collection: big data are collected
in various ways, such as omics data from databases, the operation variables from online sensors
and then integrated to the raw dataset. Data preprocessing: the raw dataset is preprocessed into a
standard format for model construction. Modeling: machine learning algorithms are used to construct
the data-driven models through the big data collected in bioprocess to predict the key variables.
Visualization: the model outputs are visualized to improve interpretability.

2.2.1. Support Vector Machine (SVM)

Support Vector Machines (SVMs) are a well-established technique, based on statistical
learning that analyzes complex bioprocess data with high nonlinearity and time-varying in
biological fermentation, they have been widely used to construct soft-sensor models in the
biological development process [74]. For instance, Li et al. used SVM to predict the peni-
cillin titer in real-time in the industrial production [75]. Du et al. constructed a multi-kernel
SVM to predict the average molecular weight in the polyacrylonitrile productive process,
better than the performance of single-kernel SVM [76]. Zhang et al. established a soft-sensor
model of microbial lipids from cellulosic ethanol wastewater by Rhodotorula glutinis to
optimize the operation parameters with genetic algorithm (GA), and finally improved the
maximum biomass and lipid production to 11.87 g/L and 2.18 g/L, respectively [77].

Furthermore, many improved SVMs combined with other advanced algorithms have
been developed to improve the performance and widen the range of applications. For
instance, Jin et al. successfully increased the titer of penicillin by 22.88% using a combination
of real-time coding genetic algorithm (RGA) and SVMs [78,79]. Urtubia et al. combined
Particle Swarm Optimization (PSO) and SVM to identify and diagnose the abnormal
markers in wine fermentation, and greatly improve the accuracy to classify the abnormal
batches in the early 72 h [80]. However, due to the weak capability to deal with large
datasets, the application of SVMs has been limited with big datasets.
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2.2.2. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are nonlinear, adaptive information processing
systems consisting of a large number of interconnected processing units. ANN is an
effective tool to identify the non-linear relationship between fermentation parameters
(inputs) and biological parameters (outputs), which are highly non-linear changeable in the
fermentation [81]. Nowadays, ANN has been widely used in predicting important state
variables and optimizing processes, etc. [82–84]. ANN consists of an input layer, a hidden
layer and an output layer. The parameters of the neural network are iteratively updated
by the neuron nodes in the hidden layer and their weights to predict a specific quantity
(output value), as:

y = f (∑n
i=1 wixi + b) (4)

where w represents weights; x is arbitrary inputs; y is outputs; b is the bias value and f is
the activation function. The activation function plays an important role in ANN, which is
the learning method of neural networks, like the sigmoid function (Equation (5)) and the
ReLU function (Equation (6)).

f (x) = 1
1+e−x (5)

f (x) = max(0, x) (6)

Weight values and thresholds in neural networks are updated using forward and
backward propagation techniques. Backward propagation neural networks with sigmoid
functions have been widely used for modeling and optimizing biological processes [85].
For example, Peng et al. predicted the antibiotic effect of bacteriocin 1701, and further
optimized the fermentation parameters using a time-dependent ANNs strategy with genetic
algorithm (GA) [81]. This approach eventually increased the production yield by 26% [81].
Ding et al. developed an adaptive feeding control system using ANN to recognize glucose
depletion faults in real-time during glutamate fermentation to realize feeding glucose
automatically [86].

