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Abstract: Magnesium (Mg) has been intensively studied as a promising alternative material to inert
metallic alloys for orthopedic fixation devices due to its biodegradable nature inside the body and
its favorable biocompatibility. However, the low mechanical strength and rapid corrosion of Mg in
physiological environments represent the main challenges for the development of Mg-based devices
for orthopedic applications. A possible solution to these limitations is the incorporation of a small
content of biocompatible nanoparticles into the Mg matrix to increase strength and possibly corrosion
resistance of the resulting nanocomposites. In this work, the effect of adding boron nitride (BN)
nanoparticles (0.5 and 1.5 vol.%) on the mechanical properties, corrosion behavior, and biocompatibil-
ity of Mg-based nanocomposites was investigated. The properties of the nanocomposites fabricated
using powder metallurgy methods were assessed using microstructure analyses, microhardness,
compression tests, in vitro corrosion, contact angle, and cytotoxicity tests. A significant increase in
the microhardness, strength, and corrosion rates of Mg–BN nanocomposites was detected compared
with those of pure Mg (0% BN). Crystalline surface post-corrosion byproducts were detected and
identified via SEM, EDX, and XRD. Biocompatibility assessments showed that the incorporation of
BN nanoparticles had no significant impact on the cytotoxicity of Mg and samples were hydrophilic
based on the contact angle results. These results confirm that the addition of BN nanoparticles
to the Mg matrix can increase strength and corrosion resistance without influencing cytotoxicity
in vitro. Further investigation into the chemical behavior of nanocomposites in physiological envi-
ronments is needed to determine the potential impact of corrosive byproducts. Surface treatments
and formulation methods that would increase the viability of these materials in vivo are also needed.

Keywords: nanocomposites; corrosion; biocompatibility; orthopedics; magnesium

1. Introduction

Magnesium (Mg), Mg-based alloys, and Mg-based composites represent a new class
of biodegradable biomaterials that have been investigated for various orthopedic appli-
cations such as skeletal fixation hardware. The interest in Mg, compared with currently
more prevalent inert metals such as stainless steels, titanium alloys, and cobalt–chromium
alloys, is due to its biodegradable nature inside the body, allowing it to degrade after the
completion of the bone healing process [1–3]. This is expected to eliminate problems associ-
ated with currently available inert metals-based fixation devices due to their permanent
existence in the body. Some of the most common problems are stress shielding, possible
infection, and future fracture of the fixation device, which may require removal through
a second revision surgery [1,2,4,5]. In addition, Mg has preferable physical, mechanical,
and osteogenic properties compared with other biodegradable materials [3,6–10]. For
instance, Mg is a lightweight metal with an elastic modulus and compressive yield strength
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closer to that for bone in comparison to other metallic implants, which eliminates the
possibility of stress shielding from weakening existing bone [7,11]. Stress shielding is the
alteration of the mechanical environment of bone when proximal bone–implant interfaces
induce adaptive bone remodeling, catalyzing bone loss [12–14]. Due to disparities in the
mechanical properties of bone compared with common orthopedic implant metals such
as titanium, biomaterials with a high similarity in physical behavior, such as Mg, are
attractive to prevent bone loss induced by the stress shielding phenomenon. Mg also has
a well-characterized degradation behavior that eventually results in a complete dissolu-
tion of the corrosion products in the biological environment [15]. The major limitation of
Mg, however, is its insufficient mechanical strength and fast corrosion (degradation) rates
in physiological environments, causing poor biomechanical performance, especially for
load-bearing applications. This may result in a loss of a Mg-based implant’s mechanical
integrity before sufficient tissue regeneration and osteolysis, which can be associated with
excessive hydrogen gas accumulation [7,16].

Alternative biodegradable metals, such an iron (Fe) and zinc (Zn), are also candidates
for the development of biodegradable orthopedic implants. Fe orthopedic implant mate-
rials as an abundant metal are associated with bone homeostasis. Additionally, despite
having a higher strength, Fe has a higher elastic modulus compared with Mg and Zn and
a slower degradation rate, which runs a higher risk of stress shielding with a corrosion
behavior that is more like that of permanent implants [17–19]. Further, Zn, which can stim-
ulate bone mineralization and growth, has an ideal corrosion resistance causing moderate
degradation rates. However, Zn has a low modulus of elasticity and strength compared
with Mg and Fe, which presents difficulty for its use in biomedical applications [20–22].
Polymer-based biodegradable materials such as the resorbable materials poly(L- or D,L-
lactic acid), poly(glycolic acid), and polycaprolactones (PCL) have also been of interest
for orthopedic applications and have been FDA-approved as implant materials [23,24].
The predominant mechanisms of degradation in these polymers are generally hydrolytic
or enzymatic with constituents ranging from wholly synthetic to biologically derived
materials. The degradation rate and material properties are modular in polymers and
are, therefore, easier to engineer. However, the primary barriers in generating polymer
orthopedic implants are the resulting intermediates, acidic byproducts of degradation, and
wear debris, causing inflammation or other undesirable effects [5,25,26]. The toxicity of
Mg biomaterials is comparatively less severe, and the elastic modulus is of sufficient simi-
larity to that of bone [27,28]. Therefore, the main obstacles in creating magnesium-based
orthopedic implant materials are the modulation of quick degradation and an increase in
material strength.

