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Abstract: Amniotic Fluid Volume (AFV) is a crucial fetal biomarker when diagnosing specific fetal
abnormalities. This study proposes a novel Convolutional Neural Network (CNN) model, AFNet, for
segmenting amniotic fluid (AF) to facilitate clinical AFV evaluation. AFNet was trained and tested
on a manually segmented and radiologist-validated AF dataset. AFNet outperforms ResUNet++ by
using efficient feature mapping in the attention block and transposing convolutions in the decoder.
Our experimental results show that AFNet achieved a mean Intersection over Union (mIoU) of
93.38% on our dataset, thereby outperforming other state-of-the-art models. While AFNet achieves
performance scores similar to those of the UNet++ model, it does so while utilizing merely less than
half the number of parameters. By creating a detailed AF dataset with an improved CNN architecture,
we enable the quantification of AFV in clinical practice, which can aid in diagnosing AF disorders
during gestation.

Keywords: medical image segmentation; amniotic fluid; AFNet; fetal MRI; Magnetic Resonance
Imaging; CNN; deep learning

1. Introduction

Amniotic fluid is a vital biological fluid necessary for the development of the fetus.
It is an extracellular fluid in the amniotic sac surrounding the fetus [1–3]. The fluid is
crucial in facilitating fetal lung development, swallowing, skeletal movement, and regu-
lating temperature and anti-inflammatory functions [3]. Throughout gestation, various
dynamic processes, such as fetal breathing and swallowing, regulate amniotic fluid [2].
Disruptions in these dynamic processes can result in low amniotic fluid volume (oligohy-
dramnios) or high amniotic fluid volume (polyhydramnios), which occur in approximately
1–2% of pregnancies due to underlying causes and are associated with poor pregnancy
outcomes [1,3–8].

Quantifying amniotic fluid volume is often challenging using non-invasive fetal imag-
ing techniques, primarily ultrasound (US). The Single Deepest Pocket (SDP) and Amniotic
Fluid Index (AFI) are the most commonly employed ultrasound-based techniques [2–7].
While SDP and AFI can reasonably estimate amniotic fluid volume (AFV) disorders [8],
they lack precision in volumetric measurements. AFV is estimated by SDP. Consequently,
their specificity is low (<32%) in cases of high or low AFV [8,9]. Dye-dilution methods and
direct measurement during a Cesarean delivery are currently the most accurate techniques
for estimating AFV [10]. However, these invasive methods can only establish statistical
correlations between AFV and estimation techniques without directly relating them to
clinical outcomes [10].
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Fetal Magnetic Resonance Imaging (MRI) offers high soft tissue contrast compared to
ultrasound [5,11–13] and provides more comprehensive information [14] for diagnosing
specific fetal or maternal abnormalities, such as oligohydramnios or polyhydramnios. The
use of MRI in pregnancies is considered safe by the Canadian Association of Radiologists,
particularly after the first trimester and without gadolinium-based contrast agents [15].
With its superior contrast, spatial resolution, and ability to cover the uterus, fetal MRI
enables quantitative assessment of the entire amniotic fluid volume. This assessment aids
in diagnostic and therapeutic decision-making as well as clinical research. However, the
manual segmentation of amniotic fluid volume on MRI sequences is highly burdensome,
time-consuming, and impractical for routine clinical assessments.

The accurate and complete segmentation of amniotic fluid (AF) is essential for obtain-
ing the total amniotic fluid volume (AFV) from MRI. Segmentation involves labelling each
pixel in an image, typically done manually by expert radiologists trained to differentiate be-
tween the target label and the image background. This process is time-consuming and costly,
requiring the segmentation of hundreds of images for each patient volume [16,17]. To ad-
dress these challenges and improve segmentation’s speed, accuracy, and cost-effectiveness,
machine learning techniques that can perform comparably to experts have been imple-
mented [16–18]. Previous machine learning tools have only focused on automatic segmenta-
tion of ultrasound (US) images [19–21]; yet, the increased reliance on fetal MRI emphasizes
the need for such tool development for MRI applications too.