Neural networks can be classified into different types based on their structures. The
following networks have been widely used in various fields: convolutional neural networks
(CNN), deep neural networks (DNN), recurrent neural networks (RNN), long short-term
memory networks (LSTM) and generative adversarial networks (GAN). Among them,
RNN and CNN are the two most widely used types. For example, the advanced image
recognition processing capabilities of convolutional neural networks are applied in various
fields of biological process development. AlphaFold, which is based on CNN, are capable
of predicting protein structures [16]; the U-Net CNN is used to automate the counting of
bacterial colony forming units (CFUs) and distinguish virulent colonies from avirulent
colonies in vaccine development [87]. Meanwhile the CNN has also been applied to
predict microalgae production and optimize process operating conditions [88]. Recurrent
neural network (RNN) is an artificial neural network for series data, which can transfer
information between neurons and express the correlation between data while taking the
time dimension into account. RNNs have been widely used in the time-series prediction
of key state variables and diagnosing faults in fermentation, particularly in industrial-
scale production [89,90]. Beiroti et al. accurately predicted the biomass of recombinant
Pichia pastoris Mut+, and optimized the process conditions in the methanol induction phase
of the fed-batch fermentation [91]. This guidance led to the large-scale production of
intracellular hepatitis B surface antigen (HBsAg) [91]. However, RNN meets the problem
of gradient disappearance and gradient explosion in the process of modeling with long-
term datasets. Therefore, a long-short memory network (LSTM) is developed to construct
long-term time-series dependent models. Yuan et al. constructed a soft-sensor model
to predict the product titer of penicillin by a supervised LSTM network (SLSTM), which
significantly improved the accuracy compared to the model based on RNN [92]. The
performance of neural network models depends on a large number of datasets. Thus, the
augmentation of data sets can significantly relieve the pressure from the data acquisition of
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the production with a small sample size [93]. Interestingly, GAN is used as an alternative
strategy. For instance, Wang et al. proposed DA-GAN (dual adversarial learning-based
virtual sample generation method) to generate the same distributions of real data from
industrial processes [94]. This method was also applied in industrial cases, solving the
challenge of a shortage of data [94].

2.2.3. Gaussian Process (GP)

Gaussian processes (GPs) are a probabilistic machine learning method based on statis-
tics. The prediction result of GP is given by Gaussian distribution. The mean value of the
distribution can be regarded as the prediction value while its variance is regarded as the un-
certainty range of the result. The quantification of the uncertainty makes GP a powerful tool
within biological process control. For example, Mei et al. established a soft-sensor model for
erythromycin fermentation at an industrial scale with principal component analysis (PCA)
which focused on selecting important features to simplify the model structure [95]. This
method has excellent prediction performance for biomass concentration in the exponential
growth period of erythromycin fermentation [95]. Zhang et al. optimized the process in
phycocyanin production by cyanobacteria in a semi-batch bioreactor through nonlinear
model predictive control (NMPC) and successfully constructed the optimal nitrate feed
strategy in the actual plant production process [96]. GPs can be regarded as the generaliza-
tion of multivariate Gaussian distribution, which is determined by mean function µ(x) and
covariance function k(x, x∗), as:

f (x) ∼ GP(µ(x), k(x, x∗)) (7)

Gaussian processes directly output the probability distribution and the confidence
interval of the prediction, which make the optimization of process control more stable and
realistic in large-scale fermentation production. Nevertheless, as a non-parametric model,
the covariance matrix inversion of all data points is required for each operation, which
greatly increases the calculation cost. Hence, it is not suitable to deal with large-scale data
sets, or apply in the industrial production process of non-Gaussian process.

2.2.4. Reinforcement Learning (RL)

Reinforcement learning (RL) is different from unsupervised learning and supervised
learning, as a machine learning approach seeking optimal control strategies. Although
game-based control has frequently employed reinforcement learning, its applicability
in biological process engineering has been limited until now [97]. Since reinforcement
learning can elaborate process stochasticity and nonlinear dynamics, it has great potential
in optimal control, production scheduling, and so on. It has been applied in process
controlling in fed-batch fermentation and de novo design of drugs and proteins [98,99]. For
example, Li et al. constructed a multi-objective reinforcement learning method to control
the feeding operation in the lysine fed-batch fermentation [100]; Pandian et al. proposed a
partially supervised reinforcement learning (PSRL) control strategy to regulate the substrate
concentration in Baker yeast fermentation and realize the liquid-level control in MIMO
(Multiple-Input Multiple-Output) quadruple tanks with Q-learning functions [101].