Several strategies have been employed to overcome the limitations of Mg, such as
surface modifications [29], alloying [30], and heat treatments. Recently, Mg composites rein-
forced with nanoparticles have shown promising increases in strength and ductility without
significant weight penalties while maintaining a high cytocompatibility in vitro [31–33].
Notably, Mg nanocomposites composed of rare earth oxide nanoparticles have been in-
vestigated due to their excellent strength and corrosion resistance [33,34]. However, the
incorporation of boron in orthopedic biomaterials has been of recent interest due to the
physiological role of boron as a micronutrient with an essential role in osteogenesis and
bone maintenance [15]. The incorporation of boron into implanted biomaterials such as
titanium stimulates a pro-angiogenic effect in wound healing by upregulating angiogen-
esis markers, upregulating growth factors and cytokines, and facilitating pre-osteoblast
differentiation by activating genes associated with osteogenesis [35,36]. A similar effect can
be observed in BN, with BN nanotubes promoting osteogenic differentiation in vitro, and
implants coated with BN had enhanced bone fracture healing in mouse models [37,38]. It
has also been previously demonstrated that Mg nanocomposites fabricated with low BN
percentages using powder metallurgy demonstrated high levels of grain refinement, and
enhanced localized recrystallization compared with pure Mg [39–41]. As a result of the ex-
pected microstructural characteristics of Mg–BN nanocomposites imparted via BN addition
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to Mg, we hypothesize that Mg–BN nanocomposites will have the improved mechanical
properties and increased corrosion resistance needed for orthopedic implant applications.
Despite the well-investigated characterization of the degradation and biocompatibility
of Mg in solvents like physiological environments, similar characterizations of Mg–BN
nanocomposites in a physiological environment have yet to be sufficiently studied. To the
best of the authors’ knowledge, no studies in the literature reported the effect of the addi-
tion of boron nitride (BN) to a Mg matrix on the corrosion properties and biocompatibility
in a physiological-like solvent for bone implant applications.

To this end, the objective of this study is to investigate the mechanical properties,
corrosivity, and cytotoxicity of Mg nanocomposites reinforced with boron nitride (BN)
nanoparticles (0.5 and 1.5 vol.% BN) for orthopedic fixation device applications. Microhard-
ness and compression tests were performed to investigate the effect of the BN nanoparticles
on the mechanical properties. In vitro electrochemical corrosion tests were performed to
investigate the degradation and corrosion mechanism of the prepared nanocomposites.
Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX)
were additionally used to characterize and visualize the surface of each experimental
group. These data collectively assess the viability of Mg–BN nanocomposites as orthopedic
implants and inform needed improvements.

2. Materials and Methods
2.1. Synthesis of Mg–BN Nanocomposites

BN nanoparticles, 50 nm in diameter, were incorporated in Mg powder to synthesize
BN–Mg nanocomposites of Mg–0.5%BN and Mg–1.5%BN vol.% through powder metal-
lurgy and microwave-assisted rapid sintering methods [39,42]. Mg powder with >98.5%
purity and 60–300 µm particle size (Merck, Darm-stadt, Germany) was used as the base
metal. The BN nanoparticles provided by Sigma Aldrich were used as the reinforcement.
The mechanically mixed powders were then cold compacted uniaxially at 1000 psi before
being sintered at 630 ◦C in a 2.45 GHz, 900 W Sharp microwave oven. The resulting
material was then deformed through hot extrusion at 350 ◦C at a 20 to 1 ratio, producing
8 mm rods that were finally machined into 7.2 mm diameter and 3 mm thick coupons for
their characterizations [39]. In a similar fashion, 0%BN Mg (pure Mg) was synthesized
using this method to generate a control for mechanical testing. For cytotoxicity studies,
high-purity Mg (ultra-pure Mg: 99.9% purity) as-rolled coupons (Goodfellow, Pittsburgh,
PA, USA) were also used as a control group in the in vitro cytotoxicity test due to the
known biocompatibility of high-purity Mg [30]. In this paper, “pure Mg” refers to the
Mg–0%BN samples prepared using the powder metallurgy method used to fabricate the
nanocomposite samples, and “ultra-pure Mg” is used to refer to the control group used in
the in vitro cytotoxicity/immersion test only.

2.2. Mechanical Testing

The microhardness test was conducted using a Shimadzu HMV-G21s Micro Vickers
hardness tester (Kyoto, Japan). To prepare the samples for the microhardness test, the
three sample types, Mg–0%BN, Mg–0.5%BN, and Mg–1.5%BN, were solidified in a polymer
base using a Buehler Simplimet II mounting press (Lake Bluff, IL, USA). The nanocomposite
samples solidified in a polymeric base were then polished using 100- to 3000-grit SiC
sandpaper. The samples were then tested on a Shimadzu HMV-G21s Vickers microhardness
tester at ambient temperature using a test load of 9.807 N, holding for 15 s, and indents
were imaged at 10× magnification. Ten indents were performed on each of the tested
groups. Additionally, cylindrical compression test specimens, prepared according to the
ASTM E9-09 standard, were tested using an Instron-5569 universal testing machine. The
test was conducted at 50% relative humidity and 20 ◦C.
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2.3. Porosity Tests

The density of the prepared samples was determined based on the Archimedes’ prin-
ciple, using an MXBAOHENG MH-300A density meter. The measured density was then
compared with the theoretical density and percentage porosity was calculated for each case.
The theoretical density was determined based on the rule of mixture.