Machine learning, specifically deep learning segmentation models, has revolution-
ized medical image analysis, offering accurate and efficient automated segmentation of
anatomical structures in MRI scans [22–30]. Convolutional neural networks (CNNs) are the
foundation for these models, as they can learn complex features from images. The network
is trained by optimizing parameters across multiple layers of convolutional filters, normal-
ization layers, and dense layers to minimize the error (loss) on the training dataset. Various
techniques, including skip connections [31], attention mechanisms [32,33], transpose con-
volutions [34], and atrous convolutions [29,35] are incorporated into many architectures to
improve network performance. Due to the variability in CNN models, refining existing
architectures through small changes in hyperparameters, model size, and model layers is
crucial for achieving optimal performance. Previous studies have demonstrated strong
model performance on the fetal brain [36], placental [37], and body [38] segmentations
using MRI datasets.

There is a lack of literature on applying deep learning models to segment amniotic
fluid from MRI. Existing US-based models are not applicable due to significant differences
in image domains. The segmentation of AF is challenging due to the presence of structures
that may have similar pixel intensities and can be mistaken as amniotic fluid. This study
aims to introduce an expert-validated MRI dataset with segmented amniotic fluid. It
proposes a novel architecture called AFNet, which outperforms state-of-the-art medical
segmentation networks on our dataset. Our model enables automated quantification of
amniotic fluid volume using fetal MRI datasets, opening avenues for further research to
enhance clinical outcomes related to amniotic fluid-related disorders.

2. Methods
2.1. Dataset

For this study, the dataset used consisted of 45 T2-weighted 3D fetal MRI sequences
obtained using an SSFP sequence on a 1.5 T or a 3.0 T MR scanner. In this dataset, we
obtained 2D coronal reformatted images, with each patient having between 50–120 slices.
We resized varying 2D image slices along the frontal to 512 × 512, and each slice was
individually intensity normalized. The prediction of AF on each 2D T2-weighted MRI slice
can then be used to obtain the full 3D rendering of AF. The local research ethics board
approved the use of patient data for this study, considering that all data be de-identified
and not contain any rare (1:10,000) pathological features. Manual segmentation of the
amniotic fluid was performed in-house with the aid of the segmentation software Amira-
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Avizo (Berlin, Germany), and then verified by an expert radiologist. The amniotic fluid
was segmented on each slice in the frontal plane, using contrast thresholding on the magic
wand, lasso and brush tools for clear segmentation boundaries. Due to legal restrictions on
our medical data, this dataset can not be made publicly available.

2.2. Model Architecture

We present a novel architecture called AFNet, inspired by the original ResUNet++ [24],
as shown in Figure 1. Our modifications to ResUNet++ enhance the network’s performance
by refining and improving its existing layers, specifically tailored to the challenges of
medical segmentation. We chose this architecture due to its competitive results on the
complex medical segmentation datasets of polyp segmentation [39,40]. Therefore, we chose
it as our foundation due to its proven performance and ease of implementation. However,
we recognized the need for further advancements to address the specific requirements of
our task.

Bioengineering 2023, 10, x FOR PEER REVIEW 4 of 14 
 

 
Figure 1. AFNet architecture. Rectangles represent different blocks or functions in the network, 
while arrows represent the data flow. A legend is shown below the network to colour–code the 
differing model blocks. Unless otherwise indicated, the stride is 1 for convolutional layers. A fetal 
MRI input image of 512 × 512 feeds into the network and outputs a segmentation mask for amniotic 
fluid. 

The Atrous Spatial Pyramid Pooling (ASPP) module, as discussed in [29,35], has 
proven to be effective in capturing multi-scale information for segmentation tasks. It con-
sists of multiple parallel atrous convolutional layers at different rates, allowing for cap-
turing both local and global information. The ASPP module bridges the encoder and de-
coder stages, facilitating the extraction, creation, and enhancement of deep feature maps 
within the encoder at various receptive layers. 