The reinforcement learning framework treats the control problems as an optimal
sequential decision problem referred to as Markov Decision Process (MDP), including agent,
environment, state, action and reward. After an agent performs an action, the environment
state is updated, and the new state sends a reward signal to the agent. Subsequently,
the agent performs a new action based on the new state and the reward signal. Thus,
reinforcement learning does not require detailed mechanistic knowledge to learn the
strategy, but recalibrates the strategy with data changes to obtain the optimal strategy.
The RL is divided into two categories, model-based reinforcement learning and model-
free reinforcement learning. Model-based reinforcement learning is based on model-based
environments where policies can be developed in advance, such as model predictive control
(MPC) [102]. MPC solves control problems using optimization methods, such as variational
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methods and dynamic programming but the associated computational cost is very high. For
example, Lee et al. constructed a two-stage fed-batch control framework by a model-based
reinforcement learning algorithm (differential dynamic programming, DDP) with model
predictive control (MPC) to optimize the feeding operations in penicillin production [103].
On the one hand, model-based reinforcement learning requires continuous updating of
datasets, leading to large errors if the model data do not match the actual situation. When
the simulation of complex biochemical metabolic processes causes high computational
costs, large errors occur with low-precision models. Model-free reinforcement learning,
on the other hand, obtains optimal strategies through real-time interaction between the
agent and the environment without requiring precision. For example, Lee et al. integrated
MPC with the double-deep Q-network algorithm to obtain the optimal substrate feeding
strategy in industrial-scale penicillin production, effectively reducing the operating cost
of semi-intermittent bioreactors [104]. Benton et al. optimized the feeding process for
cyanobacterial-phycocyanin (C-PC) production by the Asynchronous Advantage Actor-
Critic (A3C) algorithm with asynchronous learning control and finally increased the product
yield by 52.1% [105]. To confirm the optimal policy, model-free reinforcement learning
requires a large number of interactions with the environment to achieve the desired learning
effect. A large number of training samples and training time are the main bottleneck in
application in the industrial production.

Table 1. Pros and cons of different algorithms for the construction of data-driven modeling [106].

Method Advantages Disadvantages

Support vector machine (SVM)

Suitable for high-dimensional datasets;
Suitable for solving non-linear problems;

Various kernel functions for
different problems.

Not suitable for large datasets;
High requirements on data;

Preprocessing and selections of
hyperparameters.

Artificial neural network (ANN)
Suitable for solving non-linear problems;

Robustness to noise;
Suitable for large datasets.

High requirements on the integrity of datasets;
Hyperparameter optimization at a high

computational cost;
Poor generalization capability.

Gaussian process (GP)

Suitable for solving non-linear problems;
Capacity of predictive values and

their uncertainty;
Various kernel functions for

different problems.

Not suitable for large datasets;
High computational costs.

Reinforcement learning (RL)

Suitable for decision problems in
time-series models;

Suitable for optimization problems;
Good generalization capability.

High requirements on data quantity and quality;
Difficulty to design the reward function.

2.3. Multi-Scale Hybrid Modeling

The entire bioprocess development, from strain design to industrial production, spans
multiple spatial and time scales. Importantly, optimizing each step of bioprocess de-
velopment requires a comprehensive understanding of cell growth, production and the
key factors involved. This can be achieved through a hybrid model that links dynamic
information across scales.

The GEMs describe the metabolic mechanisms of cells at steady state, while the actual
production process is a constantly changing process. To explore metabolic phenotypic
changes from genome-scale to cell scale, a hybrid model that integrates GEMs with the
kinetic model is required. CFD models can predict the flow field changes in bioreactors and
analyze the effects of environmental perturbations on cell metabolism, even at the industrial
production scale. The hybrid models that combine CFD models with kinetic models to
reproduce the cellular production process from multi-spatial scales provide an opportunity
to further investigate the mechanisms of metabolic phenotypic changes during cell growth
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and production. For instance, Haringa et al. coupled a CFD model with a 9-pool metabolic
model to assess the effect of substrate heterogeneity on industrial-scale production of
penicillin, providing guidance for rationally designing scale-down models [69].

Mechanistic and data-driven modeling are the main two crucial techniques for biopro-
cess model construction. Hybrid models that combine data-driven and mechanism models
greatly reduce the cost of model construction and improve efficiency. For example, a hybrid
model that integrated the Contois model and Gaussian process (GP) had higher accuracy
in the prediction of the production of astaxanthin by Xanthophyllomyces dendrorhous than
the kinetic model [107]. The uncertainty of the hybrid model was decreased with the
percentage standard deviation from 15.5% to 8.6% for biomass and from 13.2% to 9.17% for
astaxanthin [107]. The following section will specifically focus on the role of hybrid models
in the fields of metabolic engineering and bioprocess engineering.