2.4. Contact Angle

Due to the importance of hydrophilicity in the interaction between orthopedic im-
plants and surrounding osteoblasts and osteoclasts, the wettability of the coupons was
determined by measuring the static contact angle three times on each side of the Mg–0%BN,
Mg–0.5%BN, and Mg–1.5%BN coupon groups with four coupons of each sample using
the sessile drop technique with a CAM PLUS MICRO contact angle meter (Cheminstru-
ments, Fairfield, OH, USA) at ambient temperature. A micrometer syringe was used to
dispense a droplet of 2–3 µL of distilled water or simulated body fluid (SBF) onto the
surface of each coupon type. Measurements were replicated for water and SBF sanding
samples immediately before analysis to obtain a more accurate contact angle. The resulting
contact angle measured through projecting the droplet image on a protractor and an aver-
age contact angle was calculated for six different measurements of three similarly sized
droplets on each side of the coupons, wiping the coupons clean with a Kim wipe after each
measurement [15,43–45].

2.5. Electrochemical Corrosion Test

The corrosion behavior of the prepared Mg nanocomposites was determined by con-
ducting electrochemical corrosion tests in SBF. The SBF was optimized to contain ion
concentrations approximating that of blood plasma and a fresh SBF was prepared for each
respective corrosion test [43]. Prior to each test, the nanocomposites were sequentially
polished with 400–2000 grit SiC sandpapers, washed with ethanol, and dried. The electro-
chemical tests (potentiodynamic polarization tests) were performed using a three-electrode
system with the nanocomposite sample serving as the working electrode, while graphite
and saturated calomel (SCE) were used as the counter and reference electrode, respec-
tively. The three-electrode system was submerged in the SBF for 600 s, allowing the system
to stabilize before potentiodynamic polarization (PDP) tests were performed. PDP tests
were conducted using a Gamry potentiostat Interface 1010E model (Gamry Instruments,
Warminster, PA, USA) at room temperature. The connection between the outer wire and
the sample was coated with a nonconductive epoxy so that only the desired surface area
of the top face of the sample was exposed to the SBF during the test. After polishing the
exposed surfaces of Mg nanocomposites with the 400–2000 grit SiC sandpapers, the epoxy
was cured. Prior to the first test, the potentiostat was connected and calibrated [46]. The
three-electrode system was assembled and placed in a 150 mL beaker of SBF [47]. The
potentiostat was connected to the electrodes by attaching five terminals to the electrodes
and the ground, ensuring that the only surface the metal of the banana clips touched was
the electrodes. Tafel curves were generated using the DC corrosion method through the
Gamry instruments framework software and they were used to determine the corrosion
current densities (icorr). The potentiostat was programmed to send a DC potential varying
from −0.25 to 0.25 V relative to the measured open circuit potential (OCV) through the
electrodes at a scan rate of 1 mV/s while monitoring the current between electrodes that
formed anodic and cathodic curves [48]. From the x-axis of the graph generated by the
potentiostat, the corrosion current density icorr (A/cm2) was calculated by dividing each
x-axis value by the tested area of the sample (cm2). The icorr value was obtained from the
graph using Tafel extrapolation and linear fitting approach [49]. The corrosion current den-
sities were used to study the effect of adding the reinforcing phases on the PDP corrosion
characteristics, as an indication for the corrosion rates. The corrosion rate was assessed
based on the corrosion potential and current density values icorr [50,51].
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2.6. Cytotoxicity and In Vitro Immersion Test

Sterilization protocols were performed according to the recommended sterilization of
small Mg parts for cell culture experiments [30]. The Mg coupon samples were individually
sterilized in ultrasonically pulsed ethanol for 3 min, acetone for 5 min, and isopropanol
for 20 min. The coupons were then immersed in deionized H2O for three sonication steps
at five minutes each. Prior to cell culture, the samples were immersed in 70% ethanol
for 5 min and sterilized in UV light for 10 min on each side [51]. The resulting samples
were washed with sterile 1× phosphate-buffered saline three times to remove all traces
of ethanol and ethanol byproducts. The in vitro cytotoxicity study was performed using
the ISO 10993-5 extract method on MC3T3-E1 osteoprogenitor cells (ATCC, USA) [52].
Coupon-leached media was produced by soaking the three coupon groups (N = 2) in
complete αMEM (Thermofisher, Waltham, MA, USA) media supplemented with 10% FBS
and 1% penicillin-streptomycin for 72 h according to a weight ratio of 0.2 g/mL [53,54].
The resulting media and media-leached byproducts were separated into four increasing
dilutions (1×, 2.5×, 6×, and 10×). In total, 5000 MC3T3 cells were seeded in a 96-well plate
in addition to a calibration curve of increasing cell numbers and were incubated for 24 h at
37 ◦C and 5% CO2. Attachment and seeding density were confirmed with the PrestoBlue
Viability Assay (Thermofisher, USA) adhering to the protocol provided by the manufacturer,
and increasing dilutions of coupon-leached αMEM were added to the cells. The seeded
cells were cultured in the effluent-leached media along with controls grown with complete
αMEM. The cell numbers were recorded with the PrestoBlue assay after culturing for 72 h
by measuring fluorescence with an excitation wavelength of 530 with a bandwidth of 25 nm
and a fluorescence wavelength of 590 with a bandwidth of 35 nm. Percent viabilities were
calculated by dividing the final number of cells by the initial number and were normalized
by dividing the resulting viability by the average percent viability of the control. Viabilities
were imported into R where a two-way ANOVA test using a 95% confidence interval and a
post hoc Dunnett test was performed on the resulting data. Weight loss post-incubation in
media was measured to determine differences between interactions of nanocomposites and
ultra-pure Mg in media.