The ASPP module comprises five parallel paths. Each path includes a convolutional 
layer, followed by batch normalization and a ReLU activation layer. The first path em-
ploys a 1 × 1 convolutional layer, while the remaining three paths utilize 3 × 3 convolu-
tional layers with atrous rates of 6, 12, and 18, respectively. Additionally, there is a path 
dedicated to capturing global features. It involves an average pooling layer, followed by 
a 1 × 1 convolutional layer, batch normalization, ReLU activation, and resizing the image 
back to its original dimension. Finally, the outputs from all paths are concatenated and 
passed through another set of convolutional layers, batch normalization, and ReLU acti-
vation. 

The ASPP module effectively integrates multi-scale information into the segmenta-
tion process. Incorporating parallel convolutional layers with different atrous rates and a 
path for capturing global features enhances the network’s performance in fully connected 
segmentation tasks. The module is crucial in extracting and highlighting deep feature 
maps within the encoder, contributing to improved segmentation accuracy. 

  

Figure 1. AFNet architecture. Rectangles represent different blocks or functions in the network, while
arrows represent the data flow. A legend is shown below the network to colour–code the differing
model blocks. Unless otherwise indicated, the stride is 1 for convolutional layers. A fetal MRI input
image of 512 × 512 feeds into the network and outputs a segmentation mask for amniotic fluid.

The original architecture follows an encoder-decoder structure. We devised the Re-
sUNet++ encoder to comprise four residual blocks in series. The first residual block, the
stem, has two 3 × 3 convolutional layers with a stride of 1, a batch normalization (BN)
layer, a ReLU activation layer, a residual connection, and a squeeze & excitation layer. The
subsequent three residual blocks are similar to the stem, except the first convolutional layer
has a stride of 2, the skip connection convolutional layer has a stride of 2, and an additional
BN and ReLU layer. These modifications enable an effective latent space representation of
the image through atrous convolutions.
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At the decoder stage, the image dimensionality is reduced by a factor of 8. This stage
reconstructs the image from high-level features in the latent space representation of the
image. A decoder block consists of three residual blocks, an attention block, and a transpose
convolutional layer to double the image dimensionality. Furthermore, we incorporated
an atrous spatial pyramid pooling (ASPP) block at the beginning and end of the decoder
stage, along with a 1 × 1 convolutional layer and a sigmoid activation layer. Skip connec-
tions are present after each residual block in the encoder stage, allowing the network to
retain important feature mappings in the residual connection. Notably, we replaced the
traditional upsampling layers with transposed convolutional layers [41], contributing to
the uniqueness of AFNet and facilitating robust feature extraction during upsampling. In
addition to architectural changes, we fine-tuned and refined the attention block to better
suit the requirements of our modified network. These refinements significantly enhance
the overall performance and capabilities of AFNet.

The Atrous Spatial Pyramid Pooling (ASPP) module, as discussed in [29,35], has
proven to be effective in capturing multi-scale information for segmentation tasks. It
consists of multiple parallel atrous convolutional layers at different rates, allowing for
capturing both local and global information. The ASPP module bridges the encoder and
decoder stages, facilitating the extraction, creation, and enhancement of deep feature maps
within the encoder at various receptive layers.

The ASPP module comprises five parallel paths. Each path includes a convolutional
layer, followed by batch normalization and a ReLU activation layer. The first path employs
a 1 × 1 convolutional layer, while the remaining three paths utilize 3 × 3 convolutional
layers with atrous rates of 6, 12, and 18, respectively. Additionally, there is a path dedicated
to capturing global features. It involves an average pooling layer, followed by a 1 × 1
convolutional layer, batch normalization, ReLU activation, and resizing the image back
to its original dimension. Finally, the outputs from all paths are concatenated and passed
through another set of convolutional layers, batch normalization, and ReLU activation.

The ASPP module effectively integrates multi-scale information into the segmentation
process. Incorporating parallel convolutional layers with different atrous rates and a
path for capturing global features enhances the network’s performance in fully connected
segmentation tasks. The module is crucial in extracting and highlighting deep feature maps
within the encoder, contributing to improved segmentation accuracy.