3. Applications of Hybrid Models in Bioprocess Development
3.1. Metabolic Engineering

Despite the advancements in the system and synthetic biology, developing new cell
factories by traditional metabolic engineering remains challenging. It typically requires
several months or even years to meet the economic requirements for industrial-scale
production [15]. Recently, researchers have utilized advanced machine learning methods
and omics technology to construct models that simulate complex cellular metabolism. These
methods and technologies aid in improving the accuracy of product synthesis pathway
design and optimization of metabolic flux, while significantly reducing the cost of research
and development.

3.1.1. Metabolic Model Reconstruction for Better Performance

The GEMs are an important tool to investigate cell growth and production, so con-
tinuously upgrading the models by supplying the missing information of the metabolic
network to improve the accuracy of the GEMs is essential. With the development of omics
technology, rich information on genomics, transcriptomics, proteomics and metabolomics
has provided a detailed supplement in the reconstruction of metabolic pathways. For
example, Sánchez et al. applied GECKO to a Saccharomyces cerevisiae GEM (ecYeast7) by
integrating kinetic and omics data to constrain the proteome resource allocation with an
enhanced performance on phenotype prediction [53]. Nielson et al. developed a deep
learning method (DLkcat) based on graph neural network (GNN) and convolutional neu-
ral network (CNN) [108]. DLkcat integrated substrate structure information and protein
sequence information to achieve high-throughput prediction of kcat of cell metabolic en-
zymes [108]. This method was applied to reconstruct 343 ecGEM models of yeasts [108].
Culley et al. proposed a multimodal learning framework based on transcriptomics and
fluxomics to predict the growth phenotype of S. cerevisiae cells with the integration of
large-scale gene expression profiles and mechanistic metabolic model constrained based
on transcriptome data [109]. A multi-view neural network method was used to compare
the performance of the multi-omics constrained GEMs [109]. This method increased the
prediction accuracy and provided tools for understanding the relationship between the
biological mechanisms of metabolic changes and the phenotypes [109].

Identifying EC numbers to determine enzyme function is essential for identifying key
enzymes in metabolic pathways to design and optimize target metabolic pathways. Ryu
et al. developed DeepEC, a tool based on convolutional neural network (CNN) which
takes protein sequences as input and EC numbers as output, to predict EC numbers with
high precision and throughput [110]. Protein engineering methods are used to design
new enzymes to meet metabolic requirements when key enzymes are missing in the
target metabolic pathway. Directed evolution is a common approach to protein engineering,
involving high-throughput screening of enzymes by iterative point mutation. However, this
approach is associated with an enormous workload (for example, for a protein of 300 amino
acids, there are 5700 single-point mutations and 32,381,700 double-point mutations) [111].
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Deep learning methods such as variational autoencoder (VAE) and generative adversarial
networks (GAN) can effectively improve the efficiency of predicting protein function and
generating protein sequences with new functions to achieve rational protein design [111].

3.1.2. Metabolic Model-BASED Guidance for Strain Design

After designing a reasonable metabolic pathway, it is necessary to optimize metabolic
flux allocation, identify key metabolic fluxes and maximize product titer, rate and yield
(TRY) [112]. Metabolic flux analysis (MFA) allows kinetic models to simulate large-scale
dynamic metabolic pathway fluxes so that the research cost can be greatly reduced. This
method has been validated by simulating glycolytic reaction fluxes in Escherichia coli and
human red blood cells [113]. Starepravo et al. proposed a hybrid model that integrated the
kinetic model and dynamic MFA to simulate the flux change in the batch fermentation pro-
cess with the combination of a single-level mixed-integer quadratic program (MIQP) [114].
This model can identify the shortest metabolic pathway from substrate to product, which
has been applied in the biosynthetic pathway for astaxanthin production in Saccharomyces
cerevisiae, reducing the original metabolic network by 70% [114]. Carinhas et al. updated
a stoichiometric model to identify the key metabolic pathways involved in baculovirus
production in insect cells by partial least squares (PLS) and MFA [115]. They finally targeted
the TCA cycle and mitochondrial respiratory pathways as the key pathway to virus replica-
tion, guiding for the feeding operation optimization [115]. Precisely optimizing multi-gene
metabolic pathways is a major challenge in metabolic engineering. HamediRad et al. con-
structed a fully automated robotic platform, named BioAutomata, using an integrated
robotic system coupled with machine learning algorithms in order to fully automate the
DBTL process for biosystems design [116].