2.7. Microstructure and Corrosion Surface Investigation

A microstructural analysis of the prepared nanocomposites was performed to de-
termine the effect of the BN addition on the microstructure. Prior to SEM analysis, non-
corroded samples were polished to produce a mirror surface using a metallographic pol-
ishing and grinding machine with sandpapers of reducing grit sizes, etched in an acetic
glycol solution composed of 20% acetic acid, 1% nitric acid, and 60% ethylene glycol for
3–5 s, and ultrasonically cleaned for 3 min immediately before SEM analysis [55].

The surface of the prepared samples was characterized and imaged using scanning
electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Samples
were prepared according to the sonication steps used prior to cytotoxicity, as previously
mentioned. SEM images of the pure Mg samples and immersion samples were taken
at magnifications of 500× to visualize the morphology of corroded and non-corroded
samples. Separate samples were immersed in complete αMEM media for 72 h to determine
corrosion byproducts under the conditions through which leached media was generated
in the cytotoxicity studies. Point EDX spectra were detected to analyze the elemental
composition of corrosion byproducts that formed on the surface of the samples and the
surface composition of ultrasonically cleaned and etched samples. Data were collected
at three points on the surface of coupons and the surface was scanned to analyze the
overall composition. X-ray diffraction (XRD) was performed at a scan rate of 0.1◦/s for
samples before and after corrosion in αMEM media for 72 h. XRD diffractograms were
developed through graphing detected intensity versus the 2 theta (◦) angle and comparing
the resulting data to known diffractograms using the X’Pert HighScore software’s built-in
search-match algorithm containing elements detected in the previous EDX spectra analyses.
Compounds with the highest score based on the search-match algorithm with background
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signal eliminated were accepted as candidates for corrosive byproducts of nanocomposite
and pure Mg corrosion in media.

2.8. Statistical Methods

Statistical significance between multiple groups was analyzed with either ANOVA
tests if normality was established or a Kruskal–Wallis test due to a lack of data demonstrat-
ing normal distribution, as determined in a Shapiro–Wilk test. To determine differences
between each group, a Dunnett post hoc was used for ANOVAs and a Dunn post hoc was
performed if the Kruskal–Wallis was significant. A confidence interval of 95% was used to
confirm significance. In the notation used in the figures, ns, *, **, ***, and **** represent no
significance, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, respectively.

3. Results
3.1. Microstructure Investigation

Microstructure analyses were performed on cleaned and polished samples after etch-
ing in acetic glycol using SEM imaging. Samples imaged at 250× were taken immediately
post-etching. Figure 1 shows the SEM micrographs of pure Mg and Mg–BN nanocompos-
ite materials investigated in this study. The images show the expected severe distortion
of grains and grain boundaries as a result of the hot extrusion process employed in the
manufacturing route of the nanocomposites in this study.

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 18 
 

and after corrosion in αMEM media for 72 h. XRD diffractograms were developed 
through graphing detected intensity versus the 2 theta (°) angle and comparing the result-
ing data to known diffractograms using the X’Pert HighScore software’s built-in search-
match algorithm containing elements detected in the previous EDX spectra analyses. 
Compounds with the highest score based on the search-match algorithm with background 
signal eliminated were accepted as candidates for corrosive byproducts of nanocomposite 
and pure Mg corrosion in media. 

2.8. Statistical Methods 
Statistical significance between multiple groups was analyzed with either ANOVA 

tests if normality was established or a Kruskal–Wallis test due to a lack of data demon-
strating normal distribution, as determined in a Shapiro–Wilk test. To determine differ-
ences between each group, a Dunnett post hoc was used for ANOVAs and a Dunn post 
hoc was performed if the Kruskal–Wallis was significant. A confidence interval of 95% 
was used to confirm significance. In the notation used in the figures, ns, *, **, ***, and **** 
represent no significance, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, respectively. 

3. Results 
3.1. Microstructure Investigation 

Microstructure analyses were performed on cleaned and polished samples after etch-
ing in acetic glycol using SEM imaging. Samples imaged at 250× were taken immediately 
post-etching. Figure 1 shows the SEM micrographs of pure Mg and Mg–BN nanocompo-
site materials investigated in this study. The images show the expected severe distortion 
of grains and grain boundaries as a result of the hot extrusion process employed in the 
manufacturing route of the nanocomposites in this study. 

 
Figure 1. Microstructure analysis: (A) pure Mg (0% BN) SEM image. (B) Mg–0.5%BN SEM image. 
(C) Mg–1.5%BN SEM image. Magnifications are included at the bottom of each image. 

3.2. Microhardness, Compression, and Porosity 
The microhardness of the prepared Mg–BN nanocomposite and pure Mg samples 

was assessed. The average and standard deviation values obtained from the Vickers mi-
crohardness test were 40.1 ± 1.4, 41.1 ± 1.3, and 47.62 ± 1.6 HV for the pure Mg (Mg–0%BN), 
Mg–0.5%BN, and Mg–1.5%BN vol.% nanocomposite samples, respectively (Figure 2A). It 
can be observed that the addition of only 0.5 vol.% of the BN nanoparticles did not result 
in a significant improvement in the mechanical properties, and the addition of a higher 
content (i.e., 1.5 vol.%) seems to be necessary to notice a significant increase in the micro-
hardness. This represents an approximately 1.2 times increase in the microhardness after 
the addition of 1.5 vol.% of the BN nanoparticles. The enhancement in the mechanical 
properties after the addition of the BN nanoparticles can be attributed to the presence of 
the hard BN nanoparticles along the interfaces of the magnesium matrix grains, which 
limited the deformation of the matrix grains caused by dislocation movement and twining 
[33,34,39]. To further investigate mechanical properties, a compression test was per-
formed. Stress–strain curves generated from compression tests on 0–1.5%BN coupons 

Figure 1. Microstructure analysis: (A) pure Mg (0% BN) SEM image. (B) Mg–0.5%BN SEM image.
(C) Mg–1.5%BN SEM image. Magnifications are included at the bottom of each image.