Attention Block

Our study introduces a novel attention block that modifies the existing attention block
used in the ResUNet++ model [24]. This modification aims to enhance the interaction
between the encoder and decoder layers in our architecture. In our framework, we consider
the output encoder feature map E[e], where e represents the number of encoder blocks the
feature map has passed. Similarly, the decoder feature map D[d], where d corresponds to
the number of decoder blocks the feature map has traversed, initially starting at zero. The
relationship between the encoder and decoder layers can be described using Equation (1),
where B denotes the total number of encoder blocks excluding the stem block.

Unlike the original ResUNet++ architecture, the input encoder feature map in our
attention block has twice the spatial dimensions ( H ×W) compared to the decoder feature
map D[d] ∈ RH×W×C with C representing the number of channels. By concatenating the
encoder feature maps onto the decoder, our network can effectively extract low-level spatial
features and integrate them with abstract high-level decoder feature maps, facilitating fine-
grain segmentation.

To process the input feature map X[l] at layer l, which includes a weight matrix W [l],
bias matrix b[l], and activation function g, we employ a convolutional layer, as depicted in
Equation (2). The function fs is introduced to incorporate an atrous convolution of stride 2,
while batch normalization is omitted for clarity. As a result, the output decoder matrix D[d]

o
generated by the attention block, as described in Equation (3), contains a finely calibrated
feature map that integrates the encoder and decoder information.
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d = −e + B (1)

f
(

X[l−1]
)
= W [l] ∗ g

(
X[l−1]

)
+ b[l] = X[l] (2)

D[d]
o = f

(
fs

(
f
(

E[e]
))

+ f
(

D[d]
))
· D[d] (3)

Our attention mechanisms play a crucial role in improving the feature maps of spe-
cific areas within the network by establishing modified connections with previous layers.
Figure 2 showcases the attention block incorporated into our modified ResUNet++ archi-
tecture. Notably, a max pooling layer was employed in the original encoder attention path,
while our proposed attention mechanism replaces it with an atrous convolution block of
stride two. This modification enables more efficient and representative encoding within the
decoder layer, leveraging the valuable information from previous encoder feature maps.
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Introducing these novel attention mechanisms and adapting the ResUNet++ architec-
ture enhances the interaction between encoder and decoder layers, leading to improved
performance and more efficient encoding in our modified framework.

2.3. Evaluation Metrics

To evaluate the performance of our deep learning model, we employ essential evalua-
tion metrics that provide insights into the accuracy of the network when presented with
unseen data. In semantic segmentation tasks, the F1 score (Dice Coefficient) and the Jaccard
index (intersection over union) are widely used metrics to quantify the agreement between
the predicted segmentation maps and the ground truth [42].

Let us denote the ground truth segmentation dataset as Sg and the network’s output
segmentation as So. The F1 score and Jaccard index are defined by Equations (4) and (5), re-
spectively. These metrics enable us to measure the degree of overlap between the predicted
and ground truth segmentation maps.

In addition to the F1 score and Jaccard index, we consider recall and precision met-
rics in our model comparison. These metrics provide further insights into the model’s
performance. However, they become more meaningful when the mean intersection over
union (mIoU) scores are statistically insignificant among the compared models. The mIoU
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represents the average intersection over union across the entire dataset, providing a com-
prehensive measure of segmentation accuracy.

Jaccard = IoU =

∣∣Sg ∩ So
∣∣∣∣Sg∪So
∣∣ = TP

TP + FP + FN
(4)

Dice =
2
∣∣Sg ∩ So

∣∣∣∣Sg
∣∣+ |So|

=
2TP

2TP + FP + FN
=

2Jaccard
Jaccard + 1

(5)

In our analysis, we incorporate the recall metric, also known as the True Positive Rate
(6), to assess the model’s performance in amniotic fluid segmentation, with a focus on
capturing all instances of the target class. This metric helps us evaluate how well the model
identifies and includes relevant regions of the amniotic fluid in the segmentation output,
considering the potential for over-segmentation.