3.2. Bioprocess Engineering

Hybrid modeling is an effective tool for the prediction of the key state variables
in the bioprocess to explore the relationship between the operating parameters of the
bioreactor and cell metabolism. Additionally, with advanced biosensors, the bioprocess can
be monitored in real-time, which is beneficial to the optimization of the process operation
and diagnosis of the fault in the bioprocess. Furthermore, up-scaling the bioreactor to the
industrial scale is also essential, as it enables the translation of laboratory-scale production
to commercial manufacturing.

3.2.1. Monitoring and Control of Bioprocess

The operations in the biological process affect cell growth and product formation.
Hence, monitoring the changes of important state variables in real-time, such as cell concen-
tration and product concentration, is of great significance to optimizing the operations, the
production culture and controlling the product quality. Due to the improvements in spec-
troscopic techniques and sensors, many advanced sensors have been applied for real-time
monitoring of key process parameters in fermentation [117,118]. Most of these spectro-
scopic techniques require data processing and model setup, like Raman spectroscopy [118]
and near-infrared (NIR) spectroscopy [119].

Raman spectroscopy with partial least squares regression (PLSR) is currently used for
bioprocess monitoring, and has been applied in the mammalian cell (e.g., CHO cell lines)
cultivations at both the lab scale and industrial scale [120,121]. Due to the time-varying,
nonlinear and complex characteristics of the fermentation process, some key state parame-
ters are difficult to measure in real-time by the existing sensors. Therefore, hybrid models
combining kinetic models and machine learning methods are important tools to predict key
parameters and construct soft-sensor models to further guide the optimization in industrial
production processes. Zhang et al. constructed a hybrid model of artificial neural network
and kinetics information with an automatic model structure identification framework [122].
They identified the optimal kinetic model structure to predict the key state variables, and
optimize the production process of lutein from microalgae [122]. In the process of quality
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control of biotherapeutics, such as monoclonal antibodies, Antonakoudis et al. integrated
a stoichiometric model with an artificial neural network to predict the glycosylation profile
in CHO cell cultivations [123]. With this hybrid model, the glycan distribution profiles
can be computed with accuracy and thus a platform is provided for process control in
biotherapeutics production [123].

Many methods have been developed for soft-sensor modeling, and more details about
the advanced methods can be found in the review of [124].

3.2.2. Diagnosis and Analysis of Bioprocesses

Fault diagnosis is a technique that detects abnormal states occurring in production
processes, which plays an important role in various biological fermentation processes. For
example, Ding et al. constructed a fault diagnosis and rescue system based on a hybrid
support vector machine and fuzzy reasoning to identify faults and their types at the earliest
fermentation stage, and successfully applied them to glutamate fermentation [125]. By
taking the relevant rescue measures based on the diagnosis results, the fermentations were
successfully restored with the production of 75–80 g/L at 34 h [125]. Yang et al. proposed
a hybrid model based on fast independent component analysis and probabilistic neural
network (FICA-PNN) which could diagnose the faulty fermentation process in the fed
batch production of penicillin more efficiently and accurately [126]. Abbsi et al. proposed a
subspace-aided parity-based residual generation technique for fault detection and problem
isolation in penicillin fermentation [127]. The method is based on the Just-In-Time (JIT)
method which detects sensor faults and isolates and locates these problems [127]. This
approach significantly improved the fault detection rate (FDR) and reduced the model
complexity compared to existing diagnostic methods [127]. Yang et al. constructed a hybrid
model for fault diagnosis and detection in penicillin fermentation by principal component
analysis (PCA) for data dimensionality reduction, recursive feature elimination (RFE) for
feature ranking and support vector machine (SVM) for the fault identification [128].