3.2. Microhardness, Compression, and Porosity

The microhardness of the prepared Mg–BN nanocomposite and pure Mg samples was
assessed. The average and standard deviation values obtained from the Vickers micro-
hardness test were 40.1 ± 1.4, 41.1 ± 1.3, and 47.62 ± 1.6 HV for the pure Mg (Mg–0%BN),
Mg–0.5%BN, and Mg–1.5%BN vol.% nanocomposite samples, respectively (Figure 2A).
It can be observed that the addition of only 0.5 vol.% of the BN nanoparticles did not
result in a significant improvement in the mechanical properties, and the addition of a
higher content (i.e., 1.5 vol.%) seems to be necessary to notice a significant increase in
the microhardness. This represents an approximately 1.2 times increase in the microhard-
ness after the addition of 1.5 vol.% of the BN nanoparticles. The enhancement in the
mechanical properties after the addition of the BN nanoparticles can be attributed to the
presence of the hard BN nanoparticles along the interfaces of the magnesium matrix grains,
which limited the deformation of the matrix grains caused by dislocation movement and
twining [33,34,39]. To further investigate mechanical properties, a compression test was
performed. Stress–strain curves generated from compression tests on 0–1.5%BN coupons
showed a similar behavior to that observed from the microhardness test (Figure 2B), and
from these data we calculated offset yield strengths, ultimate strengths, and strains at maxi-
mum stresses. Based on the stress–strain curves (Figure 2B), the 1.5%BN nanocomposite
samples had much higher yields and ultimate strengths compared to the pure Mg and
the 0.5%BN samples. For example, the yield strength increased from 56.8 MPa for pure
Mg (0%BN) to reach 69.59 MPa for the 1.5%BN nanocomposite. This also represents an
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approximately 1.2 times increase in the yield strength after the addition of 1.5 vol.% of the
BN nanoparticles.
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Figure 2. Mechanical Properties: (A) The microhardness of sample determined through the Vick-
ers microhardness test demonstrates an increasing trend in hardness with increased vol.% of BN
nanoparticles included in the Mg matrix. (B,C) Stress–strain curves derived from compression test
results for nanocomposites compared with 0% BN–Mg illustrates an increased strength with higher
vol.% BN addition (ns, ** and **** represent no significance, p ≤ 0.01 and p ≤ 0.0001, respectively).

The density of the nanocomposites and pure Mg samples was measured using a
MXBAOHENG MH-300A density meter, which calculates density through Archimedes
buoyancy principle. The densities obtained from the density meter were converted to
porosity by computing the ratio of measured density to theoretical density and subtracting
that ratio from one. The average relative density and density decreased in the line plot
from Mg–0%BN to Mg–1.5%BN, as shown in Figure 3A. Therefore, the porosity derived
from the density values revealed an increase in porosity with higher vol.% BN addition
(Figure 3B). However, the highest calculated porosity level (1.74%), in the case of the 1.5%BN
nanocomposites, was within the expected ranges for composite materials produced by the
powder metallurgy manufacturing process and it did not result in a deterioration in the
mechanical properties. It is also worth mentioning that there was no statistical significance
detected between all samples due to the wide range of measurements.

3.3. Contact Angle

The hydrophilicity of the nanocomposites was assessed by obtaining contact angle
measurements for 6 drops on each side of the nanocomposite or pure Mg coupon, and a
total of 12 drops were averaged for each sample. The sessile drop technique was used and,
using a light source, we projected the image of the drop on a backboard containing a go-
niometer to determine contact angle. The hydrophilicity assessment using the contact angle
test showed an average contact angle of 125.9 ± 11.2◦, 107.6 ± 16.1◦, and 124.4 ± 10.7◦,
for the pure Mg, Mg–0.5%BN, and Mg–1.5%BN samples, respectively, with distilled water
on non-sanded surfaces (see Figure 4). An ANOVA test revealed a significant decrease in
contact angle for Mg–0.5%BN (Figure 4). However, coupons sanded immediately prior to
contact angle measurements showed an average contact angle of 43.7 ± 11.9◦, 45.6 ± 8.4◦,
and 51.9 ± 9.2◦ for the pure Mg, Mg–0.5%BN, Mg–1.5%BN, respectively, for distilled
water (Figure 4). Contact angles measured with simulated body fluid (SBF) demonstrated
a similar pattern to distilled water. Without sanding the samples, the average contact
angles were 107.4 ± 23.9◦, 110.2 ± 20.5◦, and 113.2 ± 30.0◦ for the pure Mg, Mg–0.5%BN,
Mg–1.5%BN, respectively, while sanded samples with SBF had average contact angles of
71.9 ± 20.3◦, 62.8 ± 17.1◦, and 72.8 ± 21.1◦ for the pure Mg, Mg–0.5%BN, Mg–1.5%BN,
respectively. While hydrophilicity tests were repeated with SBF to assess the hydrophilicity
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more accurately in a physiologically mimetic environment, no statistical significance was
detected between each sample group (Figure 3). The wettability of surfaces >90◦ were hy-
drophobic materials, and all materials were hydrophobic prior to sanding and hydrophilic
post-sanding [56]. The reaction of Mg with air resulted in a MgO surface coat that could
contribute to this behavior. Further, the sanded wettability agreed more with the published
value for Mg with water.
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3.4. In Vitro Electrochemical Corrosion