Additionally, we utilize the precision metric (7) to evaluate the model’s performance,
specifically in under-segmenting the amniotic fluid, aiming to minimize false positives.
Precision measures the proportion of correctly identified amniotic fluid regions out of
all the predicted positive regions. By considering both recall and precision, we com-
prehensively understand the model’s ability to balance between over-segmentation and
under-segmentation in amniotic fluid segmentation [43].

Medical segmentation tasks often require striking a balance between capturing all
relevant regions (avoiding false negatives) and minimizing false positives, as defined in
Table 1. The combination of recall and precision metrics provides a robust evaluation frame-
work less sensitive to predictions exhibiting over-segmentation and under-segmentation
tendencies. By utilizing these metrics, we can effectively assess the model’s performance
and ability to achieve accurate and balanced amniotic fluid segmentation results.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Table 1. Confusion matrix, demonstrating subsets So
1 and So

2 where, So
1 + So

2 = So, which is the
output segmentation set. Similarly, the subsets Sg

1 and Sg
2 represent the ground truth sets containing

amniotic fluid and not having amniotic fluid, respectively.

Dataset So
1 (Amniotic Fluid) So

2 (Not AF)

Sg
1 (Amniotic Fluid) TP FN

Sg
2 (Not AF) FP TN

2.4. Training Implementation

The dataset was split into the train, validation, and test sets using a ratio of 65/15/20 per
cent, respectively, after randomly shuffling the entire dataset giving Figure 3. The holdout
test set was exclusively used once for evaluating the models after fine-tuning them on the
validation set. This approach ensures unbiased performance metrics [44].

Normalization was applied to the training set, scaling the pixel values to the range of
[0, 1]. Data augmentation techniques were employed in the training set to enhance image
diversity and promote model generalizability. These techniques included random image
contrast adjustments within the range of [0.4, 0.6) and random flips.
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To accommodate the entire image within the model while staying within memory
limitations, the image slices were resized to 512 × 512 dimensions. Hyperparameter tuning
was performed empirically, and it was found that the same set of hyperparameters could
be used for most networks. However, for AFNet and ResUNet++, better performance
was achieved using the Adagrad optimizer with a higher learning rate of 0.1 and gradient
clipping. On the other hand, the Adam optimizer demonstrated superior performance
with other state-of-the-art networks, using a learning rate of 0.0001. Attempts to use higher
learning rates with Adam did not yield optimal results for the other networks. The batch
size hyperparameter was determined to be equally optimal for all networks.

An exponential decay factor with a decay rate of 0.96 and decay steps of 10,000 was
applied to control the learning rate. The network was trained for a maximum of 200 epochs
with a batch size of 8. Early stopping was implemented using a callback mechanism,
monitoring the mean Intersection over Union (IoU) metric with a patience of 10 epochs and
a baseline of 0.75. As a result, most networks converged within 50 to 150 epochs. The dice
loss function was chosen due to its robustness in training networks to recognize similarities
in the ground truth.

The implementation of this model utilized TensorFlow, and training was performed
on Compute Canada’s Cedar cluster network. A single node comprising two Intel Silver
4216 Cascade Lake processors running at 2.1 GHz and four NVIDIA V100 Volta GPUs (each
with 32 GB of HBM2 video memory) was utilized for training.

3. Results & Discussion

We conducted a series of experiments to evaluate the performance of our AFNet model
and determine any statistically significant improvements compared to other models. The
models included the original ResUNet++ model proposed in [24], ResUNet++ with only the
modified attention and no transposed convolution (AFNet noT), and ResUNet++ with both
the modified attention and transpose convolutions (AFNet). These models were trained
using the same optimized hyperparameters and training scheme. Each model underwent
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approximately 30 training runs with random weight initialization on the same dataset split.
We used paired student’s t-test to identify statistical differences in mean Intersection over
Union (mIoU) for this dataset split.