3.2.3. Optimization and Scale-Up of Bioprocesses

Based on the real-time changes of key parameters in the process, we can optimize the
cultivation media, feeding operation, etc., to maintain the cells in the optimal state and
finally improve the production efficiency and product quality. Oyetunde et al. integrated
genome-scale metabolic models (GEMs) with machine learning methods to assess the
microbial bio-production by E. coli [129]. As an example, the key design features (such as re-
actor volume, temperature and media) of 1200 cell factories from over 100 literature studies
were extracted and then ranked to determine the most important factors by PCA [129]. The
features selected affected the microbial cell production performance with the constrained
GEM iML1515 model [129]. This framework is capable of predicting metabolic changes
under different conditions and effectively identifying the indicators for E. coli production
performance [129]. Pinto et al. constructed a hybrid semi-parametric model by integrating
kinetic models with machine learning methods to optimize the biomass growth setpoint,
temperature and biomass concentration at induction in the fed-batch fermentation in
E. coli [130]. They successfully optimized the cell growth and recombinant protein expres-
sion conditions [130]. Bayer proposed a bioprocess digital twin used for hybrid-model
based DoE (design of experiment) to identify optimal process critical process parameters
(CPP) by a minimum number of variables with the highest space-time yield in E. coli [131].
Additionally, to control the physical and chemical parameters (such as pressure, pH, DO,
etc.) in the bioreactor, Kiran et al. proposed a neural network-based model predictive
controller (NNMPC) to regulate the feed rate of the substrate to control the carbon dioxide
evolution rate and oxygen consumption rate in the continuous fed-batch fermentation in
Saccharomyces cerevisiae [132]. Kim et al. proposed a two-stage control framework for the
fed-batch fermentation by a kinetic model with a differential dynamic programming (DDP)
to determine the optimal substrate feeding strategy [103].
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Bioreactor scale-up is a critical step in bioprocess development. CFD can be employed
to simulate flow field changes in industrial-scale bioreactors, while metabolic models
can be used to predict the performance of cell growth and production in bioprocesses.
Furthermore, machine learning algorithms can be leveraged to reduce computational
costs. The integration of these approaches is crucial for the development of multi-scale
hybrid models that can capture the spatial—temporal dynamics of bioprocesses. By using
such models, bioprocess scale-up can be realized at minimal cost, thereby advancing the
bioprocess development process [58]. For example, Kuschel et al. combined a CFD model
with a cell cycle model of Pseudomonas putida KT2440 to predict the factors on the change
of flow field and glucose gradients in a 54,000 L stirred tank reactor [133]. They explored
the effects of culture process conditions on the formation of population heterogeneity in
large-scale production from the perspective of cell growth and energy requirements [133].
Bayer et al. established a hybrid model with the integration of ANNs and a kinetic model
of CHO cells to predict the viable cell concentrations, and product titers at shake flask
(300 mL) scale and 15 L bioreactor scale [134]. This model can identify critical process
parameters (CPPs) rapidly and determine the transferability of DoE along process scales
with an intensified Design of Experiments (iDoE) [134]. Liu et al. combined a CFD model
and cell death dynamics to investigate the effect of shear effect of C. tinctorius L. cells in a
5 L bioreactor, and successfully improved the design and optimization of the cultivation in
scale-up process [68]. Yeoh et al. investigated the spatial and temporal effects of mass and
gas transfer in the reactor on cell growth and production by integrating a kinetic model of
E. coli with a CFD model, effectively increasing the bioconversion to 94% from ferulic acid
to vanillin [135].