The corrosion current densities of the pure Mg (Mg–0%BN), Mg–0.5%BN, and Mg–
1.5%BN samples were obtained by extrapolating the anodic and cathodic curves generated
by potentiodynamic polarization (PDP) tests. Corrosion current densities based on the
Tafel extrapolation method can be used as an indicator for the corrosion rates and a
benchmark of the corrosion resistance. Higher current densities generally mean higher
corrosion rates and, hence, less corrosion resistance. Corrosion current densities determined
through electrochemical testing, see Table 1, demonstrated that nanocomposites statistically
significantly corroded at a decreased rate compared with pure Mg and Mg–0%BN (Figure 5).
Interestingly, the Mg–0.5%BN nanocomposite had a significantly lower current density and
more positive corrosion potential compared with the Mg–1.5%BN one. The phase shift
in corrosion density and corrosion potential (voltage) can be observed in the PDP curves
(Figure 5).

Table 1. Properties Summary: Summary of the main characteristics of pure Mg (0%BN), Mg–0.5%BN,
and Mg–1.5%BN nanocomposites.

Sample Microhardness
(HV)

Ultimate Strength
(MPa) Contact Angle SBF Sanded (◦) Corrosion Potential

(V)
Corrosion Current
Density (µA/cm2)

Mg–0%BN 39.98 ± 1.36 261.3 71.9 ± 20.3◦ −1.87 770

Mg–0.5%BN 41.02 ± 1.24 271.3 62.8 ± 17.1◦ −1.85 417

Mg–1.5%BN 47.62 ± 1.53 288.1 72.8 ± 21.1◦ −1.85 558
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The properties of Mg–BN nanocomposites are summarized in Table 1. The addition
of BN nanoparticles to a Mg matrix conferred a significant increase in microhardness, as
anticipated by previously demonstrated nanocomposite material properties [2–5,57–59].
The hydrophilicity, illustrated by a low contact angle, indicates that optimal anchorage
to a bone substrate and cell adhesion was possible [60]. A marginal increase in corrosion
resistance compared with that of pure Mg (0%BN) was also predicted to improve the
retention of the Mg–BN nanocomposite in a physiological environment.

3.5. Cytotoxicity Test

To determine the cytocompatibility of the nanocomposites compared with ultra-pure
Mg, we assessed the toxicity of each material on mouse pre-osteoblast cells. According to
the ISO 10993-5 standard, if the reduction in cell viability is greater than 30%, the material
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is considered cytotoxic. The cytotoxicity experiments generally demonstrated an increasing
trend of viability from 1× to 10× dilution points (Figure 6A). None of the data points at
1× and 2.5× dilution factors were above or at 70% viability, and the viability increased
significantly past 2.5×. All coupon groups at 6× or 10× dilution factors were above 70%
on average, with at most one sample out of six measurements having cytotoxic effects
with a less than 70% viability. There was no statistically significant difference between
the cytotoxicity of the ultra-pure Mg, Mg–0.5%BN, and Mg–1.5%BN Mg groups (p > 0.05),
suggesting that BN at low vol.% does not significantly impact the cytotoxicity of Mg
(Figure 6A).
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Figure 6. Cytotoxicity and in vitro corrosion: (A) Average percent viability of control seeding
dilution points compared across Mg coupon compositions (N = 2) for 5000 MC3T3 cells seeded in
a 96-well plate. (B) Percent weight gain/loss after 72 h in media SBF (ns, *, and *** represent no
significance, p ≤ 0.05 and p ≤ 0.001, respectively).

In addition to cytotoxicity, the rate at which the nanocomposite dissolves in the
media was investigated to determine the integrity of the material in near-physiological
environments. The sample weight gain/loss of the samples after 72 h did not follow a
particular trend (Figure 6B). All ultra-pure Mg samples had a weight gain that ranged from
0.20 to 0.97% with an average of 0.53 ± 0.26%. The Mg–1.5%BN and Mg–0.5%BN coupons
contained samples that gained and lost weight after 72 h in αMEM media. The Mg–1.5%BN
nanocomposite samples had a weight gain ranging from 0.34 to 1.95%, while the weight of
other coupons ranged from 0.035 to 11.26% weight loss. The Mg–0.5%BN nanocomposites,
however, varied less in terms of magnitude with weight gains ranging from 2.39 to 4.08%
and losses ranging from 0.24 to 0.57%. There was a statistically significant difference
between Mg–0.5%BN and ultra-pure Mg, respectively, compared with Mg–1.5%BN. It
is worth mentioning that this is a short-term immersion test and it does not produce
conclusive results.

3.6. Corroded Surface Characteristics

Surface scans using SEM were performed at 500× to characterize the surface mor-
phology and determine the elemental composition of the corroded samples. Samples were
ultrasonically cleaned according to standard sterilization protocols and contained some
impurities on the surface, which visually increased from ultra-pure Mg to Mg–0.5%BN and
Mg–1.5%BN samples (Figure 7A–C). Due to the reactivity of Mg, a high level of surface
oxidation was expected. A crystalline material self-assembled during corrosion, which
was previously demonstrated in media during media leaching of nanocomposites for
cytotoxicity tests (Figure 7D–F). Crystalline corrosive byproducts were observed on all
nanocomposites and ultra-pure Mg samples with severely high levels of crystallinity were
observed in the Mg–1.5%BN samples.
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Figure 7. SEM Images Pre- and Post-Corrosion: SEM images of ultra-pure Mg (A), Mg–0.5%BN
(B), and Mg–1.5%BN (C) coupon surfaces at depths of 500× after ultrasonic and UV sterilization for
cytotoxicity testing, SEM images of ultra-pure Mg (D), Mg–0.5%BN (E), and Mg–1.5%BN (F) after
72 h corrosion in α-MEM media at 37 ◦C and 5% CO2 for media-leaching cytotoxicity tests transferred
to an SEM for analysis.