Our attention module improved the original ResUNet++ by an average of 1% (p = 0.043),
and the addition of transposed convolution further enhanced performance by approxi-
mately 1% (p = 0.031), as shown in Table 2. The AFNet model slightly increased network
parameters but yielded a substantial performance improvement. All three networks’ dice
loss scores remained low, with AFNet noT achieving the lowest loss score. However, our
training results showed that many models with very low dice scores (<0.1) tended to overfit
the test set, resulting in poor mIoU performance. Notably, our model achieved a significant
increase in recall (5%), indicating reduced over-segmentation of background pixels at the
expense of a slight decrease in precision (1%), leading to over-segmentation of amniotic
fluid (AF). The improvement in recall was primarily due to the changes introduced by
the attention module, allowing the residual block to focus on the background class of
non-AF regions.

Table 2. Test results for baseline ResUNet++, AFNet noT, AFNet. The best results are shown in bold.

Model Loss mIoU Recall Precision # of Parameters

ResUNet++ 0.1305 ± 0.12 91.36% ± 2.7 90.56% ± 5.3 93.66% ± 1.4 4.07 M
AFNet noT 0.1228 ± 0.042 92.46% ± 1.6 94.28% ± 1.2 92.46% ± 1.6 4.85 M

AFNet 0.1295 ± 0.078 93.38% ± 1.3 95.06% ± 1.2 92.01% ± 2.0 4.80 M

We compared the performance of our network to other state-of-the-art models, includ-
ing U-Net [27], Double U-Net [30], DeepLabV3+ [29], ResUNet++ [24], and U-Net++ [28].
These networks were selected from top-ranking competitive medical segmentation chal-
lenges. The main metric for segmentation accuracy was mean Intersection over Union
(mIoU). Our model demonstrated superior performance, significantly outperforming
U-Net, DeepLabV3+, and Double U-Net regarding mIoU (p < 0.05; Table 3). Although
the highest mIoU was achieved by U-Net++, our model showed no significant difference
compared to it (p = 0.26). Regarding dice loss, AFNet scored lowest compared to U-Net,
U-Net++, DeepLabV3+, and Double U-Net. Among all the models, Double U-Net achieved
the highest recall and precision scores. However, when assessing these models, mIoU
remained the most important metric for performance evaluation.

Table 3. Averaged test results of our AFNet with comparable state-of-the-art models. The best results
are shown in bold. (* statistically significant, p < 0.05).

Model Loss mIoU Recall Precision

U-Net 0.5697 ± 0.14 80.04% * ± 3.4 93.65% ± 4.1 89.67% ± 2.3
UNet++ 0.1668 ± 0.066 93.65% ± 0.70 96.00% ± 0.90 90.34% ± 0.80

DeepLabV3+ 0.3939 ± 0.043 75.92% * ± 1.7 91.21% ± 1.7 90.26% ± 0.90
Double UNet 0.3288 ± 0.073 78.80% * ± 4.0 97.24% ± 0.33 92.59% ± 0.58

AFNet 0.1295 ± 0.078 93.38% ± 1.3 95.06% ± 1.2 92.01% ± 2.0

The results from Table 3 highlight the significance of attention blocks, ASPP, atrous
and transpose convolutions in the segmentation of amniotic fluid (AF). Models that lacked
these advanced modules underperformed and had more parameters, which hindered their
ability to generalize well on the test set. The UNet++ model, with its increased number
of skip connections, effectively reduced its capacity and mitigated the risk of overfitting.
Overfitting is a common challenge in deep learning models, particularly when working
with small datasets, as is often the case in fetal MR imaging applications. This highlights
the importance of developing efficient models with fewer parameters and implementing
mechanisms to enhance generalizability. Previous research has demonstrated that compact
skip connections can improve the generalization of deep models without adding extra
parameters [31].
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Training deep learning models requires time for optimization, but from our analyses
in Table 4, the number of parameters did not correlate with the training time due to early
stopping. The larger models, such as UNet and Double UNet, converged around the
same time as AFNet and UNet++, while DeepLabV3+ converged in a few minutes. These
findings indicate that the model size does not solely determine the training time; other
factors, such as optimization strategy and convergence behaviour, also play a role.