4. Challenges and Future Perspectives
4.1. Challenges

Although the multi-omics analytics tools have become mature, we can obtain vari-
ous layers of omics data. Nevertheless, it is still a challenge to extract information and
knowledge from large omics data, and thus to optimize the bioprocess. Genomics, tran-
scriptomics, proteomics, metabolomics and other omics data are high-dimensional with
complex interrelationships. In-depth analysis of these data requires expertise and powerful
computational capacity. However, most multi-omics analysis relies on manual screening to
find the target of interest inefficiently. Additionally, the quality of these data is variable due
to the lack of standardization in assessments. Different research teams have established
various platforms to publish their results in different data formats, leading to challenges
in data standardization and consistency. Furthermore, the pooled data analysis in the
early stage of model construction is hindered by inconsistent data formats from multiple
sources. Additionally, due to the lack of biological mechanistic data, a large deviation
exists between production at a laboratory scale and at an industrial scale. Although many
bioprocess sensors and soft-sensor methods have been developed to monitor the key
parameters like pH, temperature and biomass, there would be no standard methods to
monitor some state parameters such as biomass/product yield and productivity online.
Due to the time intervals between offline data (some state parameters) and online data,
the metabolic changes are hardly observed through these key state parameters, which will
reduce the accuracy and completeness of model construction. The quality and reliability of
data obtained in actual industrial production cannot be guaranteed, so the models based
on historical production data are difficult to apply in practical production. In the upstream
design of biological development process, researchers have developed rational models to
meet different requirements from engineered strain design to optimization and scale-up of
bioreaction. Nevertheless, methods for the construction of multi-scale hybrid models that
associate the dynamic cellular growth with the continuous environmental changes have
been less studied.

At present, many models have been established for the optimization of process opera-
tions in upstream bioprocess development, but most of them are applied to laboratory-scale
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production or even only remain in a theoretical stage. This is partly because the hybrid
models based on CFD models require a high computational capacity to simulate the com-
plex biological process and flow field characteristics in the bioreactors. The computational
cost to simulate such a complex model exceeds the computational upper limit. Furthermore,
the instruments capturing the nutrient, product and metabolite changes in the environ-
ment, such as Raman spectroscopy and infrared spectroscopy, cannot be directly applied in
industrial production. In this case, the key factors that affect cellular metabolisms cannot
be accurately determined at industrial scale.

4.2. Future Perspectives

To fully leverage biological process data, it is essential to standardize data acquisition
methods. To maximize the potential of biological process data, it is crucial to develop
unified protocols for data collection, ensuring consistency and comparability across dif-
ferent studies. By adopting standardized approaches, researchers can effectively integrate
data from various sources, enabling comprehensive analyses and meaningful comparisons.
Additionally, the utilization of cloud computing and big data technologies enables effi-
cient storage, management, and retrieval of large-scale, multidimensional data, thereby
enhancing data management and storage capabilities.

Exploring and developing data analysis methods as well as modeling techniques
is vital to uncovering potential patterns and relationships within the data. Integration
of machine learning, artificial intelligence and other methods can facilitate data integra-
tion and model construction, providing a deeper understanding of biological processes.
Currently, research teams have already constructed advanced tools for multi-omics deep
analysis [136–138]. Machine learning algorithms such as PLS, CNN and GNN are utilized
to analyze the data mentioned above and integrate them into the models.

For the bioprocess, models have been established for the cell growth and production
processes of various organisms, from prokaryotes like Escherichia coli and eukaryotes
like Saccharomyces cerevisiae to mammalian cells, which play a vital role in bioprocess
development in all aspects. As a bridge to intellectualize, modeling serves a significant
role in linking digitalization to intellectualization. Multi-scale biological process data can
effectively improve model accuracy. For instance, multi-constraint genome-scale metabolic
models integrate multi-omics data and further construct the whole-cell models which
demonstrate the changes in cellular metabolism to the greatest extent. The construction
of such hybrid models requires detailed large biological metabolic data. Nowadays, it
is possible to monitor the metabolic changes in the fermentation process in real-time at
a laboratory scale with the help of fluorescence probe, real-time microscope and other
advanced sensors.

In the process of model setup, cellular metabolism can be coupled with environmental
changes to further analyze the phenotype changes across multiple bioreactor scales. Repre-
sentatively, hybrid models coupling the CFD dynamics with cellular kinetics are amenable
to identifying the main metabolic changes among different production scales. Such hybrid
models can greatly reduce the manpower burden associated with experimental design and
validation in the early stage of bioprocess development, contributing to the improvement
of the automation level of process. Additionally, with the help of high-throughput screen-
ing devices, microfluidic technology, industrial robotic arms and automatic robots, the
intelligent regulation of the production process can be eventually achieved, accelerating
the establishment of a smart factory.
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