To better understand the surface byproducts observed after corrosion in media, sur-
face EDX was performed on each sample and assessed for elemental composition. The
amount of oxygen and carbon detected increased in all corroded samples compared with
their ultrasonically cleaned counterparts (Figure 8). Furthermore, the oxygen and carbon
accumulation were higher in both nanocomposites compared with ultra-pure Mg at all
instances (Figure 8). These data support the increased rate of corrosion in Mg supplemented
with boron nitride compared with ultra-pure Mg samples observed in both immersion and
electrochemical corrosion tests. Additional peaks were detected for chloride and sodium,
which could be a byproduct of the media composition. The α-MEM media contained
organic salts, essential nucleosides, fetal bovine serum, and a sodium bicarbonate buffer,
which could contribute to the EDX results. At higher levels of magnification, the detection
of boron and nitrogen could not be achieved, which could be attributed to the low vol.% of
BN or any signal from boron and nitrogen being masked by the high levels of oxidation
byproducts (Figure 8B,D).

Using the elements detected in the EDX analyses, a search-match algorithm was used
restricting compound candidates to the elements in Figure 8 for the XRD diffractogram
collected for ultra-pure Mg, Mg–0.5%BN, and Mg–1.5%BN. The top-scoring candidate using
the X’Pert HighScore Plus software’s bult-in search-match algorithm for ultrasonically
cleaned ultra-pure Mg compounds was magnesium peroxide (Figure 9A), which was
also the top scoring candidate for ultrasonically cleaned Mg–0.5%BN and Mg–1.5%BN
(Figure 9B,C). These data indicate that the sterilized samples exposed to air will still
oxidize, prevalently producing magnesium peroxide, which was expected due to the
reaction of magnesium with air. However, the top-scoring candidates in corroded ultra-
pure samples were magnesium oxide in addition to magnesium peroxide. Magnesium
oxide was also detected in corroded Mg–BN0.5 samples, but was absent in corroded Mg–
BN1.5. Interestingly, corroded Mg–BN0.5 and Mg–BN1.5 had boron nitride (BN) as a top
candidate despite virtually zero detection using EDX. Detection indicated that a small
level of BN aggregation had occurred during corrosion in media for both vol.% of Mg–BN
nanocomposites. Magnesium oxide post-corrosion was only detected in the Mg–0.5%BN
nanocomposite and ultra-pure Mg, which confirms an accelerated mass-loss of corrosion
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byproducts with higher concentrations of BN incorporated in the Mg matrix. However,
further validation with more formulations of different vol.% nanocomposites is needed.
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Figure 9. XRD Diffractogram Pre- and Post-corrosion: X-ray diffraction diffractogram for ultra-pure
Mg (A), Mg–0.5%BN (B), and Mg–1.5%BN (C) before and after corrosion in αMEM media for 72 h.
Corroded 1.5 BN nanocomposite samples resulted in a high scoring detection of boron nitride and
magnesium. The corroded 0.5 BN samples contained the same byproducts as corroded 1.5 BN in
addition to magnesium oxide. Non-corroded samples still had magnesium peroxide detected on the
surface of all samples, including ultra-pure Mg.
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4. Discussion

We synthesized and characterized a novel Mg-based nanocomposite using Mg powder
and BN nanoparticles. To investigate whether the addition of BN altered the microstructure
of the material, we examined polished and etched samples using SEM. Microstructural
analyses suggested a slight grain refinement associated with the increased vol.% of the
BN nanoparticles (Figure 1A). However, a lack of statistical significance failed to provide a
conclusive difference between Mg with and without BN.

The mechanical strength of pure Mg is insufficient to support the constant stresses
applied on orthopedic implants in vivo. It has been previously demonstrated that the
addition of BN nanoparticles to Mg matrices results in improved creep resistance [61]. The
shoulder-like behavior that can be observed in the stress–strain curves around yielding
is the “yield plateau” phenomenon, which occurs during the compressive deformation
of some Mg alloys. This yield plateau is associated with the onset of twinning during
loading along the extrusion direction of the test specimen and it represents a region of
large twin volume fraction nucleating and propagating [62]. The microhardness results in
this work support this observation with statistically significant increases in microhardness
between the nanocomposites and pure Mg groups. Using an ANOVA test and a Dunnett
post hoc comparison, each group demonstrated statistical significance, supporting the
trend that increased vol.% of nanoparticles corresponds to an increase in microhardness
and, hence, mechanical strength (Figure 1A). Compression tests further corroborated the
microhardness results, as the ultimate strength increased with increasing vol.% of BN
added to Mg (Figure 1B). The presence of hard BN nanoparticles along the interfaces of the
Mg matrix increased the strength by hindering mobile dislocations and twinning, which
increased the hardness [63,64]. The strengthening of the Mg–BN nanocomposites can also
be attributed to BN nanoparticles preventing crystal growth and, therefore, playing a role
in refining the grain matrix [65–69].