We created pixel-wise visual comparisons to compare the performance of the various
models from Table 3. The U-Net and Double UNet predictions exhibited over-segmentation
of the AF, as indicated by the dark blue segmentation mask. In contrast, DeepLabV3+,
UNet++, and AFNet produced segmentations of the amniotic fluid with high overlapping
similarity. Figures 4 and 5 illustrate these comparisons. It is important to note that these
figures represent only a single slice and cannot fully capture the variability of 3D fetal
MRI. Therefore, they offer qualitative insights into the areas where the models struggled.
Most networks encountered challenges distinguishing AF from cerebral spinal fluid, eyes,
oesophagus, bladder, and surrounding fat tissue. Moreover, they faced difficulties seg-
menting small crevices of AF and regions with intensity gradient boundaries. Introducing
contrast augmentation in the training data proved beneficial for all networks, likely due to
their reliance on small-intensity changes for AF delineation.
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true negative segmentation.
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Table 4. The number of parameters and average training time of models. The best metric is shown
in bold.

Model Training Time * (min) # of Parameters

U-Net 48.0 ± 14.0 31.0 M
UNet++ 50.0 ± 26.0 9.17 M

DeepLabV3+ 6.0 ± 3.0 11.8 M
Double UNet 34.0 ± 33.0 29.2 M

AFNet 47.0 ± 18.0 4.80 M
* Training time signifies the time in which the model saved the best epoch, a model may have trained for longer
but showed no improvement.
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uterus. Prediction masks (dark blue) are overlaid with the ground truth mask (white). Light blue
pixels signify a true positive overlap segmentation, dark blue pixels demonstrate a false positive
segmentation, white pixels demonstrate a false negative segmentation, and grey pixels demonstrate a
true negative segmentation.

4. Conclusions

Our study presents a novel and unique approach to automated segmentation of
amniotic fluid based on fetal MRI using the AFNet model, an improved version of the
state-of-the-art ResUNet++ architecture. By replacing upsampling blocks with transpose
convolutional blocks and average pooling layers with atrous convolutional blocks, AFNet
demonstrates enhanced performance in AF segmentation. Our experiments revealed that
utilizing Adagrad with a high learning rate was a more effective optimization strategy for
this network. Furthermore, we observed improved performance by training usingwhole
images with a smaller batch size instead of cropping.

The AFNet model and the corresponding dataset offer a solid foundation for further
refinement and development to enhance its performance and expand its generalizabil-
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ity. While the performance improvements demonstrated in this study are based on our
specific dataset, we believe the model exhibits robustness and reliability. However, it
is important to acknowledge the limitations of this algorithm, such as the dataset size,
inclusion criteria, demographic, unseen MR artefacts, MR acquisition slice, and the use
of only T2-weighted MRIs. To establish its effectiveness across different datasets, future
work should investigate its performance in other segmentation tasks, such as placental
segmentation. Exploring more image post-processing and preprocessing techniques may
further improve the segmentation results.

There are several avenues for future research to enhance the AFNet model. For
instance, investigating the utilization of ASPP in earlier encoder layers could lead to
performance improvements. Furthermore, incorporating transformer attention modules
into the model may optimize attention blocks and enhance the model’s overall performance.
Clinical evaluations of AF disorders could be conducted to establish correlations with
neonatal outcomes, similar to the assessment of amniotic fluid index (AFI) and single
deepest pocket (SDP).

Throughout our evaluation, AFNet demonstrated strong performance across various
metrics and evaluation steps. It can perform 2D and 3D segmentations, making it suitable
for analyzing 2D and 3D MR sequences. The ablation results highlighted the significantly
improved recall of our proposed AFNet compared to the original architecture, indicating
its enhanced utility as a clinical diagnostics tool.

In summary, our AFNet model significantly advances automated amniotic fluid seg-
mentation based on fetal MRI. Its novel architectural modifications, competitive perfor-
mance, and consistent results position AFNet as a valuable tool for accurate and efficient
AF segmentation.
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