Hydrophilicity significantly impacts the cell attachment to the biomaterial, which
influences the integration of the material with bone [56,70]. The published value of pure
Mg is ~32.2◦ in water, which is hydrophilic and at a suitable range for cell adhesion. We
performed contact angle tests using both distilled water and simulated body fluid (SBF) to
compare against other similar nanocomposites, which are typically measured with water,
and provided a more physiologically relevant standard. Contact angles for all surfaces
without sanding before analysis were highly hydrophobic with all angles measuring >90◦,
which is the established threshold for a material to be hydrophobic (Figure 3). Experiments
replicated for freshly sanded surfaces immediately prior to analysis, however, revealed
hydrophilic surfaces with average contact angles all being <90◦ in pure Mg, Mg–0.5%BN,
and Mg–1.5%BN (Figure 3). The contact angle for most orthopedic implants range between
58.5 and 81.7◦ in distilled water [71]; therefore, the measured contact angles of the Mg–BN
nanocomposites in this work are in range of the desirable hydrophilicity.

Enhancing corrosion resistance is critical for Mg due to the fast degradation rate of
pure Mg, limiting its use as an orthopedic implant. Using the nanocomposites synthesized
in this study, we detected a decrease in the corrosion current density, determined based
on the PDP Tafel curves, between Mg–0%BN, Mg–0.5%BN, and Mg–1.5%BN. Corrosion
current densities based on the Tafel extrapolation method can be used as indicators for
the corrosion rates and a benchmark of the corrosion resistance. Interestingly, corrosion
density also significantly increased between Mg–0.5%BN and Mg–1.5%BN, indicating that
the electrochemical corrosion is faster in higher vol.% BN but slower in lower vol.% BN.
In contrast, biocompatibility immersion testing indicated that the mass loss increased in
nanocomposites compared with the ultra-pure Mg control group. However, this difference
in corrosion resistance can be attributed to the differences in the purity levels and the
manufacturing method used to make the nanocomposites (powder metallurgy) and the
ultra-pure control (hot-rolling). These data suggest that increased microhardness and
strength is not entirely indicative of increased corrosion resistance. It has been previously
demonstrated that a nickel–tungsten alloy supplemented with increasing concentrations of
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BN nanoparticles showed a decreased corrosion resistance in electrochemical tests followed
by a decrease in resistance upon further increases in BN [72].

The results of the biocompatibility studies measuring the cytotoxicity of nanocom-
posite and ultra-pure Mg-leached media demonstrate that BN nanoparticle addition does
not confer cytotoxic effects. At the dilutions of 6× and 10×, the average% viabilities were
above 70% normalized viability compared with non-treatment. This indicates that 70%
of cells were retained post-treatment with leached media for 24 h in all groups. Because
there was no statistical significance between nanocomposite and ultra-pure Mg cytotoxicity,
we can conclude that BN nanoparticles do not confer cytotoxic effects, but also do not
enhance the cytocompatibility. Long-term assessments of viability overtime, however, need
to be investigated to further support this conclusion. In vitro coupon weight-loss in media
after 72 h suggested that longer corrosion times are required to determine the corrosive
variation between Mg–0.5%BN, Mg–1.5%BN, and ultra-pure Mg due to inconsistent results.
This assessment of weight loss to estimate corrosion rate may be inaccurate during short
corrosion periods, as these data are inconsistent with SBF corrosion demonstrated in the
literature. These data also indicate that surface coatings enhancing cytocompatibility and
increasing corrosion resistance are necessary for in vivo applications.

Surface characterization post-corrosion in media showed that nanocomposites appear
to oxidize faster than ultra-pure Mg in ultrasonically cleaned samples based on byproducts
appearing on SEM images of nanocomposites alone. Furthermore, carbon and oxygen
content significantly decreased in corroded nanocomposites based on EDX spectra results.
Further investigation with XRD revealed that this oxygenation can be attributed to magne-
sium oxide (1.5 BN) and magnesium peroxide (0.5 BN) present on the surface. However,
there is little explanation for the increase in carbon content observed in the EDX analyses.

5. Conclusions

The use of low contents (0.5 vol.% and 1.5 vol.%) of BN particles to strengthen the Mg
matrix was examined for mechanical properties, corrosion behavior, and cytotoxic effects
for skeletal fixation hardware applications. In terms of the distortion of grains and grain
boundaries due to the hot extrusion process, the microstructure of Mg–BN nanocomposites
does not appear to be impacted by the addition of BN compared to pure Mg. The addition
of nanocomposite BN particles, however, increased the strength and microhardness of the
Mg matrix by limiting the dislocation movement and twining, which is critical due to the
low strength of pure Mg. The addition of BN also increased the corrosion resistance in
electrochemical tests compared with 0% BN–Mg synthesized in a similar manner. The
Mg–BN nanocomposite samples showed similar hydrophilic contact angles with SBF
and in vitro cytotoxicity levels to those for the ultra-pure Mg when coupons leached in
α-MEM media were exposed to MC3T3-E1 cells. The EDX and XRD data revealed the
identity of the byproducts of corrosion in media to be primarily oxidated Mg with a more
crystalline appearance in the Mg–BN nanocomposite samples. The impact of this behavior
requires further investigation to determine the nature of this reaction in media. Collectively,
these data suggest that the strengthening of the Mg matrix improved electrochemical
corrosion behavior. The contact angle analysis indicates that surface modification (e.g.,
coatings) is essential to protect the Mg from surface oxidation, which dramatically increases
hydrophobicity based on contact angle. Further, coatings to reduce immersion corrosion
rates are also required to retain implant function for orthopedic applications. Further
investigation of the interaction of BN nanocomposites with a biological environment and
improvements in synthesis methods and surface modifications is needed.
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